1
|
Lian J, Shi S, Bao J, Cong X, Wang J, Liang H, Cheng X. Promoted production of Fe(IV)/Fe(V) intermediates in the calcium peroxide/ferrate(VI) process for low-damage removal of algal contaminants and membrane fouling control. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135709. [PMID: 39236536 DOI: 10.1016/j.jhazmat.2024.135709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Ultrafiltration (UF) is widely employed for harmful algae rejection, whereas severe membrane fouling hampers its long-term operation. Herein, calcium peroxide (CaO2) and ferrate (Fe(VI)) were innovatively coupled for low-damage removal of algal contaminants and fouling control in the UF process. As a result, the terminal J/J0 increased from 0.13 to 0.66, with Rr and Rir respectively decreased by 96.74 % and 48.47 %. The cake layer filtration was significantly postponed, and pore blocking was reduced. The ζ-potential of algal foulants was weakened from -34.4 mV to -18.7 mV, and algal cells of 86.15 % were removed with flocs of 300 µm generated. The cell integrity was better remained in comparison to the Fe(VI) treatment, and Fe(IV)/Fe(V) was verified to be the dominant reactive species. The membrane fouling alleviation mechanisms could be attributed to the reduction of the fouling loads and the changes in the interfacial free energies. A membrane fouling prediction model was built based on a long short-term memory deep learning network, which predicted that the filtration volume at J/J0= 0.2 increased from 288 to 1400 mL. The results provide a new routine for controlling algal membrane fouling from the perspective of promoting the generation of Fe(IV)/Fe(V) intermediates.
Collapse
|
2
|
An M, Cheng X, Luo X, Yang T, Sun X, Xu J, Xiao D, Wu D, Liang H. Role of reactive manganese and oxygen species in the KMnO 4/Na 2SO 3 process for purification of algal-rich water and membrane fouling alleviation. ENVIRONMENTAL RESEARCH 2024; 260:119662. [PMID: 39043355 DOI: 10.1016/j.envres.2024.119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/29/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Ultrafiltration (UF) is a highly efficient technique for algal-rich water purification, but it is heavily contaminated due to the complex water characteristics. To solve this problem, potassium permanganate (KMnO4) oxidation enhanced with sodium sulfite (Na2SO3) was proposed as a pretreatment means. The results showed that the end-normalized flux was elevated from 0.10 to 0.91, and the reversible fouling resistance was reduced by 99.95%. The membrane fouling mechanism also changed obviously, without the generation of cake filtration. Regarding the properties of algal-rich water, the zeta potential was decreased from -29.50 to -5.87 mV after KMnO4/Na2SO3 pretreatment, suggesting that the electrostatic repulsion was significantly reduced. Meanwhile, the fluorescent components in algal-rich water were significantly eliminated, and the removal of dissolved organic carbon was increased to 67.46%. In the KMnO4/Na2SO3 process, reactive manganese species (i.e., Mn(V), Mn(III) and MnO2) and reactive oxygen species (i.e., SO4•- and •OH) played major roles in purifying algal-rich water. Specifically, SO4•-, •OH, Mn(V) and Mn(III) could effectively oxidize algal pollutants. Simultaneously, the in-situ adsorption and coagulation of MnO2 could accelerate the formation of flocs by decreasing the electrostatic repulsion between cells, and protect the algal cells from being excessive oxidized. Overall, the KMnO4/Na2SO3 process showed significant potential for membrane fouling alleviation in purifying algal-rich water.
