1
|
Estrada JA, Ishizawa R, Kim HK, Fukazawa A, Hori A, Hotta N, Iwamoto GA, Smith SA, Vongpatanasin W, Mizuno M. Intracerebroventricular insulin injection acutely normalizes the augmented exercise pressor reflex in male rats with type 2 diabetes mellitus. J Physiol 2024. [PMID: 39165238 DOI: 10.1113/jp286715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
The exercise pressor reflex (EPR) is exaggerated in type 2 diabetes mellitus (T2DM), but the underlying central nervous system aberrations have not been fully delineated. Stimulation of muscle afferents within working skeletal muscle activates the EPR, by sending information to neurons in the brainstem, where it is integrated and results in reflexively increased mean arterial pressure (MAP) and sympathetic nerve activity. Brain insulin is known to regulate neural activity within the brainstem. We hypothesize that brain insulin injection in T2DM rats attenuates the augmented EPR, and that T2DM is associated with decreased brain insulin. Using male Sprague-Dawley rats, T2DM and control rats were generated via an induction protocol with two low doses of streptozotocin (35 and 25 mg/kg, i.p.) in combination with a 14-23-week high-fat diet or saline injections and a low-fat diet, respectively. After decerebration, MAP and renal sympathetic nerve activity (RSNA) were evaluated during EPR stimulation, evoked by electrically induced muscle contraction via ventral root stimulation, before and after (1 and 2 h post) intracerebroventricular (i.c.v.) insulin microinjections (500 mU, 50 nl). i.c.v. insulin decreased peak MAP (ΔMAP Pre (36 ± 14 mmHg) vs. 1 h (21 ± 14 mmHg) vs. 2 h (11 ± 6 mmHg), P < 0.05) and RSNA (ΔRSNA Pre (107.5 ± 40%), vs. 1 h (75.4 ± 46%) vs. 2 h (51 ± 35%), P < 0.05) responses in T2DM, but not controls. In T2DM rats, cerebrospinal fluid insulin was decreased (0.41 ± 0.19 vs. 0.11 ± 0.05 ng/ml, control (n = 14) vs. T2DM (n = 4), P < 0.01). The results demonstrated that insulin injections into the brain normalized the augmented EPR in brain hypoinsulinaemic T2DM rats, indicating that the EPR can be regulated by brain insulin. KEY POINTS: The reflexive increase in blood pressure and sympathetic nerve activity mediated by the autonomic nervous system during muscle contractions is also known as the exercise pressor reflex. The exercise pressor reflex is dangerously augmented in type 2 diabetes, in both rats and humans. In type 2 diabetic rats both cerebrospinal fluid insulin and phosphoinositide 3-kinase signalling within cardiovascular brainstem neurons decrease in parallel. Brain insulin injections decrease the magnitude of the reflexive pressor and sympathetic responses to hindlimb muscle contraction in type 2 diabetic rats. Partial correction of low insulin within the central nervous system in type 2 diabetes may treat aberrant exercise pressor reflex function.
Collapse
|
2
|
Ball A, Khatri K, Glesner J, Vailes LD, Wünschmann S, Gabel SA, Mueller GA, Zhang J, Peebles RS, Chapman MD, Smith SA, Chruszcz M, Pomés A. Structural analysis of human IgE monoclonal antibody epitopes on dust mite allergen Der p 2. J Allergy Clin Immunol 2024; 154:447-457. [PMID: 38697404 PMCID: PMC11409219 DOI: 10.1016/j.jaci.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Human IgE (hIgE) mAbs against major mite allergen Der p 2 developed using human hybridoma technology were used for IgE epitope mapping and analysis of epitopes associated with the hIgE repertoire. OBJECTIVE We sought to elucidate the new hIgE mAb 4C8 epitope on Der p 2 and compare it to the hIgE mAb 2F10 epitope in the context of the allergenic structure of Der p 2. METHODS X-ray crystallography was used to determine the epitope of anti-Der p 2 hIgE mAb 4C8. Epitope mutants created by targeted mutagenesis were analyzed by immunoassays and in vivo using a human high-affinity IgE receptor (FcεRIα)-transgenic mouse model of passive systemic anaphylaxis. RESULTS The structure of recombinant Der p 2 with hIgE mAb 4C8 Fab was determined at 3.05 Å. The newly identified epitope region does not overlap with the hIgE mAb 2F10 epitope or the region recognized by 3 overlapping hIgE mAbs (1B8, 5D10, and 2G1). Compared with wild-type Der p 2, single or double 4C8 and 2F10 epitope mutants bound less IgE antibodies from allergic patients by as much as 93%. Human FcεRIα-transgenic mice sensitized by hIgE mAbs, which were susceptible to anaphylaxis when challenged with wild-type Der p 2, could no longer cross-link FcεRI to induce anaphylaxis when challenged with the epitope mutants. CONCLUSIONS These data establish the structural basis of allergenicity of 2 hIgE mAb nonoverlapping epitopes on Der p 2, which appear to make important contributions to the hIgE repertoire against Der p 2 and provide molecular targets for future design of allergy therapeutics.
