1
|
Lewell XQ, Judd DB, Watson SP, Hann MM. RECAP--retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 1998; 38:511-22. [PMID: 9611787 DOI: 10.1021/ci970429i] [Citation(s) in RCA: 468] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of combinatorial chemistry for the generation of new lead molecules is now a well established strategy in the drug discovery process. Central to the use of combinatorial chemistry is the design and availability of high quality building blocks which are likely to afford hits from the libraries that they generate. Herein we describe "RECAP" (Retrosynthetic Combinatorial Analysis Procedure), a new computational technique designed to address this building block issue. RECAP electronically fragments molecules based on chemical knowledge. When applied to databases of biologically active molecules this allows the identification of building block fragments rich in biologically recognized elements and privileged motifs and structures. This allows the design of building blocks and the synthesis of libraries rich in biological motifs. Application of RECAP to the Derwent World Drug Index (WDI) and the molecular fragments/ building blocks that this generates are discussed. We also describe a WDI fragment knowledge base which we have built which stores the drug motifs and mention its potential application in structure based drug design programs.
Collapse
|
|
27 |
468 |
2
|
Cattaneo M, Cerletti C, Harrison P, Hayward CPM, Kenny D, Nugent D, Nurden P, Rao AK, Schmaier AH, Watson SP, Lussana F, Pugliano MT, Michelson AD. Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J Thromb Haemost 2013; 11:S1538-7836(22)17689-0. [PMID: 23574625 DOI: 10.1111/jth.12231] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/04/2013] [Indexed: 12/28/2022]
Abstract
Light transmission aggregometry (LTA) is the most common method used to assess platelet function. However, there is no universal standard for its performance. The Platelet Physiology Subcommittee of the Scientific and Standardization Committee (SSC) of the International Society on Thrombosis and Haemostasis formed a working party of experts with the aim of producing a series of consensus recommendations for standardizing LTA. Due to a lack of investigations that directly compared different methodologies to perform LTA studies, there were insufficient data to develop evidence-based guidelines. Therefore, the RAND method was used, which obtains a formal consensus among experts about the appropriateness of health care interventions, particularly when scientific evidence is absent, scarce and/or heterogeneous. Using this approach, each expert scored as "appropriate", "uncertain" or "inappropriate" a series of statements about the practice of LTA, which included pre-analytical variables, blood collection, blood processing, methodological details, choice of agonists and the evaluation and reporting of results. After presentation and public discussion at SSC meetings, the assessments were further refined to produce final consensus recommendations. Before delivering the recommendations, a formal literature review was performed using a series of defined search terms about LTA. Of the 1830 potentially relevant studies identified, only 14 publications were considered to be actually relevant for review. Based upon the additional information, 6 consensus statements were slightly modified. The final statements were presented and discussed at the SSC Meeting in Cairo (2010) and formed the basis of a consensus document, which is the subject of the present report. This article is protected by copyright. All rights reserved.
Collapse
|
|
12 |
350 |
3
|
Poole A, Gibbins JM, Turner M, van Vugt MJ, van de Winkel JG, Saito T, Tybulewicz VL, Watson SP. The Fc receptor gamma-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J 1997; 16:2333-41. [PMID: 9171347 PMCID: PMC1169834 DOI: 10.1093/emboj/16.9.2333] [Citation(s) in RCA: 348] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of mouse platelets by collagen is associated with tyrosine phosphorylation of multiple proteins including the Fc receptor gamma-chain, the tyrosine kinase Syk and phospholipase Cgamma2, suggesting that collagen signals in a manner similar to that of immune receptors. This hypothesis has been tested using platelets from mice lacking the Fc receptor gamma-chain or Syk. Tyrosine phosphorylation of Syk and phospholipase Cgamma2 by collagen stimulation is absent in mice lacking the Fc receptor gamma-chain. Tyrosine phosphorylation of phospholipase Cgamma2 by collagen stimulation is also absent in mice platelets which lack Syk, although phosphorylation of the Fc receptor gamma-chain is maintained. In contrast, tyrosine phosphorylation of platelet proteins by the G protein-coupled receptor agonist thrombin is maintained in mouse platelets deficient in Fc receptor gamma-chain or Syk. The absence of Fc receptor gamma-chain or Syk is accompanied by a loss of secretion and aggregation responses in collagen- but not thrombin-stimulated platelets. These observations provide the first direct evidence of an essential role for the immunoreceptor tyrosine-based activation motif (ITAM) in signalling by a non-immune receptor stimulus.
