1
|
Luo MX, Tan T, Trussart M, Poch A, Nguyen MHT, Speed TP, Hicks DG, Bandala-Sanchez E, Peng H, Chappaz S, Slade C, Utzschneider DT, Koldej RM, Ritchie D, Strasser A, Thijssen R, Ritchie ME, Tam CSL, Lindeman GJ, Huang DCS, Lew TE, Anderson MA, Roberts AW, Teh CE, Gray DHD. Venetoclax Dose Escalation Rapidly Activates a BAFF/BCL-2 Survival Axis in Chronic Lymphocytic Leukemia. Blood 2024:blood.2024024341. [PMID: 39471335 DOI: 10.1182/blood.2024024341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024] Open
Abstract
Venetoclax, a first-in-class BH3 mimetic drug targeting BCL-2, has improved outcomes for patients with chronic lymphocytic leukemia (CLL). Early measurements of the depth of the venetoclax treatment response, assessed by minimal residual disease, are strong predictors of long-term clinical outcomes. Yet, there are limited data concerning the early changes induced by venetoclax treatment that might inform strategies to improve responses. To address this gap, we conducted longitudinal mass cytometric profiling of blood cells from patients with CLL during the first five weeks of venetoclax monotherapy. At baseline, we resolved CLL heterogeneity at the single-cell level to define multiple subpopulations in all patients distinguished by proliferative, metabolic and cell survival proteins. Venetoclax induced significant reduction in all CLL subpopulations coincident with rapid upregulation of pro-survival BCL-2, BCL-XL and MCL-1 proteins in surviving cells, which had reduced sensitivity to the drug. Mouse models recapitulated the venetoclax-induced elevation of survival proteins in B cells and CLL-like cells that persisted in vivo, with genetic models demonstrating that extensive apoptosis and access to the B cell cytokine, BAFF, were essential. Accordingly, analysis of patients with CLL that were treated with venetoclax or the anti-CD20 antibody obinutuzumab exhibited marked elevation of BAFF and increased pro-survival proteins in leukemic cells that persisted. Overall, these data highlight the rapid adaptation of CLL cells to targeted therapies via homeostatic factors and support co-targeting of cytokine signals to achieve deeper and more durable long-term responses.
Collapse
|
2
|
Park SL, Christo SN, Wells AC, Gandolfo LC, Zaid A, Alexandre YO, Burn TN, Schröder J, Collins N, Han SJ, Guillaume SM, Evrard M, Castellucci C, Davies B, Osman M, Obers A, McDonald KM, Wang H, Mueller SN, Kannourakis G, Berzins SP, Mielke LA, Carbone FR, Kallies A, Speed TP, Belkaid Y, Mackay LK. Divergent molecular networks program functionally distinct CD8 + skin-resident memory T cells. Science 2023; 382:1073-1079. [PMID: 38033053 DOI: 10.1126/science.adi8885] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Skin-resident CD8+ T cells include distinct interferon-γ-producing [tissue-resident memory T type 1 (TRM1)] and interleukin-17 (IL-17)-producing (TRM17) subsets that differentially contribute to immune responses. However, whether these populations use common mechanisms to establish tissue residence is unknown. In this work, we show that TRM1 and TRM17 cells navigate divergent trajectories to acquire tissue residency in the skin. TRM1 cells depend on a T-bet-Hobit-IL-15 axis, whereas TRM17 cells develop independently of these factors. Instead, c-Maf commands a tissue-resident program in TRM17 cells parallel to that induced by Hobit in TRM1 cells, with an ICOS-c-Maf-IL-7 axis pivotal to TRM17 cell commitment. Accordingly, by targeting this pathway, skin TRM17 cells can be ablated without compromising their TRM1 counterparts. Thus, skin-resident T cells rely on distinct molecular circuitries, which can be exploited to strategically modulate local immunity.
Collapse
|
3
|
Caramia F, Speed TP, Shen H, Haupt Y, Haupt S. Establishing the Link between X-Chromosome Aberrations and TP53 Status, with Breast Cancer Patient Outcomes. Cells 2023; 12:2245. [PMID: 37759468 PMCID: PMC10526523 DOI: 10.3390/cells12182245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Ubiquitous to normal female human somatic cells, X-chromosome inactivation (XCI) tightly regulates the transcriptional silencing of a single X chromosome from each pair. Some genes escape XCI, including crucial tumour suppressors. Cancer susceptibility can be influenced by the variability in the genes that escape XCI. The mechanisms of XCI dysregulation remain poorly understood in complex diseases, including cancer. Using publicly available breast cancer next-generation sequencing data, we show that the status of the major tumour suppressor TP53 from Chromosome 17 is highly associated with the genomic integrity of the inactive X (Xi) and the active X (Xa) chromosomes. Our quantification of XCI and XCI escape demonstrates that aberrant XCI is linked to poor survival. We derived prognostic gene expression signatures associated with either large deletions of Xi; large amplifications of Xa; or abnormal X-methylation. Our findings expose a novel insight into female cancer risks, beyond those associated with the standard molecular subtypes.