Collapse
|
3
|
Giacona JM, Petric UB, Kositanurit W, Wang J, Saldanha S, Young BE, Khan G, Connelly MA, Smith SA, Rohatgi A, Vongpatanasin W. HDL-C and apolipoprotein A-I are independently associated with skeletal muscle mitochondrial function in healthy humans. Am J Physiol Heart Circ Physiol 2024; 326:H916-H922. [PMID: 38334968 PMCID: PMC11279711 DOI: 10.1152/ajpheart.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Prior animal and cell studies have demonstrated a direct role of high-density lipoprotein (HDL) and apolipoprotein A-I (ApoA-I) in enhancing skeletal muscle mitochondrial function and exercise capacity. However, the relevance of these animal and cell investigations in humans remains unknown. Therefore, a cross-sectional study was conducted in 48 adults (67% female, 8% Black participants, age 39 ± 15.4 yr old) to characterize the associations between HDL measures, ApoA-I, and muscle mitochondrial function. Forearm muscle oxygen recovery time (tau) from postexercise recovery kinetics was used to assess skeletal muscle mitochondrial function. Lipoprotein measures were assessed by nuclear magnetic resonance. HDL efflux capacity was assessed using J774 macrophages, radiolabeled cholesterol, and apolipoprotein B-depleted plasma both with and without added cyclic adenosine monophosphate. In univariate analyses, faster skeletal muscle oxygen recovery time (lower tau) was significantly associated with higher levels of HDL cholesterol (HDL-C), ApoA-I, and larger mean HDL size, but not HDL cholesterol efflux capacity. Slower recovery time (higher tau) was positively associated with body mass index (BMI) and fasting plasma glucose (FPG). In multivariable linear regression analyses, higher levels of HDL-C and ApoA-I, as well as larger HDL size, were independently associated with faster skeletal muscle oxygen recovery times that persisted after adjusting for BMI and FPG (all P < 0.05). In conclusion, higher levels of HDL-C, ApoA-I, and larger mean HDL size were independently associated with enhanced skeletal muscle mitochondrial function in healthy humans.NEW & NOTEWORTHY Our study provides the first direct evidence supporting the beneficial role of HDL-C and ApoA-I on enhanced skeletal muscle mitochondrial function in healthy young to middle-aged humans without cardiometabolic disease.
Collapse
|
4
|
Pomés A, Smith SA, Chruszcz M, Mueller GA, Brackett NF, Chapman MD. Precision engineering for localization, validation, and modification of allergenic epitopes. J Allergy Clin Immunol 2024; 153:560-571. [PMID: 38181840 PMCID: PMC10939758 DOI: 10.1016/j.jaci.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The allergen-IgE interaction is essential for the genesis of allergic responses, yet investigation of the molecular basis of these interactions is in its infancy. Precision engineering has unveiled the molecular features of allergen-antibody interactions at the atomic level. High-resolution technologies, including x-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy, determine allergen-antibody structures. X-ray crystallography of an allergen-antibody complex localizes in detail amino acid residues and interactions that define the epitope-paratope interface. Multiple structures involving murine IgG mAbs have recently been resolved. The number of amino acids forming the epitope broadly correlates with the epitope area. The production of human IgE mAbs from B cells of allergic subjects is an exciting recent development that has for the first time enabled an actual IgE epitope to be defined. The biologic activity of defined IgE epitopes can be validated in vivo in animal models or by measuring mediator release from engineered basophilic cell lines. Finally, gene-editing approaches using the Clustered Regularly Interspaced Short Palindromic Repeats technology to either remove allergen genes or make targeted epitope engineering at the source are on the horizon. This review presents an overview of the identification and validation of allergenic epitopes by precision engineering.
Collapse
|
5
|
Kissell CE, Young BE, Jarrard CP, Huang M, Allen DR, Okuda DT, Smith SA, Fadel PJ, Davis SL. Reduced resting beat-to-beat blood pressure variability in females with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2024; 83:105416. [PMID: 38244526 DOI: 10.1016/j.msard.2023.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS) is a demyelinating disease of the central nervous system and cardiovascular autonomic dysfunction has been well documented in this population. The sympathetic nervous system contributes to beat-to-beat blood pressure regulation primarily by baroreflex control of the peripheral vasculature which may be impaired in females with RRMS. Even at rest, attenuated sympathetic control of vasomotor tone may result in large and frequent blood pressure excursions (i.e., greater blood pressure variability). Therefore, the primary purpose of this investigation was to test the following hypotheses; (1) females with RRMS have augmented beat-to-beat blood pressure variability compared to healthy controls and (2) reduced sympathetic baroreflex sensitivity in females with RRMS is related to augmented blood pressure variability. METHODS Electrocardiogram and beat-to-beat blood pressure were continuously recorded during 8-10 min of supine rest in 26 females with clinically definite RRMS and 24 sex-, age- and BMI- matched healthy controls. Muscle sympathetic nerve activity (MSNA) was recorded in a subset of participants (MS, n = 15; CON, n = 14). Traditional statistical measurements of dispersions were used to index beat-to-beat blood pressure variability. Spontaneous sympathetic baroreflex sensitivity was quantified by sorting diastolic blood pressures into 3 mmHg bins and calculating MSNA burst incidence within each bin. Weighted linear regression was then used to account for the number of cardiac cycles in each bin and calculate slopes. Spontaneous cardiac baroreflex sensitivity was determined using the sequence method. RESULTS Groups had similar resting mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), MSNA burst frequency and MSNA burst incidence (All P > 0.05). The standard deviation and interquartile range of MAP, SBP and DBP were less in females with RRMS compared to healthy controls (All P < 0.05). There were no between groups differences in sympathetic baroreflex sensitivity or cardiac baroreflex sensitivity (Both P > 0.05) and baroreflex sensitivity measures were not related to any indices of blood pressure variability (Both P > 0.05). CONCLUSION These data suggest that females with RRMS have reduced beat-to-beat blood pressure variability. However, this does not appear to be related to changes in sympathetic or cardiac baroreflex sensitivity.