Collapse
|
3
|
Cheng X, Sai D, Luo X, Chang H, Li P, Xu J, Wu D, Liang H. Ferrate(VI)-based oxidation for ultrafiltration membrane fouling mitigation in shale gas produced water pretreatment: Role of high-valent iron intermediates and hydroxyl radicals. WATER RESEARCH 2024; 261:122013. [PMID: 38981354 DOI: 10.1016/j.watres.2024.122013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Ultrafiltration (UF) is increasingly used in the pretreatment of shale gas produced water (SGPW), whereas severe membrane fouling hampers its actual operation. In this work, ferrate(VI)-based oxidation was proposed for membrane fouling alleviation in SGPW pretreatment, and the activation strategies of calcium peroxide (CaO2) and ultraviolet (UV) were selected for comparison. The findings indicated that UV/Fe(VI) was more effective in removing fluorescent components, and the concentration of dissolved organic carbon was reduced by 24.1 %. With pretreatments of CaO2/Fe(VI) and UV/Fe(VI), the terminal specific membrane flux was elevated from 0.196 to 0.385 and 0.512, and the total fouling resistance diminished by 52.7 % and 76.2 %, respectively. Interfacial free energy analysis indicated that the repulsive interactions between pollutants and membrane were notably enhanced by Fe(VI)-based oxidation, thereby delaying the deposition of cake layers on the membrane surface. Quenching and probe experiments revealed that high-valent iron intermediates (Fe(IV)/Fe(V)) played significant roles in both CaO2/Fe(VI) and UV/Fe(VI) processes. Besides, hydroxyl radicals (•OH) were also important reactive species in the UV/Fe(VI) treatment, and the synergistic effect of Fe(IV)/Fe(V) and •OH showed a positive influence on SGPW fouling mitigation. In general, these findings establish a theoretical underpinning for the application of Fe(VI)-based oxidation for UF membrane fouling mitigation in SGPW pretreatment.
Collapse
|
4
|
Chang H, Zhu Y, Liu N, Ji P, Yan Z, Cheng X, Qu D, Liang H, Qu F. Enhancing microfiltration membrane performance by sodium percarbonate-based oxidation for hydraulic fracturing wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 262:119888. [PMID: 39216736 DOI: 10.1016/j.envres.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Low pressure membrane takes a great role in hydraulic fracturing wastewater (HFW), while membrane fouling is a critical issue for the stable operation of microfiltration (MF). This study focused on fouling mitigation by sodium percarbonate (SPC) oxidation, activated by ultraviolet (UV) and ferrous ion (Fe(II)). The higher the concentration of oxidizer, the better the anti-fouling performance of MF membrane. Unlike severe MF fouling without oxidation (17.26 L/(m2·h)), UV/SPC and Fe(II)/SPC under optimized dosage improved the final flux to 740 and 1553 L/(m2·h), respectively, and the latter generated Fe(III) which acted as a coagulant. Fe(II)/SPC oxidation enabled a shift in fouling mechanism from complete blocking to cake filtration, while UV/SPC oxidation changed it to standard blockage. UV/SPC oxidation was stronger than Fe(II)/SPC oxidation in removing UV254 and fluorescent organics for higher oxidizing capacity, but the opposite was noted for DOC removal. The deposited foulants on membrane surface after oxidation decreased by at least 88% compared to untreated HFW. Correlation analysis showed that UV254, DOC and organic fraction were key parameters responsible for membrane fouling (correlation coefficient>0.80), oxidizing capacity and turbidity after oxidation were also important parameters. These results provide new insights for fouling control during the HFW treatment.