Collapse
|
4
|
Mangiola S, Roth-Schulze AJ, Trussart M, Zozaya-Valdés E, Ma M, Gao Z, Rubin AF, Speed TP, Shim H, Papenfuss AT. sccomp: Robust differential composition and variability analysis for single-cell data. Proc Natl Acad Sci U S A 2023; 120:e2203828120. [PMID: 37549298 PMCID: PMC10438834 DOI: 10.1073/pnas.2203828120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/18/2023] [Indexed: 08/09/2023] Open
Abstract
Cellular omics such as single-cell genomics, proteomics, and microbiomics allow the characterization of tissue and microbial community composition, which can be compared between conditions to identify biological drivers. This strategy has been critical to revealing markers of disease progression, such as cancer and pathogen infection. A dedicated statistical method for differential variability analysis is lacking for cellular omics data, and existing methods for differential composition analysis do not model some compositional data properties, suggesting there is room to improve model performance. Here, we introduce sccomp, a method for differential composition and variability analyses that jointly models data count distribution, compositionality, group-specific variability, and proportion mean-variability association, being aware of outliers. sccomp provides a comprehensive analysis framework that offers realistic data simulation and cross-study knowledge transfer. Here, we demonstrate that mean-variability association is ubiquitous across technologies, highlighting the inadequacy of the very popular Dirichlet-multinomial distribution. We show that sccomp accurately fits experimental data, significantly improving performance over state-of-the-art algorithms. Using sccomp, we identified differential constraints and composition in the microenvironment of primary breast cancer.
Collapse
|
5
|
Gurun B, Horton W, Murugan D, Zhu B, Leyshock P, Kumar S, Byrne KT, Vonderheide RH, Margolin AA, Mori M, Spellman PT, Coussens LM, Speed TP. An open protocol for modeling T Cell Clonotype repertoires using TCRβ CDR3 sequences. BMC Genomics 2023; 24:349. [PMID: 37365517 DOI: 10.1186/s12864-023-09424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
T cell receptor repertoires can be profiled using next generation sequencing (NGS) to measure and monitor adaptive dynamical changes in response to disease and other perturbations. Genomic DNA-based bulk sequencing is cost-effective but necessitates multiplex target amplification using multiple primer pairs with highly variable amplification efficiencies. Here, we utilize an equimolar primer mixture and propose a single statistical normalization step that efficiently corrects for amplification bias post sequencing. Using samples analyzed by both our open protocol and a commercial solution, we show high concordance between bulk clonality metrics. This approach is an inexpensive and open-source alternative to commercial solutions.
Collapse
|
6
|
Feng Y, Yang T, Zhu J, Li M, Doyle M, Ozcoban V, Bass GT, Pizzolla A, Cain L, Weng S, Pasam A, Kocovski N, Huang YK, Keam SP, Speed TP, Neeson PJ, Pearson RB, Sandhu S, Goode DL, Trigos AS. Spatial analysis with SPIAT and spaSim to characterize and simulate tissue microenvironments. Nat Commun 2023; 14:2697. [PMID: 37188662 DOI: 10.1038/s41467-023-37822-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Spatial proteomics technologies have revealed an underappreciated link between the location of cells in tissue microenvironments and the underlying biology and clinical features, but there is significant lag in the development of downstream analysis methods and benchmarking tools. Here we present SPIAT (spatial image analysis of tissues), a spatial-platform agnostic toolkit with a suite of spatial analysis algorithms, and spaSim (spatial simulator), a simulator of tissue spatial data. SPIAT includes multiple colocalization, neighborhood and spatial heterogeneity metrics to characterize the spatial patterns of cells. Ten spatial metrics of SPIAT are benchmarked using simulated data generated with spaSim. We show how SPIAT can uncover cancer immune subtypes correlated with prognosis in cancer and characterize cell dysfunction in diabetes. Our results suggest SPIAT and spaSim as useful tools for quantifying spatial patterns, identifying and validating correlates of clinical outcomes and supporting method development.