Collapse
|
6
|
Stone CA, Spiller BW, Smith SA. Engineering therapeutic monoclonal antibodies. J Allergy Clin Immunol 2024; 153:539-548. [PMID: 37995859 PMCID: PMC11437839 DOI: 10.1016/j.jaci.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The use of human antibodies as biologic therapeutics has revolutionized patient care throughout fields of medicine. As our understanding of the many roles antibodies play within our natural immune responses continues to advance, so will the number of therapeutic indications for which an mAb will be developed. The great breadth of function, long half-life, and modular structure allow for nearly limitless therapeutic possibilities. Human antibodies can be rationally engineered to enhance their desired immune functions and eliminate those that may result in unwanted effects. Antibody therapeutics now often start with fully human variable regions, either acquired from genetically engineered humanized mice or from the actual human B cells. These variable genes can be further engineered by widely used methods for optimization of their specificity through affinity maturation, random mutagenesis, targeted mutagenesis, and use of in silico approaches. Antibody isotype selection and deliberate mutations are also used to improve efficacy and tolerability by purposeful fine-tuning of their immune effector functions. Finally, improvements directed at binding to the neonatal Fc receptor can endow therapeutic antibodies with unbelievable extensions in their circulating half-life. The future of engineered antibody therapeutics is bright, with the global mAb market projected to exhibit compound annual growth, forecasted to reach a revenue of nearly half a trillion dollars in 2030.
Collapse
|
7
|
Katru SC, Balakrishnan AS, Munirathinam G, Hadadianpour A, Smith SA, Kalyanasundaram R. Identification and characterization of a novel nematode pan allergen (NPA) from Wuchereria bancrofti and their potential role in human filarial tropical pulmonary eosinophilia (TPE). PLoS Negl Trop Dis 2024; 18:e0011972. [PMID: 38354188 PMCID: PMC10898765 DOI: 10.1371/journal.pntd.0011972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/27/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Tropical pulmonary eosinophilia (TPE) is a chronic respiratory syndrome associated with Lymphatic Filariasis (LF), a tropical parasitic infection of the human, transmitted by mosquitoes. The larval form of LF (microfilariae) are trapped in the lungs of TPE subjects have a major role in initiating the TPE syndrome. To date, there are no reports on the potential allergen that is responsible for generating parasite-specific IgE in TPE. METHODOLOGY/PRINCIPAL FINDINGS In this project, we screened a cDNA expression library of the microfilarial stages of Wuchereria bancrofti with monoclonal IgE antibodies prepared from subjects with clinical filarial infections. Our studies identified a novel molecule that showed significant sequence similarity to an allergen. A blast analysis showed the presence of similar proteins in a number of nematodes parasites. Thus, we named this molecule as Nematode Pan Allergen (NPA). Subsequent functional analysis showed that NPA is a potent allergen that can cause release of histamine from mast cells, induce secretion of proinflammatory cytokines from alveolar macrophages and promote accumulation of eosinophils in the tissue, all of which occur in TPE lungs. CONCLUSIONS/SIGNIFICANCE Based on our results, we conclude that the NPA protein secreted by the microfilariae of W. bancrofti may play a significant role in the pathology of TPE syndrome in LF infected individuals. Further studies on this molecule can help design an approach to neutralize the NPA in an attempt to reduce the pathology associated with TPE in LF infected subjects.
Collapse
|
8
|
Stone CA, Hemler JA, Filep S, Braden K, Pomés A, Chapman MD, Smith SA. Quantification of peanut allergens across recalled and nonrecalled lots of diagnostic peanut extracts. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3547-3549.e1. [PMID: 37468039 PMCID: PMC10792110 DOI: 10.1016/j.jaip.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
|
9
|
Smith BRE, Reid Black K, Bermingham M, Agah S, Glesner J, Versteeg SA, van Ree R, Pena-Amelunxen G, Aglas L, Smith SA, Pomés A, Chapman MD. Unique allergen-specific human IgE monoclonal antibodies derived from patients with allergic disease. FRONTIERS IN ALLERGY 2023; 4:1270326. [PMID: 37901762 PMCID: PMC10602672 DOI: 10.3389/falgy.2023.1270326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Allergic reactions are mediated by human IgE antibodies that bind to and cross-link allergen molecules. The sites on allergens that are recognized by IgE antibodies have been difficult to investigate because of the paucity of IgE antibodies in a human serum. Here, we report the production of unique human IgE monoclonal antibodies to major inhaled allergens and food allergens that can be produced at scale in perpetuity. Materials and methods The IgE antibodies were derived from peripheral blood mononuclear cells of symptomatic allergic patients, mostly children aged 3-18 years, using hybridoma fusion technology. Total IgE and allergen-specific IgE was measured by ImmunoCAP. Their specificity was confirmed through ELISA and immunoblotting. Allergenic potency measurements were determined by ImmunoCAP inhibition. Biological activity was determined in vitro by comparing β-hexosaminidase release from a humanized rat basophilic cell line. Results Human IgE monoclonal antibodies (n = 33) were derived from 17 allergic patients with symptoms of allergic rhinitis, asthma, atopic dermatitis, food allergy, eosinophilic esophagitis, or red meat allergy. The antibodies were specific for five inhaled allergens, nine food allergens, and alpha-gal and had high levels of IgE (53,450-1,702,500 kU/L) with ratios of specific IgE to total IgE ranging from <0.01 to 1.39. Sigmoidal allergen binding curves were obtained through ELISA, with low limits of detection (<1 kU/L). Allergen specificity was confirmed through immunoblotting. Pairs of IgE monoclonal antibodies to Ara h 6 were identified that cross-linked after allergen stimulation and induced release of significant levels of β-hexosaminidase (35%-80%) from a humanized rat basophilic cell line. Conclusions Human IgE monoclonal antibodies are unique antibody molecules with potential applications in allergy diagnosis, allergen standardization, and identification of allergenic epitopes for the development of allergy therapeutics. The IgE antibody probes will enable the unequivocal localization and validation of allergenic epitopes.