Collapse
|
research-article |
28 |
348 |
4
|
Kramer RM, Roberts EF, Um SL, Börsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J Biol Chem 1996; 271:27723-9. [PMID: 8910365 DOI: 10.1074/jbc.271.44.27723] [Citation(s) in RCA: 346] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Ca2+-sensitive 85-kDa cytosolic phospholipase A2 (cPLA2) is responsible for thrombin-stimulated mobilization of arachidonic acid for the synthesis of thromboxane A2 in human platelets. We have previously shown that thrombin activates p38 kinase, a recently discovered new member of the mitogen-activated protein kinase family (Kramer, R. M., Roberts, E. F., Strifler, B. A., and Johnstone, E. M. (1995) J. Biol. Chem. 270, 27395-27398) and also induces phosphorylation of cPLA2, thereby increasing its intrinsic catalytic activity. In the present study we have examined the role of p38 kinase in the phosphorylation and activation of cPLA2 in stimulated platelets. We have observed that activation of p38 kinase accompanies receptor-mediated events in platelets and coincides with cPLA2 phosphorylation. Furthermore, in the presence of inhibitors of p38 kinase, the proline-directed phosphorylation of cPLA2 was completely blocked in platelets stimulated with the thrombin receptor agonist peptide SFLLRN and was suppressed during the early (up to 2 min) phase of platelet stimulation caused by thrombin. Unexpectedly, we found that prevention of proline-directed phosphorylation of cPLA2 in stimulated platelets did not attenuate its ability to release arachidonic acid from platelet phospholipids. We conclude that: 1) cPLA2 is a physiological target of p38 kinase; 2) p38 kinase is involved in the early phosphorylation of cPLA2 in stimulated platelets; and 3) proline-directed phosphorylation of cPLA2 is not required for its receptor-mediated activation.
Collapse
|
|
29 |
346 |
5
|
Abstract
This review summarizes recent developments in our understanding of the molecular basis of platelet activation by two distinct types of surface receptor, the immunoglobulin GPVI, and the integrin alphaIIb beta3 (also known as GPIIbIIIa). These two classes of receptor signal through similar yet distinct tyrosine kinase-based signaling cascades leading to activation of phospholipase C gamma2. The significance of these signaling cascades in platelet adhesion and platelet aggregation at arterial rates of shear is discussed.
Collapse
|
Review |
20 |
305 |
6
|
Galione A, White A, Willmott N, Turner M, Potter BV, Watson SP. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 1993; 365:456-9. [PMID: 7692303 DOI: 10.1038/365456a0] [Citation(s) in RCA: 281] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many hormones or neurotransmitters act at cell surface receptors to increase the intracellular free calcium concentration, triggering a wide range of cellular responses. As the source of this Ca2+ is often internal stores, additional messengers are required to convey the hormonal message from the plasma membrane. Cyclic ADP-ribose (cADPR) has been proposed as the endogenous activator of Ca(2+)-induced Ca2+ release by the ryanodine receptor in sea urchin eggs and in several mammalian cell types. A second messenger role for cADPR requires that its intracellular levels be under the control of extracellular stimuli. Here we demonstrate a novel action of 3',5'-cyclic guanosine monophosphate (cGMP) in stimulating the synthesis of cADPR from beta-NAD+ by activating its synthetic enzyme ADP-ribosyl cyclase in sea urchin eggs and egg homogenates. We suggest that cADPR may transduce signals generated by cell surface receptors or gaseous transmitters linked to cGMP production.
Collapse
|
|
32 |
281 |
7
|
Guard S, Watson SP. Tachykinin receptor types: Classification and membrane signalling mechanisms. Neurochem Int 2012; 18:149-65. [PMID: 20504688 DOI: 10.1016/0197-0186(91)90180-l] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of selective agonists in both functional and binding studies has provided unequivocal evidence for the existence of three types of tachykinin receptor (NK(1), NK(2) and NK(3)); there is also preliminary evidence for the existence of further subtypes. These results have been confirmed by the development of selective antagonists and by the identification and cloning of three distinct cDNA sequences. All three receptors belong to the superfamily of G protein coupled receptors and are linked to the phosphoinositide transmembrane-signalling pathway. The purpose of this article is to review recent developments in the pharmacology of each receptor with emphasis on the NK(3) type. In particular, the need to use selective agonists and antagonists to identify each receptor type is stressed.