Collapse
|
7
|
Weeden CE, Gayevskiy V, Marceaux C, Batey D, Tan T, Yokote K, Ribera NT, Clatch A, Christo S, Teh CE, Mitchell AJ, Trussart M, Rankin L, Obers A, McDonald JA, Sutherland KD, Sharma VJ, Starkey G, D'Costa R, Antippa P, Leong T, Steinfort D, Irving L, Swanton C, Gordon CL, Mackay LK, Speed TP, Gray DHD, Asselin-Labat ML. Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non-small cell lung cancer. Cancer Cell 2023; 41:837-852.e6. [PMID: 37086716 DOI: 10.1016/j.ccell.2023.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/24/2023]
Abstract
Tissue-resident memory T (TRM) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts TRM activation and whether TRM cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a TRM-like phenotype in ES lungs. In preclinical models, tumor-specific or bystander TRM-like cells present prior to tumor onset boosted immune cell recruitment, causing tumor immune evasion through loss of MHC class I protein expression and resistance to immune checkpoint inhibitors. In humans, only tumors arising in ES patients underwent clonal immune evasion, unrelated to tobacco-associated mutagenic signatures or oncogenic drivers. These data demonstrate that enhanced TRM-like activity prior to tumor development shapes the evolution of tumor immunogenicity and can impact immunotherapy outcomes.
Collapse
|
8
|
Luen SJ, Viale G, Nik-Zainal S, Savas P, Kammler R, Dell'Orto P, Biasi O, Degasperi A, Brown LC, Láng I, MacGrogan G, Tondini C, Bellet M, Villa F, Bernardo A, Ciruelos E, Karlsson P, Neven P, Climent M, Müller B, Jochum W, Bonnefoi H, Martino S, Davidson NE, Geyer C, Chia SK, Ingle JN, Coleman R, Solbach C, Thürlimann B, Colleoni M, Coates AS, Goldhirsch A, Fleming GF, Francis PA, Speed TP, Regan MM, Loi S. Genomic characterisation of hormone receptor-positive breast cancer arising in very young women. Ann Oncol 2023; 34:397-409. [PMID: 36709040 PMCID: PMC10619213 DOI: 10.1016/j.annonc.2023.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/14/2022] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Very young premenopausal women diagnosed with hormone receptor-positive, human epidermal growth factor receptor 2-negative (HR+HER2-) early breast cancer (EBC) have higher rates of recurrence and death for reasons that remain largely unexplained. PATIENTS AND METHODS Genomic sequencing was applied to HR+HER2- tumours from patients enrolled in the Suppression of Ovarian Function Trial (SOFT) to determine genomic drivers that are enriched in young premenopausal women. Genomic alterations were characterised using next-generation sequencing from a subset of 1276 patients (deep targeted sequencing, n = 1258; whole-exome sequencing in a young-age, case-control subsample, n = 82). We defined copy number (CN) subgroups and assessed for features suggestive of homologous recombination deficiency (HRD). Genomic alteration frequencies were compared between young premenopausal women (<40 years) and older premenopausal women (≥40 years), and assessed for associations with distant recurrence-free interval (DRFI) and overall survival (OS). RESULTS Younger women (<40 years, n = 359) compared with older women (≥40 years, n = 917) had significantly higher frequencies of mutations in GATA3 (19% versus 16%) and CN amplifications (CNAs) (47% versus 26%), but significantly lower frequencies of mutations in PIK3CA (32% versus 47%), CDH1 (3% versus 9%), and MAP3K1 (7% versus 12%). Additionally, they had significantly higher frequencies of features suggestive of HRD (27% versus 21%) and a higher proportion of PIK3CA mutations with concurrent CNAs (23% versus 11%). Genomic features suggestive of HRD, PIK3CA mutations with CNAs, and CNAs were associated with significantly worse DRFI and OS compared with those without these features. These poor prognostic features were enriched in younger patients: present in 72% of patients aged <35 years, 54% aged 35-39 years, and 40% aged ≥40 years. Poor prognostic features [n = 584 (46%)] versus none [n = 692 (54%)] had an 8-year DRFI of 84% versus 94% and OS of 88% versus 96%. Younger women (<40 years) had the poorest outcomes: 8-year DRFI 74% versus 85% and OS 80% versus 93%, respectively. CONCLUSION These results provide insights into genomic alterations that are enriched in young women with HR+HER2- EBC, provide rationale for genomic subgrouping, and highlight priority molecular targets for future clinical trials.