Collapse
|
10
|
Pena-Castellanos G, Smith BRE, Pomés A, Smith SA, Stigler MA, Widauer HL, Versteeg SA, van Ree R, Chapman MD, Aglas L. Corrigendum: Biological activity of human IgE monoclonal antibodies targeting Der p 2, Fel d 1, Ara h 2 in basophil mediator release assays. Front Immunol 2023; 14:1296381. [PMID: 37885892 PMCID: PMC10598369 DOI: 10.3389/fimmu.2023.1296381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fimmu.2023.1155613.].
Collapse
|
11
|
Giacona JM, Kositanurit W, Wang J, Petric UB, Khan G, Pittman D, Williamson JW, Smith SA, Vongpatanasin W. Utility of standing office blood pressure in detecting hypertension in healthy adults. Sci Rep 2023; 13:15572. [PMID: 37730821 PMCID: PMC10511521 DOI: 10.1038/s41598-023-42297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Current guidelines recommend office blood pressures (BP) be taken in a seated position when screening for hypertension (HTN). Seated BP is known to have limited accuracy in detecting high BP, while the utility of standing BP in diagnosing HTN is unknown. We conducted a cross-sectional study to determine the incremental value of standing BP in diagnosing HTN. Seated, standing, and 24-h ambulatory BPs (ABPM) were obtained in adults without known cardiovascular disease, HTN, or BP medication use. Presence of HTN was defined by the 2017 ACC/AHA and the 2023 ESH HTN guidelines based on ABPM. Area under the receiver-operating-characteristic curve (AUROC) was used to evaluate the diagnostic accuracy of seated and standing BP. Sensitivity and specificity of standing BP was determined using cut-offs derived from Youden's Index, while sensitivity and specificity of seated BP was determined using the cut-off of 130/80 mmHg and by 140/90 mmHg. Among 125 participants (mean age 49 ± 17 years; 62% female; 24% Black), 33.6% of them had HTN. Sensitivity and specificity of seated systolic BP (SBP) was 43% and 92%, respectively. Cut-offs selected by Youden's index for standing SBP/diastolic BP (DBP) were 124/81 mmHg according to the 2017 ACC/AHA HTN guidelines, and 123.5/83.5 mmHg according to the 2023 ESH HTN guidelines. Sensitivity and specificity of standing SBP was 71% and 67%, respectively. The AUROC of standing SBP (0.81 [0.71-0.92]) was significantly higher than seated SBP (0.70 [0.49-0.91]), when HTN was defined as average 24-h SBP ≥ 125 mmHg. Moreover, the addition of standing to seated SBP (0.80 [0.68-0.92]) improved HTN detection when compared to seated SBP. These patterns were consistent for both the 2017 ACC/AHA and the 2023 ESH definitions for HTN. In summary, standing BP, alone or in combination with seated BP, outperformed seated BP alone in diagnosing HTN in adults.
Collapse
|
12
|
Estrada JA, Hotta N, Kim HK, Ishizawa R, Fukazawa A, Iwamoto GA, Smith SA, Vongpatanasin W, Mizuno M. Blockade of endogenous insulin receptor signaling in the nucleus tractus solitarius potentiates exercise pressor reflex function in healthy male rats. FASEB J 2023; 37:e23141. [PMID: 37566482 PMCID: PMC10430879 DOI: 10.1096/fj.202300879rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Insulin not only regulates glucose and/or lipid metabolism but also modulates brain neural activity. The nucleus tractus solitarius (NTS) is a key central integration site for sensory input from working skeletal muscle and arterial baroreceptors during exercise. Stimulation of the skeletal muscle exercise pressor reflex (EPR), the responses of which are buffered by the arterial baroreflex, leads to compensatory increases in arterial pressure to supply blood to working muscle. Evidence suggests that insulin signaling decreases neuronal excitability in the brain, thus antagonizing insulin receptors (IRs) may increase neuronal excitability. However, the impact of brain insulin signaling on the EPR remains fully undetermined. We hypothesized that antagonism of NTS IRs increases EPR function in normal healthy rodents. In decerebrate rats, stimulation of the EPR via electrically induced muscle contractions increased peak mean arterial pressure (MAP) responses 30 min following NTS microinjections of an IR antagonist (GSK1838705, 100 μM; Pre: Δ16 ± 10 mmHg vs. 30 min: Δ23 ± 13 mmHg, n = 11, p = .004), a finding absent in sino-aortic baroreceptor denervated rats. Intrathecal injections of GSK1838705 did not influence peak MAP responses to mechano- or chemoreflex stimulation of the hindlimb muscle. Immunofluorescence triple overlap analysis following repetitive EPR stimulation increased c-Fos overlap with EPR-sensitive nuclei and IR-positive cells relative to sham operation (p < .001). The results suggest that IR blockade in the NTS potentiates the MAP response to EPR stimulation. In addition, insulin signaling in the NTS may buffer EPR stimulated increases in blood pressure via baroreflex-mediated mechanisms during exercise.