Collapse
|
Journal Article |
13 |
224 |
8
|
Gibbins JM, Okuma M, Farndale R, Barnes M, Watson SP. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Lett 1997; 413:255-9. [PMID: 9280292 DOI: 10.1016/s0014-5793(97)00926-5] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have recently shown that collagen activates platelets through a pathway dependent on the Fc receptor gamma-chain and the tyrosine kinase Syk. We report here that the Fc receptor gamma-chain and the candidate collagen receptor glycoprotein VI (GPVI) co-associate. Furthermore, cross-linking GPVI stimulates a similar pattern of tyrosine phosphorylation to that stimulated by collagen, including tyrosine phosphorylation of Fc receptor gamma-chain. These results support a model where GPVI couples collagen-stimulation of platelets to phosphorylation of the Fc receptor gamma-chain leading to activation of Syk and phospholipase Cgamma2.
Collapse
|
|
28 |
220 |
9
|
Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 2011; 9:1097-107. [PMID: 21435167 DOI: 10.1111/j.1538-7836.2011.04264.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has become clear that platelets are not simply cell fragments that plug the leak in a damaged blood vessel; they are, in fact, also key components in the innate immune system, which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the cells that respond first to a site of injury, they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets, which usually triggers platelet activation and the secretion of antimicrobial peptides. The main platelet receptors that mediate these interactions are glycoprotein (GP)IIb-IIIa, GPIbα, FcγRIIa, complement receptors, and TLRs. This process may involve direct interactions between bacterial proteins and the receptors, or can be mediated by plasma proteins such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we review the variety of interactions between platelets and bacteria, and look at the potential for inhibiting these interactions in diseases such as infective endocarditis and sepsis.
Collapse
|
Review |
14 |
207 |
10
|
Börsch-Haubold AG, Pasquet S, Watson SP. Direct inhibition of cyclooxygenase-1 and -2 by the kinase inhibitors SB 203580 and PD 98059. SB 203580 also inhibits thromboxane synthase. J Biol Chem 1998; 273:28766-72. [PMID: 9786874 DOI: 10.1074/jbc.273.44.28766] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinase inhibitors SB 203580 and PD 98059 have been reported to be specific inhibitors of the 38- and 42/44-kDa mitogen-activated protein kinase (MAPK) pathways, respectively. In this study, the two inhibitors were found to decrease platelet aggregation induced by low concentrations of arachidonic acid, suggesting that they also interfere with the metabolism of arachidonic acid to thromboxane A2. In support of this, SB 203580 and PD 98059 inhibited the conversion of exogenous [3H]arachidonic acid to [3H]thromboxane in intact platelets. Measurement of platelet cyclooxygenase-1 activity following immunoprecipitation revealed that SB 203580 and PD 98059 are direct inhibitors of this enzyme. Both compounds were shown to inhibit purified cyclooxygenase-1 and -2 by a reversible mechanism. In addition, SB 203580 (but not PD 98059) inhibited platelet aggregation induced by prostaglandin H2 and the conversion of prostaglandin H2 to thromboxane A2 in intact platelets. SB 203580 also inhibited this pathway in platelet microsome preparations, suggesting a direct inhibitory effect on thromboxane synthase. These results demonstrate that direct effects of the two kinase inhibitors on active arachidonic acid metabolites have to be excluded before using these compounds for the investigation of MAPKs in signal transduction pathways. This is of particular relevance to studies on the regulation of cytosolic phospholipase A2 as these two MAPKs are capable of phosphorylating cytosolic phospholipase A2, thereby increasing its intrinsic activity.
Collapse
|
|
27 |
203 |
11
|
Watson SP, McNally J, Shipman LJ, Godfrey PP. The action of the protein kinase C inhibitor, staurosporine, on human platelets. Evidence against a regulatory role for protein kinase C in the formation of inositol trisphosphate by thrombin. Biochem J 1988; 249:345-50. [PMID: 3257691 PMCID: PMC1148709 DOI: 10.1042/bj2490345] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of several putative inhibitors of protein kinase C (PKC) to block dioctanoylglycerol (DC8)-induced phosphorylation of a 47 kDa protein (a recognized substrate for PKC) in human platelets was investigated. Staurosporine (1 microM) caused complete inhibition of phosphorylation, whereas the other reagents were either inactive (polymyxin B) or gave only partial inhibition (C-1, H-7, tamoxifen). Staurosporine (1 microM) fully inhibited the phosphorylation of the 47 kDa protein in platelets challenged with thrombin, but also inhibited the phosphorylation of a 20 kDa protein which is a substrate for myosin light-chain kinase. The inhibition of both kinases by staurosporine was associated with the inhibition of thrombin-induced secretion of ATP and 5-hydroxytryptamine and a slowing of the aggregation response; staurosporine, however, had no effect on the formation of phosphatidic acid and inositol phosphates induced by thrombin. Staurosporine also reversed the inhibitory action of phorbol esters on thrombin-induced formation of phosphatidic acid. These data are consistent with a role for these two kinases in secretion and aggregation (although there must be additional control signals, since aggregation was only slowed, not inhibited), but suggest that neither kinase is involved in the regulation of phosphoinositide metabolism. This latter conclusion contradicts previous observations that the activation of PKC by phorbol esters or membrane-permeable diacylglycerols alters the apparent activity of both phospholipase C and inositol trisphosphatase. Possible explanations for this discrepancy are discussed.