Collapse
|
9
|
Virassamy B, Caramia F, Savas P, Sant S, Wang J, Christo SN, Byrne A, Clarke K, Brown E, Teo ZL, von Scheidt B, Freestone D, Gandolfo LC, Weber K, Teply-Szymanski J, Li R, Luen SJ, Denkert C, Loibl S, Lucas O, Swanton C, Speed TP, Darcy PK, Neeson PJ, Mackay LK, Loi S. Intratumoral CD8 + T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer. Cancer Cell 2023; 41:585-601.e8. [PMID: 36827978 DOI: 10.1016/j.ccell.2023.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023]
Abstract
CD8+ tumor-infiltrating lymphocytes with a tissue-resident memory T (TRM) cell phenotype are associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, the relative contribution of CD8+ TRM cells to anti-tumor immunity and immune checkpoint blockade efficacy in breast cancer remains unknown. Here, we show that intratumoral CD8+ T cells in murine mammary tumors transcriptionally resemble those from TNBC patients. Phenotypic and transcriptional studies established two intratumoral sub-populations: one more enriched in markers of terminal exhaustion (TEX-like) and the other with a bona fide resident phenotype (TRM-like). Treatment with anti-PD-1 and anti-CTLA-4 therapy resulted in expansion of these intratumoral populations, with the TRM-like subset displaying significantly enhanced cytotoxic capacity. TRM-like CD8+ T cells could also provide local immune protection against tumor rechallenge and a TRM gene signature extracted from tumor-free tissue was significantly associated with improved clinical outcomes in TNBC patients treated with checkpoint inhibitors.
Collapse
|
10
|
Gurun B, Horton W, Murugan D, Zhu B, Leyshock P, Kumar S, Byrne KT, Vonderheide RH, Margolin AA, Mori M, Spellman PT, Coussens LM, Speed TP. An open protocol for modeling T Cell Clonotype repertoires using TCRβ CDR3 sequences. RESEARCH SQUARE 2023:rs.3.rs-2140339. [PMID: 36824803 PMCID: PMC9949261 DOI: 10.21203/rs.3.rs-2140339/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
T cell receptor repertoires can be profiled using next generation sequencing (NGS) to measure and monitor adaptive dynamical changes in response to disease and other perturbations. Genomic DNA-based bulk sequencing is cost-effective but necessitates multiplex target amplification using multiple primer pairs with highly variable amplification efficiencies. Here, we utilize an equimolar primer mixture and propose a single statistical normalization step that efficiently corrects for amplification bias post sequencing. Using samples analyzed by both our open protocol and a commercial solution, we show high concordance between bulk clonality metrics. This approach is an inexpensive and open-source alternative to commercial solutions.
Collapse
|
11
|
Lönnstedt IM, Speed TP. RUV
retrieves unknown experimental designs. Scand Stat Theory Appl 2023. [DOI: 10.1111/sjos.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Molania R, Foroutan M, Gagnon-Bartsch JA, Gandolfo LC, Jain A, Sinha A, Olshansky G, Dobrovic A, Papenfuss AT, Speed TP. Removing unwanted variation from large-scale RNA sequencing data with PRPS. Nat Biotechnol 2023; 41:82-95. [PMID: 36109686 PMCID: PMC9849124 DOI: 10.1038/s41587-022-01440-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Accurate identification and effective removal of unwanted variation is essential to derive meaningful biological results from RNA sequencing (RNA-seq) data, especially when the data come from large and complex studies. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we examined several sources of unwanted variation and demonstrate here how these can significantly compromise various downstream analyses, including cancer subtype identification, association between gene expression and survival outcomes and gene co-expression analysis. We propose a strategy, called pseudo-replicates of pseudo-samples (PRPS), for deploying our recently developed normalization method, called removing unwanted variation III (RUV-III), to remove the variation caused by library size, tumor purity and batch effects in TCGA RNA-seq data. We illustrate the value of our approach by comparing it to the standard TCGA normalizations on several TCGA RNA-seq datasets. RUV-III with PRPS can be used to integrate and normalize other large transcriptomic datasets coming from multiple laboratories or platforms.