Collapse
|
5
|
Yu M, Yang F, Cheng X. [Anti-inflammatory therapy of coronary heart disease: the way is underfoot]. ZHONGHUA XIN XUE GUAN BING ZA ZHI 2024; 52:585-588. [PMID: 38880741 DOI: 10.3760/cma.j.cn112148-20240229-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
|
6
|
Zhao F, Zeng HY, Jia ST, Pei Y, Cheng X, Zhang X, Huang HJ, Wang JQ. [Analysis of clinical effect of arthroscopic release at different time in treating knee adhesion after arthroscopic surgery]. ZHONGHUA YI XUE ZA ZHI 2024; 104:1474-1480. [PMID: 38706053 DOI: 10.3760/cma.j.cn112137-20231021-00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Objective: To explore the efficacy of arthroscopic release in treating postoperative knee adhesion and investigate the influence of release timing on the treatment outcomes. Methods: A total of 50 patients who accepted arthroscopic release in Peking University Third Hospital from February 2017 to December 2021 were included in the retrospective cohort. The study cohort comprised 28 men and 22 women, with a mean age of (30.8±11.9) years. All the primary surgeries were manipulated under arthroscopes. A comparison was made between pre-and postoperative range of motion (ROM), visual analog scale (VAS), International Knee Documentation Committee (IKDC) scores, and Tegner activity scale scores for the patients. According to the interval between the appearance of adhesion and arthroscopic release, the patients were divided into four groups:<3 months group (n=12), 3-6 months group (n=16),>6-12 months group (n=14), and>12 months group (n=8). Inter-group comparisons on postoperative ROM, IKDC scores, and Tegner activity scale scores and improvement values of each outcome were conducted. Results: All the patients were followed up for (36.4±19.7) months. Patients gained significant improvement in flexion, extension, IKDC scores, and Tegner scores (125.0°±20.0° vs 75.7°±27.5°, 2.3°±4.8° vs 7.4°±7.3°, 69.8±17.7 vs 51.4±12.8, 4.1±2.1 vs 2.2±1.1) (all P<0.05), while the VAS scores did not show significant improvement. There were no significant differences among different groups in postoperative extension, IKDC scores or Tegner scores, nor in their improvements. However, patients in the ≤6 months group could gain better postoperative flexion and improvement in flexion than those in the >6 months group (129.9°±20.0° vs 118.8°±17.4°, 58.6°±32.8° vs 37.3°±23.1°) (P<0.05). Conclusions: Arthroscopic release presents a great effect in treating knee adhesion after arthroscopic operation. Once the symptoms of adhesion appear and physical rehabilitation fails to improve the ROM, one should accept early surgical intervention (less than 6 months) for a better outcome.
Collapse
|
7
|
Wu H, Shi J, Sun X, Lu M, Liao A, Li Y, Xiao L, Zhou C, Dong W, Geng Z, Yuan L, Guo R, Chen M, Cheng X, Zhu W. Predictive effect of net water uptake on futile recanalisation in patients with acute large-vessel occlusion stroke. Clin Radiol 2024; 79:e599-e606. [PMID: 38310056 DOI: 10.1016/j.crad.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/03/2023] [Accepted: 01/06/2024] [Indexed: 02/05/2024]
Abstract
AIM To determine whether net water uptake (NWU) based on automated software evaluation could predict futile recanalisation in patients with acute anterior circulation large-vessel occlusion (LVO). MATERIALS AND METHODS Patients with acute anterior circulation LVO undergoing mechanical thrombectomy in Jinling Hospital were evaluated retrospectively. NWU and other baseline data were evaluated by performing univariate and multivariate analyses. The primary endpoint was 90-day modified Rankin scale score ≥3. A nomogram to predict poor clinical outcomes was developed based on multivariate logistic regression analysis. RESULTS Overall, 135 patients who underwent thrombectomy with a TICI grade ≥2b were enrolled. In multivariate logistic regression analysis, the following factors were identified as independent predictors of futile recanalisation: age (odds ratio [OR]: 1.055, 95 % confidence interval [CI]: 1.004-1.110, p=0.035), female (OR: 0.289, 95 % CI: 0.098-0.850, p=0.024), hypertension (OR: 3.182, 95 % CI: 1.160-8.728, p=0.025), high blood glucose level (OR: 1.36, 95 % CI: 1.087-1.701, p=0.007), admission National Institutes of Health Stroke Scale score (OR: 1.082, 95 % CI: 1.003-1.168, p=0.043), and NWU (OR: 1.312, 95 % CI: 1.038-1.659, p=0.023). CONCLUSIONS NWU based on Alberta Stroke Program Early Computed Tomography (CT) Score (ASPECTS) could be used to predict the occurrence of futile recanalisation in patients with acute anterior circulation LVO ischaemic stroke.