Collapse
|
13
|
Ishizawa R, Estrada JA, Kim HK, Hotta N, Fukazawa A, Iwamoto GA, Smith SA, Vongpatanasin W, Mizuno M. Neural discharge of muscle afferents and pressor response to mechanical stimulation are associated with muscle deformation velocity in rats. Am J Physiol Regul Integr Comp Physiol 2023; 325:R13-R20. [PMID: 37067428 PMCID: PMC10259846 DOI: 10.1152/ajpregu.00327.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Skeletal muscle reflexes play a crucial role in determining the magnitude of the cardiovascular response to exercise. However, evidence supporting an association between the magnitude of the pressor response and the velocity of muscle deformation has remained to be elucidated. Thus, we investigated the impact of different muscle deformation rates on the neural discharge of muscle afferents and pressor and sympathetic responses in Sprague-Dawley rats. In an ex vivo muscle-nerve preparation, action potentials elicited by sinusoidal mechanical stimuli (137 mN) at different frequencies (0.01, 0.05, 0.1, 0.2, and 0.25 Hz) were recorded in mechanosensitive group III and IV fibers. The afferent response magnitude to sine-wave stimulation significantly varied at different frequencies (ANOVA, P = 0.01). Specifically, as compared with 0.01 Hz (0.83 ± 0.96 spikes/s), the response magnitudes were significantly greater at 0.20 Hz (4.07 ± 5.04 spikes/s, P = 0.031) and 0.25 Hz (4.91 ± 5.30 spikes/s, P = 0.014). In an in vivo decerebrated rat preparation, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to passive stretch (1 kg) of hindlimb skeletal muscle at different velocities of loading (slow, medium, and fast) were measured. Pressor responses to passive stretch were significantly associated with the velocity of muscle deformation (ANOVA, P < 0.001). The MAP response to fast stretch (Δ 56 ± 12 mmHg) was greater than slow (Δ 33 ± 11 mmHg, P = 0.006) or medium (Δ 30 ± 11 mmHg, P < 0.001) stretch. Likewise, the RSNA response was related to deformation velocity (ANOVA, P = 0.024). These findings suggest that the muscle neural afferent discharge and the cardiovascular response to mechanical stimulation are associated with muscle deformation velocity.
Collapse
|
14
|
Pena-Castellanos G, Smith BRE, Pomés A, Smith SA, Stigler MA, Widauer HL, Versteeg SA, van Ree R, Chapman MD, Aglas L. Biological activity of human IgE monoclonal antibodies targeting Der p 2, Fel d 1, Ara h 2 in basophil mediator release assays. Front Immunol 2023; 14:1155613. [PMID: 37228609 PMCID: PMC10203493 DOI: 10.3389/fimmu.2023.1155613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Background Human Immunoglobulin E monoclonal antibodies (hIgE mAb) are unique tools for investigating IgE responses. Here, the biological activity of hIgE mAb, derived from immortalized B cells harvested from the blood of allergic donors, targeting three allergens (Der p 2, Fel d 1 and Ara h 2) was investigated. Methods Three Der p 2-, three Fel d 1- and five Ara h 2-specific hIgE mAb produced by human B cell hybridomas, were combined in pairs and used to passively sensitize humanized rat basophilic leukemia cells and compared with sensitization using serum pools. Sensitized cells were stimulated with corresponding allergens (recombinant or purified), allergen extracts or structural homologs, having 40-88% sequence similarity, and compared for mediator (β-hexosaminidase) release. Results One, two and eight pairs of Der p 2-, Fel d 1- and Ara h 2-specific hIgE mAb, respectively, produced significant mediator release (>50%). A minimum hIgE mAb concentration of 15-30 kU/L and a minimum antigen concentration between 0.01-0.1 µg/mL were sufficient to induce a pronounced mediator release. Individual sensitization with one Ara h 2-specific hIgE mAb was able to induce crosslinking independently of a second specific hIgE mAb. Der p 2- and Ara h 2-specific mAb showed a high allergen specificity when compared to homologs. Mediator release from cells sensitized with hIgE mAb was comparable to serum sensitization. Conclusion The biological activity of hIgE mAb reported here provides the foundation for novel methods of standardization and quality control of allergen products and for mechanistic studies of IgE-mediated allergic diseases, using hIgE mAb.
