1
|
Kawakami H, Itakura Y, Yamamoto T, Yoshiya T. Cyclic homodimer formation by singlet oxygen-mediated oxidation of carnosine. Front Chem 2024; 12:1425742. [PMID: 39224788 PMCID: PMC11367420 DOI: 10.3389/fchem.2024.1425742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024] Open
Abstract
Although carnosine (β-Ala-L-His) is one of physiological protectants against in vivo damages caused by reactive oxygen species (ROS), its reactivity against singlet oxygen (1O2), an ROS, is still unclear at the molecular level. Theoretically, the reaction consists of two steps: i) oxygenation of the His side chain to form an electrophilic endoperoxide and ii) nucleophilic addition to the endoperoxide. In this study, the end product of 1O2-mediated carnosine oxidation was evaluated using 2D-NMR and other analytical methods both in the presence and absence of external nucleophiles. Interestingly, as the end product without external nucleophile, a cyclic homodimer was confirmed under our particular conditions. The reaction was also replicated in pork specimens.
Collapse
|
2
|
Aoki K, Tsuda S, Ogata N, Kataoka M, Sasaki J, Inuki S, Ohno H, Watashi K, Yoshiya T, Oishi S. Synthesis of the full-length hepatitis B virus core protein and its capsid formation. Org Biomol Chem 2024; 22:2218-2225. [PMID: 38358380 DOI: 10.1039/d3ob02099a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Chronic infection with hepatitis B virus (HBV) is a major cause of cirrhosis and liver cancer. Capsid assembly modulators can induce error-prone assembly of HBV core proteins to prevent the formation of infectious virions, representing promising candidates for treating chronic HBV infections. To explore novel capsid assembly modulators from unexplored mirror-image libraries of natural products, we have investigated the synthetic process of the HBV core protein for preparing the mirror-image target protein. In this report, the chemical synthesis of full-length HBV core protein (Cp183) containing an arginine-rich nucleic acid-binding domain at the C-terminus is presented. Sequential ligations using four peptide segments enabled the synthesis of Cp183 via convergent and C-to-N direction approaches. After refolding under appropriate conditions, followed by the addition of nucleic acid, the synthetic Cp183 assembled into capsid-like particles.
Collapse
|
3
|
Nohara Y, Taniguchi K, Ii H, Masuda S, Kawakami H, Matsumoto M, Hattori Y, Kageyama S, Sakai T, Nakata S, Yoshiya T. Development of an activity-based chemiluminogenic probe for γ-glutamylcyclotransferase. Org Biomol Chem 2023. [PMID: 37434538 DOI: 10.1039/d3ob00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
While γ-glutamylcyclotransferase (GGCT) has been implicated in cancer-cell proliferation, the role of GGCT enzymatic activity in the regulation of cancer-cell growth remains unclear. Toward further understanding of GGCT in vivo, here we report a novel cell-permeable chemiluminogenic probe "MAM-LISA-103" that detects intracellular GGCT activity and apply it to in vivo imaging. We first developed a chemiluminogenic probe LISA-103, which simply and sensitively detects the enzymatic activity of recombinant GGCT through chemiluminescence. We then designed the cell-permeable GGCT probe MAM-LISA-103 and applied it to several biological experiments. MAM-LISA-103 successfully detected the intracellular GGCT activity in GGCT-overexpressing NIH-3T3 cells. Moreover, MAM-LISA-103 demonstrated tumor-imaging ability when administered to a xenograft model using immunocompromised mice inoculated with MCF7 cells.
Collapse
|
4
|
Aso A, Nabetani H, Matsuura Y, Kadonaga Y, Shirakami Y, Watabe T, Yoshiya T, Mochizuki M, Ooe K, Kawakami A, Jinno N, Toyoshima A, Haba H, Wang Y, Cardinale J, Giesel FL, Shimoyama A, Kaneda-Nakashima K, Fukase K. Evaluation of Astatine-211-Labeled Fibroblast Activation Protein Inhibitor (FAPI): Comparison of Different Linkers with Polyethylene Glycol and Piperazine. Int J Mol Sci 2023; 24:ijms24108701. [PMID: 37240044 DOI: 10.3390/ijms24108701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Fibroblast activation proteins (FAP) are overexpressed in the tumor stroma and have received attention as target molecules for radionuclide therapy. The FAP inhibitor (FAPI) is used as a probe to deliver nuclides to cancer tissues. In this study, we designed and synthesized four novel 211At-FAPI(s) possessing polyethylene glycol (PEG) linkers between the FAP-targeting and 211At-attaching moieties. 211At-FAPI(s) and piperazine (PIP) linker FAPI exhibited distinct FAP selectivity and uptake in FAPII-overexpressing HEK293 cells and the lung cancer cell line A549. The complexity of the PEG linker did not significantly affect selectivity. The efficiencies of both linkers were almost the same. Comparing the two nuclides, 211At was superior to 131I in tumor accumulation. In the mouse model, the antitumor effects of the PEG and PIP linkers were almost the same. Most of the currently synthesized FAPI(s) contain PIP linkers; however, in our study, we found that PEG linkers exhibit equivalent performance. If the PIP linker is inconvenient, a PEG linker is expected to be an alternative.