Collapse
|
research-article |
37 |
198 |
12
|
Hefner Y, Borsch-Haubold AG, Murakami M, Wilde JI, Pasquet S, Schieltz D, Ghomashchi F, Yates JR, Armstrong CG, Paterson A, Cohen P, Fukunaga R, Hunter T, Kudo I, Watson SP, Gelb MH. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem 2000; 275:37542-51. [PMID: 10978317 DOI: 10.1074/jbc.m003395200] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that in thrombin-stimulated human platelets, cytosolic phospholipase A(2) (cPLA2) is phosphorylated on Ser-505 by p38 protein kinase and on Ser-727 by an unknown kinase. Pharmacological inhibition of p38 leads to inhibition of cPLA2 phosphorylation at both Ser-505 and Ser-727 suggesting that the kinase responsible for phosphorylation on Ser-727 is activated in a p38-dependent pathway. By using Chinese hamster ovary, HeLa, and HEK293 cells stably transfected with wild type and phosphorylation site mutant forms of cPLA2, we show that phosphorylation of cPLA2 at both Ser-505 and Ser-727 and elevation of Ca(2+) leads to its activation in agonist-stimulated cells. The p38-activated protein kinases MNK1, MSK1, and PRAK1 phosphorylate cPLA2 in vitro uniquely on Ser-727 as shown by mass spectrometry. Furthermore, MNK1 and PRAK1, but not MSK1, is present in platelets and undergo modest activation in response to thrombin. Expression of a dominant negative form of MNK1 in HEK293 cells leads to significant inhibition of cPLA2-mediated arachidonate release. The results suggest that MNK1 or a closely related kinase is responsible for in vivo phosphorylation of cPLA2 on Ser-727.
Collapse
|
|
25 |
187 |
13
|
Quek LS, Bolen J, Watson SP. A role for Bruton's tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 1998; 8:1137-40. [PMID: 9778529 DOI: 10.1016/s0960-9822(98)70471-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bruton's tyrosine kinase (Btk) is essential for normal B-cell receptor signalling. The lack of expression of functional Btk in humans leads to the B-cell deficiency X-linked agammaglobulinaemia (XLA). We report here that Btk is also important for signalling via the collagen receptor glycoprotein VI (GPVI) in platelets. GPVI is coupled to the Fc receptor gamma chain (FcRgamma). The FcRgamma-chain contains a consensus sequence known as the immune-receptor tyrosine-based activation motif (ITAM). Tyrosine phosphorylation of the ITAM upon GPVI stimulation is the initial step in the regulation of phospholipase C gamma2 (PLCgamma2) isoforms via the tyrosine kinase p72(Syk) (Syk) in platelets. Here we show that collagen and a collagen-related peptide (CRP), which binds to GPVI but does not bind to the integrin alpha2beta1, induced Btk tyrosine phosphorylation in platelets. Aggregation, dense granule secretion and calcium mobilisation were significantly diminished but not completely abolished in platelets from XLA patients in response to collagen and CRP. These effects were associated with a reduction in tyrosine phosphorylation of PLCgamma2. In contrast, aggregation and secretion stimulated by thrombin in Btk-deficient platelets were not significantly altered. Our results demonstrate that Btk is important for collagen signalling via GPVI, but is not essential for thrombin-mediated platelet activation.