Collapse
|
13
|
Cao S, Wang JR, Ji S, Yang P, Dai Y, Guo S, Montierth MD, Shen JP, Zhao X, Chen J, Lee JJ, Guerrero PA, Spetsieris N, Engedal N, Taavitsainen S, Yu K, Livingstone J, Bhandari V, Hubert SM, Daw NC, Futreal PA, Efstathiou E, Lim B, Viale A, Zhang J, Nykter M, Czerniak BA, Brown PH, Swanton C, Msaouel P, Maitra A, Kopetz S, Campbell P, Speed TP, Boutros PC, Zhu H, Urbanucci A, Demeulemeester J, Van Loo P, Wang W. Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression. Nat Biotechnol 2022; 40:1624-1633. [PMID: 35697807 PMCID: PMC9646498 DOI: 10.1038/s41587-022-01342-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/29/2022] [Indexed: 12/30/2022]
Abstract
Single-cell RNA sequencing studies have suggested that total mRNA content correlates with tumor phenotypes. Technical and analytical challenges, however, have so far impeded at-scale pan-cancer examination of total mRNA content. Here we present a method to quantify tumor-specific total mRNA expression (TmS) from bulk sequencing data, taking into account tumor transcript proportion, purity and ploidy, which are estimated through transcriptomic/genomic deconvolution. We estimate and validate TmS in 6,590 patient tumors across 15 cancer types, identifying significant inter-tumor variability. Across cancers, high TmS is associated with increased risk of disease progression and death. TmS is influenced by cancer-specific patterns of gene alteration and intra-tumor genetic heterogeneity as well as by pan-cancer trends in metabolic dysregulation. Taken together, our results indicate that measuring cell-type-specific total mRNA expression in tumor cells predicts tumor phenotypes and clinical outcomes.
Collapse
Grants
- U01 CA196403 NCI NIH HHS
- P30 CA016672 NCI NIH HHS
- U01 CA224044 NCI NIH HHS
- R01 CA268380 NCI NIH HHS
- Department of Health
- FC001169 Cancer Research UK
- C416/A21999 Cancer Research UK
- MR/L016311/1 Medical Research Council
- R01 CA231465 NCI NIH HHS
- U01 CA256780 NCI NIH HHS
- R01 CA183793 NCI NIH HHS
- FC001202 Medical Research Council
- U01 CA200468 NCI NIH HHS
- FC001202 Wellcome Trust
- R01 CA234629 NCI NIH HHS
- U01 CA214194 NCI NIH HHS
- FC001202 Cancer Research UK
- P50 CA221707 NCI NIH HHS
- C11496/A17786 Cancer Research UK
- L30 CA171000 NCI NIH HHS
- FC001169 Wellcome Trust
- FC001169 Medical Research Council
- U24 CA248265 NCI NIH HHS
- K22 CA234406 NCI NIH HHS
- P30 CA016042 NCI NIH HHS
- C11496/A30025 Cancer Research UK
- U24 CA224020 NCI NIH HHS
- Norman Jaffe Professorship in Pediatrics Endowment Fund, MD Anderson Colorectal Cancer Moon Shot Program, and NIH R01CA183793
- American Thyroid Association (American Thyroid Association, lnc.)
- Mark Foundation for Cancer Research ASPIRE award
- Human Cell Atlas Seed Network - Breast, Chan Zuckerberg Institute, MD Anderson Colorectal Cancer Moon Shot Program, NIH R01CA183793
- NIH R01CA239342
- Cancer Prevention and Research Institute of Texas as a CPRIT Scholar in Cancer Research and by National Institutes of Health (K22CA234406)
- NIH R01CA158113
- NIH (T32CA009599)
- MD Anderson Pancreatic Cancer Moon Shot Program, the Khalifa Bin Zayed Al-Nahyan Foundation, and the National Institutes of Health (NIH U01CA196403, U01CA200468, U24CA224020, P50CA221707)
- Norwegian Cancer Society (grant number 198016-2018)
- Norman Jaffe Professorship in Pediatrics Endowment Fund
- the Welch Foundation, MEI Pharma, Inc., Cancer Research United Kingdom (CRUK), Kadoorie Charitable Foundation, NIH/NCI (U01 CA224044-01A1, 1R01CA231465-01A1)
- Career Development Award by the American Society of Clinical Oncology, a Research Award by KCCure, the MD Anderson Khalifa Scholar Award, and the MD Anderson Physician-Scientist Award
- NIH/NCI under awards number P30CA016042, 1U01CA214194-01 and 1U24CA248265-01
- the Medical Research Council (grant number MR/L016311/1), the European Union’s Horizon 2020 research and innovation program (Marie Skłodowska-Curie Grant Agreement No. 703594-DECODE) and the Research Foundation – Flanders (FWO, Grant No. 12J6916N)
- the Medical Research Council (grant number MR/L016311/1), Winton Charitable Foundation
- NIH R01CA183793
Collapse
|
14
|
Fonseca R, Burn TN, Gandolfo LC, Devi S, Park SL, Obers A, Evrard M, Christo SN, Buquicchio FA, Lareau CA, McDonald KM, Sandford SK, Zamudio NM, Zanluqui NG, Zaid A, Speed TP, Satpathy AT, Mueller SN, Carbone FR, Mackay LK. Runx3 drives a CD8 + T cell tissue residency program that is absent in CD4 + T cells. Nat Immunol 2022; 23:1236-1245. [PMID: 35882933 DOI: 10.1038/s41590-022-01273-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-β-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-β-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-β-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.