Collapse
|
5
|
Isaka Y, Yoshiya T, Ono C, Uchiyama A, Hirata H, Hamaguchi S, Kutsuna S, Takabatake Y, Saita R, Yamada T, Takahashi A, Yamato M, Nohara Y, Tsuda S, Anzai I, Kimura T, Takeda Y, Tomono K, Matsuura Y. Establishment and clinical application of SARS-CoV-2 catch column. Clin Exp Nephrol 2023; 27:279-287. [PMID: 36344716 PMCID: PMC9640800 DOI: 10.1007/s10157-022-02296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND A certain number of patients with coronavirus disease 2019 (COVID-19), particularly those who test positive for SARS-CoV-2 in the serum, are hospitalized. Further, some even die. We examined the effect of blood adsorption therapy using columns that can eliminate SARS-CoV-2 on the improvement of the prognosis of severe COVID-19 patients. METHODS This study enrolled seven patients receiving mechanical ventilation. The patients received viral adsorption therapy using SARS-catch column for 3 days. The SARS-catch column was developed by immobilizing a specific peptide, designed based on the sequence of human angiotensin-converting enzyme 2 (hACE2), to an endotoxin adsorption column (PMX). In total, eight types of SARS-CoV-2-catch (SCC) candidate peptides were developed. Then, a clinical study on the effects of blood adsorption therapy using the SARS-catch column in patients with severe COVID-19 was performed, and the data in the present study were compared with historical data of severe COVID-19 patients. RESULTS Among all SCC candidate peptides, SCC-4N had the best adsorption activity against SARS-CoV-2. The SARS-catch column using SCC-4N removed 65% more SARS-CoV-2 than PMX. Compared with historical data, the weaning time from mechanical ventilation was faster in the present study. In addition, the rate of negative blood viral load in the present study was higher than that in the historical data. CONCLUSION The timely treatment with virus adsorption therapy may eliminate serum SARS-CoV-2 and improve the prognosis of patients with severe COVID-19. However, large-scale studies must be performed in the future to further assess the finding of this study (jRCTs052200134).
Collapse
|
6
|
Nohara Y, Masuda S, Kaneda-Nakashima K, Shirakami Y, Matsumoto M, Yoshiya T. Dioxetane Derivative Containing Carboxy Group as a Chemiluminophore-Introducing Reagent. Chembiochem 2022; 23:e202200556. [PMID: 36285893 DOI: 10.1002/cbic.202200556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Indexed: 01/25/2023]
Abstract
Some types of dioxetanes are called chemiluminophores because they produce luminescence light without the use of enzymes. Here, we designed and synthesized a novel carboxy group-containing chemiluminophore derivative, which enabled the simple introduction of such a chemiluminophore to the molecule of interest. Furthermore, we demonstrate that the in vivo imaging system (IVIS imaging system) can recognize tagged chemicals, indicating that such a chemiluminophore could be employed as a tracer molecule for biological studies.