Collapse
|
15
|
Fukazawa A, Hori A, Hotta N, Katanosaka K, Estrada JA, Ishizawa R, Kim HK, Iwamoto GA, Smith SA, Vongpatanasin W, Mizuno M. Antagonism of TRPV4 channels partially reduces mechanotransduction in rat skeletal muscle afferents. J Physiol 2023; 601:1407-1424. [PMID: 36869605 PMCID: PMC10106437 DOI: 10.1113/jp284026] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/02/2023] [Indexed: 03/05/2023] Open
Abstract
Mechanical distortion of working skeletal muscle induces sympathoexcitation via thin fibre afferents, a reflex response known as the skeletal muscle mechanoreflex. However, to date, the receptor ion channels responsible for mechanotransduction in skeletal muscle remain largely undetermined. Transient receptor potential vanilloid 4 (TRPV4) is known to sense mechanical stimuli such as shear stress or osmotic pressure in various organs. It is hypothesized that TRPV4 in thin-fibre primary afferents innervating skeletal muscle is involved in mechanotransduction. Fluorescence immunostaining revealed that 20.1 ± 10.1% of TRPV4 positive neurons were small dorsal root ganglion (DRG) neurons that were DiI-labelled, and among them 9.5 ± 6.1% of TRPV4 co-localized with the C-fibre marker peripherin. In vitro whole-cell patch clamp recordings from cultured rat DRG neurons demonstrated that mechanically activated current amplitude was significantly attenuated after the application of the TRPV4 antagonist HC067047 compared to control (P = 0.004). Such reductions were also observed in single-fibre recordings from a muscle-nerve ex vivo preparation where HC067047 significantly decreased afferent discharge to mechanical stimulation (P = 0.007). Likewise, in an in vivo decerebrate rat preparation, the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to passive stretch of hindlimb muscle were significantly reduced by intra-arterial injection of HC067047 (ΔRSNA: P = 0.019, ΔMAP: P = 0.002). The findings suggest that TRPV4 plays an important role in mechanotransduction contributing to the cardiovascular responses evoked by the skeletal muscle mechanoreflex during exercise. KEY POINTS: Although a mechanical stimulus to skeletal muscle reflexively activates the sympathetic nervous system, the receptors responsible for mechanotransduction in skeletal muscle thin fibre afferents have not been fully identified. Evidence suggests that TRPV4 is a mechanosensitive channel that plays an important role in mechanotransduction within various organs. Immunocytochemical staining demonstrates that TRPV4 is expressed in group IV skeletal muscle afferents. In addition, we show that the TRPV4 antagonist HC067047 decreases the responsiveness of thin fibre afferents to mechanical stimulation at the muscle tissue level as well as at the level of dorsal root ganglion neurons. Moreover, we demonstrate that intra-arterial HC067047 injection attenuates the sympathetic and pressor responses to passive muscle stretch in decerebrate rats. These data suggest that antagonism of TRPV4 attenuates mechanotransduction in skeletal muscle afferents. The present study demonstrates a probable physiological role for TRPV4 in the regulation of mechanical sensation in somatosensory thin fibre muscle afferents.
Collapse
|
16
|
Matsukawa K, Iwamoto GA, Mitchell JH, Mizuno M, Kim HK, Williamson JW, Smith SA. Exaggerated renal sympathetic nerve and pressor responses during spontaneously occurring motor activity in hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2023; 324:R497-R512. [PMID: 36779670 DOI: 10.1152/ajpregu.00271.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Stimulation of the mesencephalic locomotor region elicits exaggerated sympathetic nerve and pressor responses in spontaneously hypertensive rats (SHR) as compared with normotensive Wistar-Kyoto rats (WKY). This suggests that central command or its influence on vasomotor centers is augmented in hypertension. The decerebrate animal model possesses an ability to evoke intermittent bouts of spontaneously occurring motor activity (SpMA) and generates cardiovascular responses associated with the SpMA. It remains unknown whether the changes in sympathetic nerve activity and hemodynamics during SpMA are altered by hypertension. To test the hypothesis that the responses in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) during SpMA are exaggerated with hypertension, this study aimed to compare the responses in decerebrate, paralyzed SHR, WKY, and normotensive Sprague-Dawley (SD) rats. In all strains, an abrupt increase in RSNA occurred in synchronization with tibial motor discharge (an index of motor activity) and was followed by rises in MAP and heart rate. The centrally evoked increase in RSNA and MAP during SpMA was much greater (306 ± 110%) in SHR than WKY (187 ± 146%) and SD (165 ± 44%). Although resting baroreflex-mediated changes in RSNA were not different across strains, mechanically or pharmacologically induced elevations in MAP attenuated or abolished the RSNA increase during SpMA in WKY and SD but had no effect in SHR. It is likely that the exaggerated sympathetic nerve and pressor responses during SpMA in SHR are induced along a central command pathway independent of the arterial baroreflex and/or result from central command-induced inhibition of the baroreflex.
Collapse
|
17
|
Alakhras NS, Shin J, Smith SA, Sinn AL, Zhang W, Hwang G, Sjoerdsma J, Bromley EK, Pollok KE, Bilgicer B, Kaplan MH. Peanut allergen inhibition prevents anaphylaxis in a humanized mouse model. Sci Transl Med 2023; 15:eadd6373. [PMID: 36753563 PMCID: PMC10205092 DOI: 10.1126/scitranslmed.add6373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Peanut-induced allergy is an immunoglobulin E (IgE)-mediated type I hypersensitivity reaction that manifests symptoms ranging from local edema to life-threatening anaphylaxis. Although there are treatments for symptoms in patients with allergies resulting from allergen exposure, there are few preventive therapies other than strict dietary avoidance or oral immunotherapy, neither of which are successful in all patients. We have previously designed a covalent heterobivalent inhibitor (cHBI) that binds in an allergen-specific manner as a preventive for allergic reactions. Building on previous in vitro testing, here, we developed a humanized mouse model to test cHBI efficacy in vivo. Nonobese diabetic-severe combined immunodeficient γc-deficient mice expressing transgenes for human stem cell factor, granulocyte-macrophage colony-stimulating factor, and interleukin-3 developed mature functional human mast cells in multiple tissues and displayed robust anaphylactic reactions when passively sensitized with patient-derived IgE monoclonal antibodies specific for peanut Arachis hypogaea 2 (Ara h 2). The allergic response in humanized mice was IgE dose dependent and was mediated by human mast cells. Using this humanized mouse model, we showed that cHBI prevented allergic reactions for more than 2 weeks when administered before allergen exposure. cHBI also prevented fatal anaphylaxis and attenuated allergic reactions when administered shortly after the onset of symptoms. cHBI impaired mast cell degranulation in vivo in an allergen-specific manner. cHBI rescued the mice from lethal anaphylactic responses during oral Ara h 2 allergen-induced anaphylaxis. Together, these findings suggest that cHBI has the potential to be an effective preventative for peanut-specific allergic responses in patients.