Collapse
|
15
|
Salim A, Molania R, Wang J, De Livera A, Thijssen R, Speed TP. RUV-III-NB: normalization of single cell RNA-seq data. Nucleic Acids Res 2022; 50:e96. [PMID: 35758618 PMCID: PMC9458465 DOI: 10.1093/nar/gkac486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/01/2022] Open
Abstract
Normalization of single cell RNA-seq data remains a challenging task. The performance of different methods can vary greatly between datasets when unwanted factors and biology are associated. Most normalization methods also only remove the effects of unwanted variation for the cell embedding but not from gene-level data typically used for differential expression (DE) analysis to identify marker genes. We propose RUV-III-NB, a method that can be used to remove unwanted variation from both the cell embedding and gene-level counts. Using pseudo-replicates, RUV-III-NB explicitly takes into account potential association with biology when removing unwanted variation. The method can be used for both UMI or read counts and returns adjusted counts that can be used for downstream analyses such as clustering, DE and pseudotime analyses. Using published datasets with different technological platforms, kinds of biology and levels of association between biology and unwanted variation, we show that RUV-III-NB manages to remove library size and batch effects, strengthen biological signals, improve DE analyses, and lead to results exhibiting greater concordance with independent datasets of the same kind. The performance of RUV-III-NB is consistent and is not sensitive to the number of factors assumed to contribute to the unwanted variation.
Collapse
|
16
|
Speed TP, Hicks DG. Spectral PCA for MANOVA and data over binary trees. J MULTIVARIATE ANAL 2022. [DOI: 10.1016/j.jmva.2021.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Modzelewski AJ, Shao W, Chen J, Lee A, Qi X, Noon M, Tjokro K, Sales G, Biton A, Anand A, Speed TP, Xuan Z, Wang T, Risso D, He L. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 2021; 184:5541-5558.e22. [PMID: 34644528 PMCID: PMC8787082 DOI: 10.1016/j.cell.2021.09.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.
Collapse
|
18
|
Foroutan M, Molania R, Pfefferle A, Behrenbruch C, Scheer S, Kallies A, Speed TP, Cursons J, Huntington ND. The Ratio of Exhausted to Resident Infiltrating Lymphocytes Is Prognostic for Colorectal Cancer Patient Outcome. Cancer Immunol Res 2021; 9:1125-1140. [PMID: 34413087 DOI: 10.1158/2326-6066.cir-21-0137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapy success in colorectal cancer is mainly limited to patients whose tumors exhibit high microsatellite instability (MSI). However, there is variability in treatment outcomes within this group, which is in part driven by the frequency and characteristics of tumor-infiltrating immune cells. Indeed, the presence of specific infiltrating immune-cell subsets has been shown to correlate with immunotherapy response and is in many cases prognostic of treatment outcome. Tumor-infiltrating lymphocytes (TIL) can undergo distinct differentiation programs, acquiring features of tissue-residency or exhaustion, a process during which T cells upregulate inhibitory receptors, such as PD-1, and lose functionality. Although residency and exhaustion programs of CD8+ T cells are relatively well studied, these programs have only recently been appreciated in CD4+ T cells and remain largely unknown in tumor-infiltrating natural killer (NK) cells. In this study, we used single-cell RNA sequencing (RNA-seq) data to identify signatures of residency and exhaustion in colorectal cancer-infiltrating lymphocytes, including CD8+, CD4+, and NK cells. We then tested these signatures in independent single-cell data from tumor and normal tissue-infiltrating immune cells. Furthermore, we used versions of these signatures designed for bulk RNA-seq data to explore tumor-intrinsic mutations associated with residency and exhaustion from TCGA data. Finally, using two independent transcriptomic datasets from patients with colon adenocarcinoma, we showed that combinations of these signatures, in particular combinations of NK-cell activity signatures, together with tumor-associated signatures, such as TGFβ signaling, were associated with distinct survival outcomes in patients with colon adenocarcinoma.