Collapse
|
7
|
Aso A, Kaneda-Nakashima K, Nabetani H, Kadonaga Y, Shirakami Y, Watabe T, Yoshiya T, Mochizuki M, Koshino Y, Ooe K, Kawakami A, Jinno N, Toyoshima A, Haba H, Wang Y, Cardinale J, Giesel FL, Shimoyama A, Fukase K. Substrate Study for Dihydroxyboryl Astatine Substitution Reaction with Fibroblast Activation Protein Inhibitor (FAPI). CHEM LETT 2022. [DOI: 10.1246/cl.220391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Mori S, Nomura K, Fujikawa K, Osawa T, Shionyu M, Yoda T, Shirai T, Tsuda S, Yoshizawa-Kumagaye K, Masuda S, Nishio H, Yoshiya T, Suzuki S, Muramoto M, Nishiyama KI, Shimamoto K. Intermolecular Interactions between a Membrane Protein and a Glycolipid Essential for Membrane Protein Integration. ACS Chem Biol 2022; 17:609-618. [PMID: 35239308 DOI: 10.1021/acschembio.1c00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducing newly synthesized proteins to appropriate locations is an indispensable biological function in every organism. Integration of proteins into biomembranes in Escherichia coli is mediated by proteinaceous factors, such as Sec translocons and an insertase YidC. Additionally, a glycolipid named MPIase (membrane protein integrase), composed of a long sugar chain and pyrophospholipid, was proven essential for membrane protein integration. We reported that a synthesized minimal unit of MPIase possessing only one trisaccharide, mini-MPIase-3, involves an essential structure for the integration activity. Here, to elucidate integration mechanisms using MPIase, we analyzed intermolecular interactions of MPIase or its synthetic analogs with a model substrate, the Pf3 coat protein, using physicochemical methods. Surface plasmon resonance (SPR) analyses revealed the importance of a pyrophosphate for affinity to the Pf3 coat protein. Compared with mini-MPIase-3, natural MPIase showed faster association and dissociation due to its long sugar chain despite the slight difference in affinity. To focus on more detailed MPIase substructures, we performed docking simulations and saturation transfer difference-nuclear magnetic resonance. These experiments yielded that the 6-O-acetyl group on glucosamine and the phosphate of MPIase play important roles leading to interactions with the Pf3 coat protein. The high affinity of MPIase to the hydrophobic region and the basic amino acid residues of the protein was suggested by docking simulations and proven experimentally by SPR using protein mutants devoid of target regions. These results demonstrated the direct interactions of MPIase with a substrate protein and revealed detailed mechanisms of membrane protein integration.
Collapse
|
9
|
Sato K, Tanaka S, Wang J, Ishikawa K, Tsuda S, Narumi T, Yoshiya T, Mase N. Late-Stage Solubilization of Poorly Soluble Peptides Using Hydrazide Chemistry. Org Lett 2021; 23:1653-1658. [PMID: 33570416 DOI: 10.1021/acs.orglett.1c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel late-stage solubilization of peptides using hydrazides is described. A solubilizing tag was attached through a selective N-alkylation at a hydrazide moiety with the aid of a 2-picoline-borane complex in 50% acetic acid-hexafluoro-2-propanol. The tag, which tolerates ligation and desulfurization conditions, can be detached by a Cu-mediated selective oxidative hydrolysis of the N-alkyl hydrazide. This new method was validated through the synthesis of HIV-1 protease.
Collapse
|
10
|
Ii H, Nohara Y, Yoshiya T, Masuda S, Tsuda S, Oishi S, Friedman J, Kawabe T, Nakata S. Identification of U83836E as a γ-glutamylcyclotransferase inhibitor that suppresses MCF7 breast cancer xenograft growth. Biochem Biophys Res Commun 2021; 549:128-134. [PMID: 33676180 DOI: 10.1016/j.bbrc.2021.02.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
γ-Glutamylcyclotransferase (GGCT) is involved in glutathione homeostasis, in which it catalyzes the reaction that generates 5-oxoproline and free amino acids from γ-glutamyl peptides. Increasing evidence shows that GGCT has oncogenic functions and is overexpressed in various cancer tissues, and that inhibition of GGCT activity exerts anticancer effects in vitro and in vivo. Here, we demonstrate that U83836E ((2R)-2-[[4-(2,6-dipyrrolidin-1-ylpyrimidin-4-yl)piperazin-1-yl]methyl]-3,4-dihydro-2,5,7,8,-tetramethyl-2H-1-benzopyran-6-ol, dihydrochloride), a lazaroid that inhibits lipid peroxidation, inhibits GGCT enzymatic activity. U83836E was identified from a high-throughput screen of low molecular weight compounds using a fluorochrome-conjugated GGCT probe. We directly quantified that U83836E specifically inhibited GGCT by measuring the product of a fluorochrome-conjugated GGCT substrate assay, and showed that U83836E inhibited GGCT activity in extracts of NIH3T3 cells overexpressing GGCT. Moreover, U83836E significantly inhibited tumor growth in a xenograft model that used immunodeficient mice orthotopically inoculated with MCF7 human breast cancer cells. These results indicate that U83836E may be a useful GGCT inhibitor for the development of potential cancer therapeutics.