Collapse
|
|
27 |
184 |
14
|
Gibbins J, Asselin J, Farndale R, Barnes M, Law CL, Watson SP. Tyrosine phosphorylation of the Fc receptor gamma-chain in collagen-stimulated platelets. J Biol Chem 1996; 271:18095-9. [PMID: 8663460 DOI: 10.1074/jbc.271.30.18095] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stimulation of platelets by the extracellular matrix protein collagen leads to activation of a tyrosine kinase-dependent mechanism resulting in secretion and aggregation. Tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2 are early events in collagen-induced activation. We recently proposed that collagen-signaling in platelets involves a receptor or a receptor-associated protein containing an immunoreceptor tyrosine-based activation motif (ITAM) enabling interaction with Syk. In this report we show that collagen stimulation of platelets causes rapid tyrosine phosphorylation of the ITAM containing Fc receptor gamma-chain and that this is precipitated by the tandem Src homology 2 (SH2) domains of Syk expressed as a fusion protein. In addition we demonstrate an association between the Fc receptor gamma-chain with endogenous Syk in collagen-stimulated platelets. The Fc receptor gamma-chain undergoes tyrosine phosphorylation in platelets stimulated by a collagen-related peptide which does not bind the integrin alpha2beta1 and by the lectin wheat germ agglutinin. In contrast, cross-linking of the platelet low affinity receptor for immune complexes, FcgammaRIIA, or stimulation by thrombin does not induce phosphorylation of the Fc receptor gamma-chain. The present results provide a molecular basis for collagen activation of platelets which is independent of the integrin alpha2beta1 and involves phosphorylation of the Fc receptor gamma-chain, its association with Syk and subsequent phosphorylation of phospholipase Cgamma2. Collagen is the first example of a nonimmune receptor stimulus to signal through a pathway closely related to signaling by immune receptors.
Collapse
|
|
29 |
183 |
15
|
Watson SP, Downes CP. Substance P induced hydrolysis of inositol phospholipids in guinea-pig ileum and rat hypothalamus. Eur J Pharmacol 1983; 93:245-53. [PMID: 6196211 DOI: 10.1016/0014-2999(83)90144-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The recent development of a sensitive assay procedure for monitoring the hydrolysis of inositol phospholipids allowed the detection of substance P-induced lipid hydrolysis in tissue slices of rat hypothalamus and guinea-pig ileum longitudinal smooth muscle. The EC50 values observed for substance P were similar on both tissues and corresponded well with the value previously reported for the rat parotid. Furthermore, the structure-activity profile for this response on all three tissues was similar and closely resembled that for ileum contraction. We therefore suggest that these three functionally distinct tissues possess the same subtype of substance P receptor coupled to inositol phospholipid hydrolysis, and that this receptor has the characteristics of the previously reported SP-P subtype.
Collapse
|
|
42 |
163 |
16
|
Pasquet JM, Gross B, Quek L, Asazuma N, Zhang W, Sommers CL, Schweighoffer E, Tybulewicz V, Judd B, Lee JR, Koretzky G, Love PE, Samelson LE, Watson SP. LAT is required for tyrosine phosphorylation of phospholipase cgamma2 and platelet activation by the collagen receptor GPVI. Mol Cell Biol 1999; 19:8326-34. [PMID: 10567557 PMCID: PMC84916 DOI: 10.1128/mcb.19.12.8326] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1999] [Accepted: 07/27/1999] [Indexed: 11/20/2022] Open
Abstract
In the present study, we have addressed the role of the linker for activation of T cells (LAT) in the regulation of phospholipase Cgamma2 (PLCgamma2) by the platelet collagen receptor glycoprotein VI (GPVI). LAT is tyrosine phosphorylated in human platelets heavily in response to collagen, collagen-related peptide (CRP), and FcgammaRIIA cross-linking but only weakly in response to the G-protein-receptor-coupled agonist thrombin. LAT tyrosine phosphorylation is abolished in CRP-stimulated Syk-deficient mouse platelets, whereas it is not altered in SLP-76-deficient mice or Btk-deficient X-linked agammaglobulinemia (XLA) human platelets. Using mice engineered to lack the adapter LAT, we showed that tyrosine phosphorylation of Syk and Btk in response to CRP was maintained in LAT-deficient platelets whereas phosphorylation of SLP-76 was slightly impaired. In contrast, tyrosine phosphorylation of PLCgamma2 was substantially reduced in LAT-deficient platelets but was not completely inhibited. The reduction in phosphorylation of PLCgamma2 was associated with marked inhibition of formation of phosphatidic acid, a metabolite of 1,2-diacylglycerol, phosphorylation of pleckstrin, a substrate of protein kinase C, and expression of P-selectin in response to CRP, whereas these parameters were not altered in response to thrombin. Activation of the fibrinogen receptor integrin alpha(IIb)beta(3) in response to CRP was also reduced in LAT-deficient platelets but was not completely inhibited. These results demonstrate that LAT tyrosine phosphorylation occurs downstream of Syk and is independent of the adapter SLP-76, and they establish a major role for LAT in the phosphorylation and activation of PLCgamma2, leading to downstream responses such as alpha-granule secretion and activation of integrin alpha(IIb)beta(3). The results further demonstrate that the major pathway of tyrosine phosphorylation of SLP-76 is independent of LAT and that there is a minor, LAT-independent pathway of tyrosine phosphorylation of PLCgamma2. We propose a model in which LAT and SLP-76 are required for PLCgamma2 phosphorylation but are regulated through independent pathways downstream of Syk.