Collapse
|
19
|
Quaglieri A, Flensburg C, Speed TP, Majewski IJ. Finding a suitable library size to call variants in RNA-Seq. BMC Bioinformatics 2020; 21:553. [PMID: 33261552 PMCID: PMC7708150 DOI: 10.1186/s12859-020-03860-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA sequencing allows the study of both gene expression changes and transcribed mutations, providing a highly effective way to gain insight into cancer biology. When planning the sequencing of a large cohort of samples, library size is a fundamental factor affecting both the overall cost and the quality of the results. Here we specifically address how overall library size influences the detection of somatic mutations in RNA-seq data in two acute myeloid leukaemia datasets. RESULTS : We simulated shallower sequencing depths by downsampling 45 acute myeloid leukaemia samples (100 bp PE) that are part of the Leucegene project, which were originally sequenced at high depth. We compared the sensitivity of six methods of recovering validated mutations on the same samples. The methods compared are a combination of three popular callers (MuTect, VarScan, and VarDict) and two filtering strategies. We observed an incremental loss in sensitivity when simulating libraries of 80M, 50M, 40M, 30M and 20M fragments, with the largest loss detected with less than 30M fragments (below 90%, average loss of 7%). The sensitivity in recovering insertions and deletions varied markedly between callers, with VarDict showing the highest sensitivity (60%). Single nucleotide variant sensitivity is relatively consistent across methods, apart from MuTect, whose default filters need adjustment when using RNA-Seq. We also analysed 136 RNA-Seq samples from the TCGA-LAML cohort (50 bp PE) and assessed the change in sensitivity between the initial libraries (average 59M fragments) and after downsampling to 40M fragments. When considering single nucleotide variants in recurrently mutated myeloid genes we found a comparable performance, with a 6% average loss in sensitivity using 40M fragments. CONCLUSIONS Between 30M and 40M 100 bp PE reads are needed to recover 90-95% of the initial variants on recurrently mutated myeloid genes. To extend this result to another cancer type, an exploration of the characteristics of its mutations and gene expression patterns is suggested.
Collapse
|
20
|
Morokoff A, Jones J, Nguyen H, Ma C, Lasocki A, Gaillard F, Bennett I, Luwor R, Stylli S, Paradiso L, Koldej R, Paldor I, Molania R, Speed TP, Webb A, Infusini G, Li J, Malpas C, Kalincik T, Drummond K, Siegal T, Kaye AH. Correction to: Serum microRNA is a biomarker for post-operative monitoring in glioma. J Neurooncol 2020; 149:401. [PMID: 33026635 DOI: 10.1007/s11060-020-03630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the reference citation '[57]' in the second paragraph of the Results section of the original article there was no corresponding entry in the References section. It should have referred to the below mentioned article by Ebrahimkhani et al. (2018).
Collapse
|
21
|
Trussart M, Teh CE, Tan T, Leong L, Gray DH, Speed TP. Removing unwanted variation with CytofRUV to integrate multiple CyTOF datasets. eLife 2020; 9:59630. [PMID: 32894218 PMCID: PMC7500954 DOI: 10.7554/elife.59630] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/05/2020] [Indexed: 11/13/2022] Open
Abstract
Mass cytometry (CyTOF) is a technology that has revolutionised single-cell biology. By detecting over 40 proteins on millions of single cells, CyTOF allows the characterisation of cell subpopulations in unprecedented detail. However, most CyTOF studies require the integration of data from multiple CyTOF batches usually acquired on different days and possibly at different sites. To date, the integration of CyTOF datasets remains a challenge due to technical differences arising in multiple batches. To overcome this limitation, we developed an approach called CytofRUV for analysing multiple CyTOF batches, which includes an R-Shiny application with diagnostic plots. CytofRUV can correct for batch effects and integrate data from large numbers of patients and conditions across batches, to confidently compare cellular changes and correlate these with clinically relevant outcomes.
Collapse
|
22
|
Poulos RC, Hains PG, Shah R, Lucas N, Xavier D, Manda SS, Anees A, Koh JMS, Mahboob S, Wittman M, Williams SG, Sykes EK, Hecker M, Dausmann M, Wouters MA, Ashman K, Yang J, Wild PJ, deFazio A, Balleine RL, Tully B, Aebersold R, Speed TP, Liu Y, Reddel RR, Robinson PJ, Zhong Q. Strategies to enable large-scale proteomics for reproducible research. Nat Commun 2020; 11:3793. [PMID: 32732981 PMCID: PMC7393074 DOI: 10.1038/s41467-020-17641-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/08/2020] [Indexed: 01/12/2023] Open
Abstract
Reproducible research is the bedrock of experimental science. To enable the deployment of large-scale proteomics, we assess the reproducibility of mass spectrometry (MS) over time and across instruments and develop computational methods for improving quantitative accuracy. We perform 1560 data independent acquisition (DIA)-MS runs of eight samples containing known proportions of ovarian and prostate cancer tissue and yeast, or control HEK293T cells. Replicates are run on six mass spectrometers operating continuously with varying maintenance schedules over four months, interspersed with ~5000 other runs. We utilise negative controls and replicates to remove unwanted variation and enhance biological signal, outperforming existing methods. We also design a method for reducing missing values. Integrating these computational modules into a pipeline (ProNorM), we mitigate variation among instruments over time and accurately predict tissue proportions. We demonstrate how to improve the quantitative analysis of large-scale DIA-MS data, providing a pathway toward clinical proteomics. Clinical proteomics critically depends on the ability to acquire highly reproducible data over an extended period of time. Here, the authors assess reproducibility over four months across different mass spectrometers and develop a computational approach to mitigate variation among instruments over time.