Collapse
|
11
|
Yoneyama T, Hatakeyama S, Sutoh Yoneyama M, Yoshiya T, Uemura T, Ishizu T, Suzuki M, Hachinohe S, Ishiyama S, Nonaka M, Fukuda MN, Ohyama C. Correction to: Tumor vasculature-targeted 10B delivery by an Annexin A1-binding peptide boosts effects of boron neutron capture therapy. BMC Cancer 2021; 21:105. [PMID: 33514332 PMCID: PMC7846995 DOI: 10.1186/s12885-021-07815-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Yoneyama T, Hatakeyama S, Sutoh Yoneyama M, Yoshiya T, Uemura T, Ishizu T, Suzuki M, Hachinohe S, Ishiyama S, Nonaka M, Fukuda MN, Ohyama C. Tumor vasculature-targeted 10B delivery by an Annexin A1-binding peptide boosts effects of boron neutron capture therapy. BMC Cancer 2021; 21:72. [PMID: 33446132 PMCID: PMC7809749 DOI: 10.1186/s12885-020-07760-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background p-Boronophenylalanine (10BPA) is a powerful 10B drug used in current clinical trials of BNCT. For BNCT to be successful, a high (500 mg/kg) dose of 10BPA must be administered over a few hours. Here, we report BNCT efficacy after rapid, ultralow-dose administration of either tumor vasculature-specific annexin A1-targeting IFLLWQR (IF7)-conjugated 10BPA or borocaptate sodium (10BSH). Methods (1) IF7 conjugates of either 10B drugs intravenously injected into MBT2 bladder tumor-bearing mice and biodistribution of 10B in tumors and normal organs analyzed by prompt gamma-ray analysis. (2) Therapeutic effect of IF7-10B drug-mediated BNCT was assessed by either MBT2 bladder tumor bearing C3H/He mice and YTS-1 tumor bearing nude mice. Results Intravenous injection of IF7C conjugates of either 10B drugs into MBT2 bladder tumor-bearing mice promoted rapid 10B accumulation in tumor and suppressed tumor growth. Moreover, multiple treatments at ultralow (10–20 mg/kg) doses of IF7-10B drug-mediated BNCT significantly suppressed tumor growth in a mouse model of human YTS-1 bladder cancer, with increased Anxa1 expression in tumors and infiltration by CD8-positive lymphocytes. Conclusions We conclude that IF7 serves as an efficient 10B delivery vehicle by targeting tumor tissues via the tumor vasculature and could serve as a relevant vehicle for BNCT drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07760-x.
Collapse
|
13
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:E430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
|
14
|
Minato T, Nirasawa S, Sato T, Yamaguchi T, Hoshizaki M, Inagaki T, Nakahara K, Yoshihashi T, Ozawa R, Yokota S, Natsui M, Koyota S, Yoshiya T, Yoshizawa-Kumagaye K, Motoyama S, Gotoh T, Nakaoka Y, Penninger JM, Watanabe H, Imai Y, Takahashi S, Kuba K. B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction. Nat Commun 2020; 11:1058. [PMID: 32103002 PMCID: PMC7044196 DOI: 10.1038/s41467-020-14867-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is critically involved in cardiovascular physiology and pathology, and is currently clinically evaluated to treat acute lung failure. Here we show that the B38-CAP, a carboxypeptidase derived from Paenibacillus sp. B38, is an ACE2-like enzyme to decrease angiotensin II levels in mice. In protein 3D structure analysis, B38-CAP homolog shares structural similarity to mammalian ACE2 with low sequence identity. In vitro, recombinant B38-CAP protein catalyzed the conversion of angiotensin II to angiotensin 1–7, as well as other known ACE2 target peptides. Treatment with B38-CAP suppressed angiotensin II-induced hypertension, cardiac hypertrophy, and fibrosis in mice. Moreover, B38-CAP inhibited pressure overload-induced pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction in mice. Our data identify the bacterial B38-CAP as an ACE2-like carboxypeptidase, indicating that evolution has shaped a bacterial carboxypeptidase to a human ACE2-like enzyme. Bacterial engineering could be utilized to design improved protein drugs for hypertension and heart failure. The enzyme ACE2 is involved in cardiac pathology and can counteract heart failure and other cardio-pulmonary diseases. Here the authors show that bacteria produce an ACE2-like enzyme that is effective in suppressing cardiac hypertrophy and fibrosis in mice.