Collapse
|
research-article |
26 |
151 |
17
|
Watson SP, Gibbins J. Collagen receptor signalling in platelets: extending the role of the ITAM. IMMUNOLOGY TODAY 1998; 19:260-4. [PMID: 9639990 DOI: 10.1016/s0167-5699(98)01267-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
Review |
27 |
146 |
18
|
Abstract
SUMMARY The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin through an immunoreceptor tyrosine-based activation motif (ITAM)-regulated signaling pathway. ITAMs are characterized by two YxxL sequences separated by 6-12 amino acids and are found associated with several classes of immunoglobulin (Ig) and C-type lectin receptors in hematopoietic cells, including Fc receptors. Cross-linking of the Ig GPVI leads to phosphorylation of two conserved tyrosines in the FcR gamma-chain ITAM by Src family tyrosine kinases, followed by binding and activation of the tandem SH2 domain-containing Syk tyrosine kinase and stimulation of a downstream signaling cascade that culminates in activation of phospholipase Cgamma2 (PLCgamma2). In contrast, the C-type lectin receptor CLEC-2 mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. CLEC-2 is a receptor for podoplanin, which is expressed at high levels in several tissues, including type 1 lung alveolar cells, lymphatic endothelial cells, kidney podocytes and some tumors, but is absent from vascular endothelial cells and platelets. In this article, we compare the mechanism of platelet activation by GPVI and CLEC-2 and consider their functional roles in hemostasis and other vascular processes, including maintenance of vascular integrity, angiogenesis and lymphogenesis.
Collapse
|
Review |
15 |
146 |
19
|
Börsch-Haubold AG, Kramer RM, Watson SP. Cytosolic phospholipase A2 is phosphorylated in collagen- and thrombin-stimulated human platelets independent of protein kinase C and mitogen-activated protein kinase. J Biol Chem 1995; 270:25885-92. [PMID: 7592775 DOI: 10.1074/jbc.270.43.25885] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human platelets pretreated with indomethacin release arachidonic acid predominantly through the activity of cytosolic phospholipase A2 (cPLA2), an 85-kDa protein. This enzyme is regulated by an increase in intracellular Ca2+, a necessary condition of for arachidonic acid liberation, and by phosphorylation. Phosphorylation of cPLA2 enhanced the Ca(2+)-induced arachidonic acid release in platelets stimulated by the ionophore A23187 and phorbol ester (phorbol 12,13-dibutyrate (PDBu)). In thrombin-stimulated platelets, however, phosphorylation appeared not to be necessary for arachidonic acid release since the latter response was not impaired in the presence of staurosporine, which inhibited phosphorylation. Collagen, thrombin, and PDBu induced phosphorylation of platelet cPLA2 as well as activation of mitogen-activated protein kinase (MAPK; p42mapk and p44mapk). cPLA2 activation was not dependent on protein kinase C (PKC) in thrombin- and collagen-stimulated platelets, as preincubation with the PKC inhibitor Ro 31-8220 neither interfered with cPLA2 phosphorylation nor reduced arachidonic acid release. However, collagen- and thrombin-induced activation of MAPK was inhibited by Ro 31-8220, indicating that PKC is necessary for MAPK stimulation in platelets. Although MAPK may underlie phosphorylation of cPLA2 in PDBu-activated human platelets, our results provide evidence for PKC- and MAPK-independent phosphorylation of cPLA2 in platelets stimulated by the physiological activators collagen and thrombin.
Collapse
|
|
30 |
143 |
20
|
Watson SP, Clements MO, Foster SJ. Characterization of the starvation-survival response of Staphylococcus aureus. J Bacteriol 1998; 180:1750-8. [PMID: 9537371 PMCID: PMC107086 DOI: 10.1128/jb.180.7.1750-1758.1998] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The starvation-survival response of Staphylococcus aureus as a result of glucose, amino acid, phosphate, or multiple-nutrient limitation was investigated. Glucose and multiple-nutrient limitation resulted in the loss of viability of about 99 to 99.9% of the population within 2 days. The remaining surviving cells developed increased survival potential, remaining viable for months. Amino acid or phosphate limitation did not lead to the development of a stable starvation-survival state, and cells became nonculturable within 7 days. For multiple-nutrient limitation, the development of the starvation-survival state was cell density dependent. Starvation survival was associated with a decrease in cell size and increase in resistance to acid shock and oxidative stress. There was no evidence for the formation of a viable but nonculturable state during starvation as demonstrated by flow cytometry. Long-term survival of cells was dependent on cell wall and protein biosynthesis. Analysis of [35S]methionine incorporation and labelled proteins demonstrated that differential protein synthesis occurred deep into starvation.