Collapse
|
18
|
Smith SA, Chruszcz M, Chapman MD, Pomés A. Human Monoclonal IgE Antibodies-a Major Milestone in Allergy. Curr Allergy Asthma Rep 2023; 23:53-65. [PMID: 36459330 PMCID: PMC9831959 DOI: 10.1007/s11882-022-01055-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE OF REVIEW Bound to its high affinity receptor on mast cells and basophils, the IgE antibody molecule plays an integral role in the allergic reaction. Through interactions with the allergen, it provides the sensitivity and specificity parameters for cell activation and mediator release that produce allergic symptoms. Advancements in human hybridoma technologies allow for the generation and molecular definition of naturally occurring allergen-specific human IgE monoclonal antibodies. RECENT FINDINGS A high-resolution structure of dust mite allergen Der p 2 in complex with Fab of the human IgE mAb 2F10 was recently determined using X-ray crystallography. The structure reveals the fine molecular details of IgE 2F10 binding its 750 Å2 conformational epitope on Der p 2. This review provides an overview of this major milestone in allergy, the first atomic resolution structure of an authentic human IgE epitope. The molecular insights that IgE epitopes provide will allow for structure-based design approaches to the development of novel diagnostics, antibody therapeutics, and immunotherapies.
Collapse
|
19
|
Hadadianpour A, Daniel J, Zhang J, Spiller BW, Makaraviciute A, DeWitt ÅM, Walden HS, Hamilton RG, Peebles RS, Nutman TB, Smith SA. Human IgE mAbs identify major antigens of parasitic worm infection. J Allergy Clin Immunol 2022; 150:1525-1533. [PMID: 35760390 PMCID: PMC9742163 DOI: 10.1016/j.jaci.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Much of our understanding of the targets of IgE comes from studies of allergy, though little is known about the natural immunogenic targets seen after parasitic worm infections. OBJECTIVE We used human monoclonal antibodies (mAbs) for an unbiased and comprehensive characterization of the immunodominant antigens targeted by IgE in conditions like allergy or helminth infection that are associated with elevated levels of IgE. METHODS Using human hybridoma technology to immortalize IgE encoding B-cells from peripheral blood of subjects with filarial infections and elevated IgE, we generated naturally occurring human IgE mAbs. B-cell cultures were screened in an unbiased manner for IgE production without regard to specificity. Isolated IgE mAbs were then tested for binding to Brugia malayi somatic extracts using ImmunoCAP, immunoblot, and ELISA. Immunoprecipitation followed by mass spectrometry proteomics was used to identify helminth antigens that were then expressed in Escherichia coli for IgE binding characterization. RESULTS We isolated 56 discrete IgE mAbs from 7 individuals with filarial infections. From these mAbs, we were able to definitively identify 19 filarial antigens. All IgE mAbs targeted filarial excreted/secretory proteins, including a family of previously uncharacterized proteins. Interestingly, the transthyretin-related antigens acted as the dominant inducer of the filaria-specific IgE antibody response. These filaria-specific IgE mAbs were potent inducers of anaphylaxis when passively administered to human FcεRI-expressing mice. CONCLUSIONS We generated human hybridomas secreting naturally occurring helminth-specific IgE mAbs from filarial-infected subjects. This work provides much-needed insight into the ontogeny of helminth-induced immune response and IgE antibody response.
Collapse
|
20
|
Suber J, Zhang Y, Ye P, Guo R, Burks AW, Kulis MD, Smith SA, Iweala OI. Novel peanut-specific human IgE monoclonal antibodies enable screens for inhibitors of the effector phase in food allergy. Front Immunol 2022; 13:974374. [PMID: 36248809 PMCID: PMC9556733 DOI: 10.3389/fimmu.2022.974374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background 10% of US residents have food allergies, including 2% with peanut allergy. Mast cell mediators released during the allergy effector phase drive allergic reactions. Therefore, targeting sensitized mast cells may prevent food allergy symptoms. Objective We used novel, human, allergen-specific, IgE monoclonal antibodies (mAbs) created using human hybridoma techniques to design an in vitro system to evaluate potential therapeutics targeting sensitized effector cells. Methods Two human IgE mAbs specific for peanut, generated through human hybridoma techniques, were used to sensitize rat basophilic leukemia (RBL) SX-38 cells expressing the human IgE receptor (FcϵRI). Beta-hexosaminidase release (a marker of degranulation), cytokine production, and phosphorylation of signal transduction proteins downstream of FcϵRI were measured after stimulation with peanut. Degranulation was also measured after engaging inhibitory receptors CD300a and Siglec-8. Results Peanut-specific human IgE mAbs bound FcϵRI, triggering degranulation after stimulation with peanut in RBL SX-38 cells. Sensitized RBL SX-38 cells stimulated with peanut increased levels of phosphorylated SYK and ERK, signal transduction proteins downstream of FcϵRI. Engaging inhibitory cell surface receptors CD300a or Siglec-8 blunted peanut-specific activation. Conclusion Allergen-specific human IgE mAbs, expressed from human hybridomas and specific for a clinically relevant food allergen, passively sensitize allergy effector cells central to the in vitro models of the effector phase of food allergy. Peanut reproducibly activates and induces degranulation of RBL SX-38 cells sensitized with peanut-specific human IgE mAbs. This system provides a unique screening tool to assess the efficacy of therapeutics that target allergy effector cells and inhibit food allergen-induced effector cell activation.