Collapse
|
15
|
Yoshiya T. Synthesis of O-Acyl Isopeptides: Stepwise and Convergent Solid-Phase Synthesis. Methods Mol Biol 2020; 2103:129-138. [PMID: 31879922 DOI: 10.1007/978-1-0716-0227-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The O-acyl isopeptide method was developed for the preparation of difficult sequence-containing peptides, whose hydrophobic nature hampers both peptide chain construction on resin and purification with HPLC after deprotection. In the O-acyl isopeptide method, the target peptide is synthesized in an O-acyl isopeptide form, which contains an O-acyl isopeptide bond instead of the native N-acyl peptide bond at a hydroxy group-containing amino acid residue, such as Ser or Thr. The hydrophilic O-acyl isopeptide can be isolated, e.g., as a lyophilized TFA salt. The target peptide can be quantitatively obtained by a final O-to-N intramolecular acyl migration reaction with exposure to neutral conditions. Additionally, the O-acyl isopeptide is important as a hydrophilic precursor peptide for biological peptide assays that are difficult to handle. This chapter describes the synthesis of such O-acyl isopeptides by stepwise and convergent Fmoc solid-phase peptide synthesis.
Collapse
|
16
|
Ueno Y, Yoshizawa-Kumagaye K, Emura J, Urabe T, Yoshiya T, Furumoto T, Izui K. In Vivo Phosphorylation: Development of Specific Antibodies to Detect the Phosphorylated PEPC Isoform for the C4 Photosynthesis in Zea mays. Methods Mol Biol 2020; 2072:217-240. [PMID: 31541450 DOI: 10.1007/978-1-4939-9865-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphoenolpyruvate carboxylases (PEPCs), mostly known as the enzymes responsible for the initial CO2 fixation during C4 photosynthesis, are regulated by reversible phosphorylation in vascular plants. The phosphorylation site on a PEPC molecule is conserved not only among isoforms but also across plant species. An anti-phosphopeptide antibody is a common and powerful tool for detecting phosphorylated target proteins with high specificity. We generated two antibodies, one against a peptide containing a phosphoserine (phosphopeptide) and the other against a peptide containing a phosphoserine mimetic, (S)-2-amino-4-phosphonobutyric acid (phosphonopeptide). The amino acid sequence of the peptide was taken from the site around the phosphorylation site near the N-terminal region of the maize C4-isoform of PEPC. The former antibodies detected almost specifically the phosphorylated C4-isoform of PEPC, whereas the latter antibodies had a broader specificity for the phosphorylated PEPC in various plant species. The following procedures are described herein: (1) preparation of the phosphopeptide and phosphonopeptide; (2) preparation and purification of rabbit antibodies; (3) preparation of cell extracts from leaves for analyses of PEPC phosphorylation with antibodies; and (4) characterization of the obtained antibodies. Finally, (5) two cases involving the application of these antibodies are presented.
Collapse
|
17
|
Masuda S, Tsuda S, Yoshiya T. A trimethyllysine-containing trityl tag for solubilizing hydrophobic peptides. Org Biomol Chem 2019; 17:10228-10236. [PMID: 31782417 DOI: 10.1039/c9ob02253h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hydrophobic membrane peptides/proteins having low water solubility are often difficult to prepare. To overcome this issue, temporal introduction of solubilizing tags has been demonstrated to be beneficial. Following our recent work on the solubilization of a difficult target by using a hydrophilic oligo-Lys tag bearing a trityl linker (Trt-K method), this paper describes a comparative study of the solubilizing abilities of several peptidic trityl tags containing Lys, Arg, Glu, Asn, Nε-tri-Me-Lys or Cys-sulfonate using two hydrophobic model peptides. Among the tags evaluated, that containing Nε-tri-Me-Lys exhibits superior solubilizing ability.