Collapse
|
23
|
Jenkins NL, James SA, Salim A, Sumardy F, Speed TP, Conrad M, Richardson DR, Bush AI, McColl G. Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans. eLife 2020; 9:e56580. [PMID: 32690135 PMCID: PMC7373428 DOI: 10.7554/elife.56580] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
All eukaryotes require iron. Replication, detoxification, and a cancer-protective form of regulated cell death termed ferroptosis, all depend on iron metabolism. Ferrous iron accumulates over adult lifetime in Caenorhabditis elegans. Here, we show that glutathione depletion is coupled to ferrous iron elevation in these animals, and that both occur in late life to prime cells for ferroptosis. We demonstrate that blocking ferroptosis, either by inhibition of lipid peroxidation or by limiting iron retention, mitigates age-related cell death and markedly increases lifespan and healthspan. Temporal scaling of lifespan is not evident when ferroptosis is inhibited, consistent with this cell death process acting at specific life phases to induce organismal frailty, rather than contributing to a constant aging rate. Because excess age-related iron elevation in somatic tissue, particularly in brain, is thought to contribute to degenerative disease, post-developmental interventions to limit ferroptosis may promote healthy aging.
Collapse
|
24
|
Ye C, Speed TP, Salim A. DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data. Bioinformatics 2020; 35:5155-5162. [PMID: 31197307 PMCID: PMC6954660 DOI: 10.1093/bioinformatics/btz453] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/08/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Motivation Dropout is a common phenomenon in single-cell RNA-seq (scRNA-seq) data, and when left unaddressed it affects the validity of the statistical analyses. Despite this, few current methods for differential expression (DE) analysis of scRNA-seq data explicitly model the process that gives rise to the dropout events. We develop DECENT, a method for DE analysis of scRNA-seq data that explicitly and accurately models the molecule capture process in scRNA-seq experiments. Results We show that DECENT demonstrates improved DE performance over existing DE methods that do not explicitly model dropout. This improvement is consistently observed across several public scRNA-seq datasets generated using different technological platforms. The gain in improvement is especially large when the capture process is overdispersed. DECENT maintains type I error well while achieving better sensitivity. Its performance without spike-ins is almost as good as when spike-ins are used to calibrate the capture model. Availability and implementation The method is implemented as a publicly available R package available from https://github.com/cz-ye/DECENT. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
|
25
|
Gresle MM, Jordan MA, Stankovich J, Spelman T, Johnson LJ, Laverick L, Hamlett A, Smith LD, Jokubaitis VG, Baker J, Haartsen J, Taylor B, Charlesworth J, Bahlo M, Speed TP, Brown MA, Field J, Baxter AG, Butzkueven H. Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells. Life Sci Alliance 2020; 3:3/7/e202000650. [PMID: 32518073 PMCID: PMC7283543 DOI: 10.26508/lsa.202000650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
At least 200 single-nucleotide polymorphisms (SNPs) are associated with multiple sclerosis (MS) risk. A key function that could mediate SNP-encoded MS risk is their regulatory effects on gene expression. We performed microarrays using RNA extracted from purified immune cell types from 73 untreated MS cases and 97 healthy controls and then performed Cis expression quantitative trait loci mapping studies using additive linear models. We describe MS risk expression quantitative trait loci associations for 129 distinct genes. By extending these models to include an interaction term between genotype and phenotype, we identify MS risk SNPs with opposing effects on gene expression in cases compared with controls, namely, rs2256814 MYT1 in CD4 cells (q = 0.05) and rs12087340 RF00136 in monocyte cells (q = 0.04). The rs703842 SNP was also associated with a differential effect size on the expression of the METTL21B gene in CD8 cells of MS cases relative to controls (q = 0.03). Our study provides a detailed map of MS risk loci that function by regulating gene expression in cell types relevant to MS.
Collapse
|