Collapse
|
research-article |
27 |
140 |
21
|
Clements JL, Lee JR, Gross B, Yang B, Olson JD, Sandra A, Watson SP, Lentz SR, Koretzky GA. Fetal hemorrhage and platelet dysfunction in SLP-76-deficient mice. J Clin Invest 1999; 103:19-25. [PMID: 9884330 PMCID: PMC407870 DOI: 10.1172/jci5317] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 11/19/1998] [Indexed: 11/17/2022] Open
Abstract
The adapter protein SLP-76 is expressed in T lymphocytes and hematopoietic cells of the myeloid lineage, and is known to be a substrate of the protein tyrosine kinases that are activated after ligation of the T-cell antigen receptor. Transient overexpression of SLP-76 in a T-cell line potentiates transcriptional activation after T-cell receptor ligation, while loss of SLP-76 expression abrogates several T-cell receptor-dependent signaling pathways. Mutant mice that lack SLP-76 manifest a severe block at an early stage of thymocyte development, implicating SLP-76 in signaling events that promote thymocyte maturation. While it is clear that SLP-76 plays a key role in development and activation of T lymphocytes, relatively little is understood regarding its role in transducing signals initiated after receptor ligation in other hematopoietic cell types. In this report, we describe fetal hemorrhage and perinatal mortality in SLP-76-deficient mice. Although megakaryocyte and platelet development proceeds normally in the absence of SLP-76, collagen-induced platelet aggregation and granule release is markedly impaired. Furthermore, treatment of SLP-76-deficient platelets with collagen fails to elicit tyrosine phosphorylation of phospholipase C-gamma2 (PLC-gamma2), suggesting that SLP-76 functions upstream of PLC-gamma2 activation. These data provide one potential mechanism for the fetal hemorrhage observed in SLP-76-deficient mice and reveal that SLP-76 expression is required for optimal receptor-mediated signal transduction in platelets as well as T lymphocytes.
Collapse
|
research-article |
26 |
132 |
22
|
Watson SP, Sandberg BE, Hanley MR, Iversen LL. Tissue selectivity of substance P alkyl esters: suggesting multiple receptors. Eur J Pharmacol 1983; 87:77-84. [PMID: 6188620 DOI: 10.1016/0014-2999(83)90052-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Previous studies from this laboratory suggested that two subtypes of substance P receptor may exist, based on the observations that substance P and related peptides did not exhibit complete cross-desensitisation on guinea-pig ileum, and that two distinct rank orders of potency of tachykinins were observed in various test systems. The present study has added support to this hypothesis by extending the screening of tachykinins to further bioassays and by testing novel analogues. In particular, C-terminal alkyl esters of substance P were found to exhibit a high degree of selectivity to one putative receptor subtype. The synthesis of the alkyl esters by esterification of substance P free acid is described.
Collapse
|
|
42 |
131 |
23
|
Börsch-Haubold AG, Bartoli F, Asselin J, Dudler T, Kramer RM, Apitz-Castro R, Watson SP, Gelb MH. Identification of the phosphorylation sites of cytosolic phospholipase A2 in agonist-stimulated human platelets and HeLa cells. J Biol Chem 1998; 273:4449-58. [PMID: 9468497 DOI: 10.1074/jbc.273.8.4449] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study identifies the phosphorylation sites of the 85-kDa cytosolic phospholipase A2 (cPLA2) in human platelets and HeLa cells. Tryptic digests of 32P-phosphorylated and -immunoprecipitated cPLA2 were analyzed by microbore high performance liquid chromatography and two-dimensional phosphopeptide mapping against synthetic phosphopeptide standards. Thrombin stimulated significant phosphorylation of platelet cPLA2 at two sites, Ser-505 and Ser-727. Exclusive phosphorylation on these two sites was also seen in collagen-stimulated platelets and HeLa cells stimulated with interferon-alpha or arsenite; no tyrosine phosphorylation was detected. The inhibitor of the 38-kDa stress-activated protein kinase (p38(mapk)), SB 203580, reduced phosphorylation of both Ser-505 and Ser-727 by 50 and 60%, respectively, in thrombin-stimulated platelets. An additional p38(mapk) inhibitor SB 202190 also partially (60%) inhibited the phosphorylation of cPLA2 in arsenite-stimulated HeLa cells. These studies extend the previous work on the identification of multiple phosphorylation sites on cPLA2 expressed in a baculovirus/insect cell system to cPLA2 in mammalian cells stimulated with physiological agonists. They also underscore the necessity of high resolution phosphopeptide mapping combined with microbore high performance liquid chromatography for quantification of phosphorylation levels, which has lead to the conclusion that Ser-505 and Ser-727 are common phosphorylation sites on cPLA2 in different mammalian cells stimulated with multiple agonists.