Collapse
|
18
|
Tsuda S, Masuda S, Yoshiya T. Epimerization-Free Preparation of C-Terminal Cys Peptide Acid by Fmoc SPPS Using Pseudoproline-Type Protecting Group. J Org Chem 2019; 85:1674-1679. [DOI: 10.1021/acs.joc.9b02344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Takagi H, Ii H, Kageyama S, Hanada E, Taniguchi K, Yoshiya T, Chano T, Kawauchi A, Nakata S. Blockade of γ-Glutamylcyclotransferase Enhances Docetaxel Growth Inhibition of Prostate Cancer Cells. Anticancer Res 2019; 39:4811-4816. [PMID: 31519583 DOI: 10.21873/anticanres.13666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM γ-Glutamylcyclotransferase (GGCT) is highly expressed in many forms of cancer, and is a promising therapeutic target. The present study investigated whether inhibition of GGCT enhanced the antiproliferative effects of the drug docetaxel in prostate cancer cells. MATERIALS AND METHODS Immunohistochemistry and western blot analysis were conducted to measure GGCT expression in prostate cancer tissue samples and cell lines. GGCT was inhibited using RNAi and a novel enzymatic inhibitor, pro-GA, and cell proliferation was evaluated with single and combination treatments of GGCT inhibitors and docetaxel. RESULTS GGCT was highly expressed in cultured prostate cancer cells and patient samples. GGCT inhibition alone inhibited prostate cancer cell line proliferation and induced cellular senescence. GGCT inhibition in combination with apoptosis-inducing docetaxel had more potent antiproliferative effects than either drug used alone. CONCLUSION GGCT inhibition may potentiate anticancer drug efficacy.
Collapse
|
20
|
Tsuda S, Masuda S, Yoshiya T. Solubilizing Trityl‐Type Tag To Synthesize Asx/Glx‐Containing Peptides. Chembiochem 2019; 20:2063-2069. [DOI: 10.1002/cbic.201900193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/12/2022]
|
21
|
Yoshiya T, Tsuda S, Masuda S. Development of Trityl Group Anchored Solubilizing Tags for Peptide and Protein Synthesis. Chembiochem 2019; 20:1906-1913. [DOI: 10.1002/cbic.201900105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/22/2022]
|
22
|
Tsuda S, Masuda S, Yoshiya T. The versatile use of solubilizing trityl tags for difficult peptide/protein synthesis. Org Biomol Chem 2019; 17:1202-1205. [PMID: 30648723 DOI: 10.1039/c8ob03098g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Solubilizing trityl tags (Trt-oligoLys/Arg) proved applicable to metal-free radical-triggered desulfurization and an Ag-mediated thioester method. Additionally, using the solubilizing trityl tag strategy, synthesis of the influenza BM2 proton channel, which previously required organic solvent-aided native chemical ligation (NCL) and desulfurization due to its low solubility, was achieved without using organic solvents.
Collapse
|
23
|
Masuda S, Tsuda S, Yoshiya T. Ring-closing metathesis of unprotected peptides in water. Org Biomol Chem 2019; 16:9364-9367. [PMID: 30516782 DOI: 10.1039/c8ob02778a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ring-closing metathesis (RCM) is an attractive reaction for the preparation of artificially designed peptides. Until now, RCM has been used for fully or partially protected peptides. Herein, the first RCM of unprotected peptides in water was achieved using a water-soluble Ru catalyst.
Collapse
|
24
|
Yoshiya T, Yamashita N, Tsuda S, Oohigashi K, Masuda S, Kubodera T, Akashi T. HAP-01, the first chromogenic substrate for Aspergillus oryzaeacid protease. Org Biomol Chem 2019; 17:776-779. [DOI: 10.1039/c8ob02766h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HAP-01 was developed as an activity-based probe forA. oryzaeacid protease important for production ofsake, a Japanese rice wine.
Collapse
|
25
|
Tsuda S, Nishio H, Yoshiya T. Peptide self-cleavage at a canaline residue: application to a solubilizing tag system for native chemical ligation. Chem Commun (Camb) 2018; 54:8861-8864. [PMID: 30039130 DOI: 10.1039/c8cc04579h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Canaline (Can) is a non-proteinogenic amino acid containing an aminooxy group in its side chain. Can-containing peptides can be synthesized by standard Fmoc SPPS using Fmoc-Can(2-Cl-Trt). Here, for the first time, a Can residue within a peptide sequence was found to spontaneously cleave the main chain amide bond under slightly acidic conditions (pH 4-5). Contrastingly, Can-containing peptides are completely stable under the acidic conditions for HPLC purification (pH ca. 2) and under the neutral conditions for native chemical ligation (NCL). Taking advantage of these unique pH-dependent properties of Can, a novel solubilizing tag system for NCL-mediated protein synthesis using (Lys/Arg)n-Can was developed.
Collapse
|