Collapse
|
21
|
Ishizawa R, Hotta N, Kim HK, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA, Mizuno M. Yoda1-induced Piezo1 Channel Activity In Group Iv Muscle Afferents Of Type 2 Diabetic Rats. Med Sci Sports Exerc 2022. [DOI: 10.1249/01.mss.0000879820.41019.2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Mizuno M, Ishizawa R, Hotta N, Kim HK, Iwamoto GA, Vongpatanasin W, Smith SA, Mitchell JH. Frequency Dependent Neural Discharge Of Group Iv Muscle Afferents To Sinusoidal Mechanical Stimulation In Rats. Med Sci Sports Exerc 2022. [DOI: 10.1249/01.mss.0000877560.84531.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Giacona JM, Khan G, Wang J, Pittman D, Smith SA, Vongpatanasin W. Abstract P011: Usefulness Of Standing Office Blood Pressure In Detecting Hypertension In Untreated Adults. Hypertension 2022. [DOI: 10.1161/hyp.79.suppl_1.p011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical guidelines recommend office blood pressures (BP) to be taken in a seated position. However, the accuracy of standing BP measurements for diagnosing hypertension (HTN) has not been investigated. We assessed BP in both seated and standing positions in 125 healthy adults not on anti-HTN medications. HTN was defined by 24-hour ambulatory SBP/DBP of ≥ 125/75 mmHg. Area under receiver operator characteristic curve (AUROC) was calculated to determine accuracy of seated and standing BP in diagnosing HTN. Bayes factor (BF) was used to assess the significance of the difference between AUROC of seated and standing BP. Sensitivity and specificity of standing BP in diagnosing HTN was derived using cut-off points derived from Youden’s Index. Our cohort’s mean age was 49 ± 17 years, with 62% female (77 of 125), and 24% Black (30 of 125). Prevalence of HTN was 33.6% (42 of 125). Sensitivity and specificity of seated SBP was 43% and 92%, respectively. Optimal cutoffs selected by Youden’s index for standing SBP/DBP was 124/81 mmHg. Sensitivity and specificity of standing SBP was 74% and 65%, respectively. The AUROC of standing SBP was significantly higher than seated SBP (BF =11.8), when HTN was defined as 24-Hr SBP ≥ 125 mmHg (Fig 1). Similarly, when HTN was defined as 24-Hr DBP ≥ 75 mmHg or daytime DBP ≥ 80 mmHg, the AUROC of standing DBP was higher than seated DBP (all BF >3). The addition of standing to seated BP improved HTN detection than seated BP alone based on 24-Hr SBP/DBP ≥ 125/75 mmHg or daytime SBP/DBP ≥ 130/80 mmHg (all BF >3). In conclusion, standing office BPs both alone and in combination with seated BPs, outperformed seated BPs in diagnosing hypertension in untreated adults.
Collapse
|
24
|
Estrada JA, Hotta N, Iwamoto GA, Kim HK, Vongpatanasin W, Mitchell JH, Smith SA, Mizuno M. Brain Insulin Receptor Antagonism Augments The Blood Pressure Response To Activation Of The Exercise Pressor Reflex. Med Sci Sports Exerc 2022. [DOI: 10.1249/01.mss.0000879808.87414.2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Kim HK, Ishizawa R, Fukazawa A, Wang Z, Bezan Petric U, Hu MC, Smith SA, Mizuno M, Vongpatanasin W. Dapagliflozin Attenuates Sympathetic and Pressor Responses to Stress in Young Prehypertensive Spontaneously Hypertensive Rats. Hypertension 2022; 79:1824-1834. [PMID: 35652337 PMCID: PMC9308730 DOI: 10.1161/hypertensionaha.122.19177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND SGLT2i (sodium-glucose cotransporter 2 inhibitor), a class of anti-diabetic medications, is shown to reduce blood pressure (BP) in hypertensive patients with type 2 diabetes. Mechanisms underlying this action are unknown but SGLT2i-induced sympathoinhibition is thought to play a role. Whether SGLT2i reduces BP and sympathetic nerve activity (SNA) in a nondiabetic prehypertension model is unknown. METHODS Accordingly, we assessed changes in conscious BP using radiotelemetry and alterations in mean arterial pressure and renal SNA during simulated exercise in nondiabetic spontaneously hypertensive rats during chronic administration of a diet containing dapagliflozin (0.5 mg/kg per day) versus a control diet. RESULTS We found that dapagliflozin had no effect on fasting blood glucose, insulin, or hemoglobin A1C levels. However, dapagliflozin reduced BP in young (8-week old) spontaneously hypertensive rats as well as attenuated the age-related rise in BP in adult spontaneously hypertensive rat up to 17-weeks of age. The rises in mean arterial pressure and renal SNA during simulated exercise (exercise pressor reflex activation by hindlimb muscle contraction) were significantly reduced after 4 weeks of dapagliflozin (Δmean arterial pressure: 10±7 versus 25±14 mm Hg, Δrenal SNA: 31±17% versus 68±39%, P<0.05). Similarly, rises in mean arterial pressure and renal SNA during mechanoreflex stimulation by passive hindlimb stretching were also attenuated by dapagliflozin. Heart weight was significantly decreased in dapagliflozin compared with the control group. CONCLUSIONS These data demonstrate a novel role for SGLT2i in reducing resting BP as well as the activity of skeletal muscle reflexes, independent of glycemic control. Our study may have important clinical implications for preventing hypertension and hypertensive heart disease in young prehypertensive individuals.
Collapse
|