Collapse
|
|
27 |
130 |
24
|
Clements MO, Watson SP, Foster SJ. Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J Bacteriol 1999; 181:3898-903. [PMID: 10383955 PMCID: PMC93877 DOI: 10.1128/jb.181.13.3898-3903.1999] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Staphylococcus aureus mutant (SPW1) which is unable to survive long-term starvation was shown to have a transposon insertion within a gene homologous to the sodA family of manganese-dependent superoxide dismutases (SOD). Whole-cell lysates of the parental 8325-4 strain demonstrated three zones of SOD activity by nondenaturing gel electrophoresis. The activities of two of these zones were dependent on manganese for activity and were absent in SPW1. The levels of SOD activity and sodA expression were growth-phase dependent, occurring most during postexponential phase. This response was also dependent on the level of aeration of the culture, with highest activity and expression occurring only under high aeration. Expression of sodA and, consequently, SOD activity could be induced by methyl viologen but only during the transition from exponential- to postexponential-phase growth. SPW1 was less able to survive amino acid limitation and acid stress but showed no alteration in pathogenicity in a mouse abscess model of infection compared to the parental strain 8325-4.
Collapse
|
research-article |
26 |
129 |
25
|
Yanaga F, Poole A, Asselin J, Blake R, Schieven GL, Clark EA, Law CL, Watson SP. Syk interacts with tyrosine-phosphorylated proteins in human platelets activated by collagen and cross-linking of the Fc gamma-IIA receptor. Biochem J 1995; 311 ( Pt 2):471-8. [PMID: 7487883 PMCID: PMC1136023 DOI: 10.1042/bj3110471] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of human platelets by cross-linking of the platelet low-affinity IgG receptor, the Fc gamma receptor IIA (Fc gamma-RIIA), or by collagen is associated with rapid phosphorylation on tyrosine of the non-receptor tyrosine kinase syk. Phosphorylation is still observed, albeit sometimes reduced, in the presence of a combination of a protein kinase C inhibitor, Ro 31-8220, and the intracellular calcium chelator, BAPTA-AM, demonstrating independence from phosphoinositide-specific phospholipase C (PLC) activity. In contrast, the combination of Ro 31-8220 and BAPTA-AM completely inhibits phosphorylation of syk in thrombin-stimulated platelets. Phosphorylation of syk increases its autophosphorylation activity measured in a kinase assay performed on syk immunoprecipitates. Fc gamma-RIIA also undergoes phosphorylation in syk immunoprecipitates from platelets activated by cross-linking of Fc gamma-RIIA but not by collagen, suggesting that it associates with the kinase. Consistent with this, tyrosine-phosphorylated Fc gamma-RIIA is precipitated by a glutathione S-transferase (GST) fusion protein containing the tandem src homology (SH2) domains of syk from Fc gamma-RIIA- but not collagen-activated cells. Two uncharacterized tyrosine-phosphorylated proteins of 40 and 65 kDa are uniquely precipitated by a GST fusion protein containing the tandem syk-SH2 domains in collagen-stimulated platelets. A peptide based on the antigen recognition activation motif (ARAM) of Fc gamma-RIIA, and phosphorylated on the two tyrosine residues found within this region, selectively binds syk from lysates of resting platelets; this interaction is not seen with a non-phosphorylated peptide. Kinase assays on Fc gamma-RIIA immunoprecipitates reveal the constitutive association of an unidentified kinase activity in resting cells which phosphorylates a 67 kDa protein. Syk is not detected in Fc gamma-RIIA immunoprecipitates from resting cells but associates with the receptor following activation and, together with Fc gamma-RIIA, is phosphorylated in the kinase assay in vitro. These results demonstrate that syk is activated by Fc gamma-RIIA cross-linking and collagen, independent of PLC, suggesting that it may have an important role in the early events associated with platelet activation. The association of syk with Fc gamma-RIIA appears to be mediated through the tandem SH2 domains in syk and the ARAM motif of Fc gamma-RIIA. A similar interaction may underlie the response to collagen, suggesting that its signalling receptor contains an ARAM motif.
Collapse
|
research-article |
30 |
126 |