Collapse
|
8
|
Zhang JH, Lyu BJ, Cheng X. [Gut microbiota in extra-intestinal diseases: impact on systemic immune and its mechanism]. ZHONGHUA NEI KE ZA ZHI 2024; 63:100-106. [PMID: 38186126 DOI: 10.3760/cma.j.cn112138-20231009-00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
|
9
|
Cheng X, Song W, Tan F, Luo X, Zhu X, Yang T, Zhou Z, Xu J, Wu D, Liang H. Novel calcium hypochlorite/ferrous iron as an ultrafiltration membrane pretreatment process for purifying algae-laden water. ENVIRONMENTAL RESEARCH 2024; 240:117572. [PMID: 37939809 DOI: 10.1016/j.envres.2023.117572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Algal fouling has become one of the most critical factors hindering the large-scale development of membrane processes in algae-laden water treatment. Herein, novel calcium hypochlorite (Ca(ClO)2)/ferrous iron (Fe(II)) process was proposed as an ultrafiltration (UF) membrane pretreatment technology, and its effects on membrane fouling and water properties were systematically studied. Results showed that the terminal specific fluxes were significantly elevated to 0.925 and 0.933, with the maximum removal ratios of reversible resistance reaching 99.65% and 96.99% for algae-laden water and extracellular organic matter (EOM), respectively. The formation of cake filtration was dramatically delayed, accompanied by a significant reduction of the adhesion free energy, and the contaminants attached to the membrane surface were effectively decomposed. With respect to water quality, the removal ratios of OD685 and turbidity achieved 81.25-95.31% and 90.16-97.72%, individually. The maximum removal rates of DOC, UV254 and fluorescent organics in influent water reached 46.14%, 55.17% and 75.77%, respectively. Furthermore, the generated reactive species (e.g., •OH, Cl•, Cl2•- and ClO•) could efficiently degrade EOM, which appreciably reduced the electrostatic repulsion between the algal foulants while ensuring the integrity of algal cells. At the Ca(ClO)2/Fe(II) dosage of 0.04/0.24 mM, the zeta potential changed from -32.9 mV to -10.8 mV, and a large range of aggregates was formed. The macromolecules in the algal solution were significantly removed, and the proportion of micromolecular organics was increased to some extent. Coagulation of in-situ formed Fe(III) dominated the membrane fouling mitigation, and the reactive species also contributed to the improvement of filtration performance. Overall, Ca(ClO)2/Fe(II) pretreatment has an exceptional prospect for efficient degradation of algal pollutants and enhancement of UF capability.
Collapse
|
10
|
Qi XT, Wang H, Zhu DG, Zheng L, Cheng X, Zhang RJ, Dong HL. Global trends in coronary artery disease and artificial intelligence relevant studies: a bibliometric analysis. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2024; 28:1-22. [PMID: 38235855 DOI: 10.26355/eurrev_202401_34886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Coronary artery disease (CAD) is a major global cause of death, greatly affecting life expectancy and quality of life for populations. With the advent of artificial intelligence (AI), there is new hope for accurately managing CAD. While recent studies have shown remarkable progress in AI and CAD research, there is a gap in comprehensive bibliometric analysis in this field. Therefore, this study aims to provide a thorough analysis of trends and hotspots in AI and CAD-related research utilizing bibliometrics. MATERIALS AND METHODS Publications on AI and CAD relevant research from 2009 to 2023 were searched through the WoS core database (WoSCC). CiteSpace, VOSviewer and Excel 365 were used to conduct the bibliometric analysis. RESULTS The bibliometric analysis included 1,248 publications, indicating a steady increase in AI and CAD-related publications annually. The United States of America (USA), China, and Germany were identified as the most influential countries in this field. Research institutions such as Cedars Sinai Med Ctr, Med Univ South Carolina, Harvard Med Sch and Capital Med Univ were the main contributors to research production. FRONT CARDIOVASC MED is the top-ranked journal, while J AM COLL CARDIOL emerged as the most cited journal. Schoepf, U. Joseph, Slomka, Piotr J., Berman, Daniel S. and Dey, Damini were the most prolific authors, while U. Rajendra Acharya was the most frequently co-cited author. Research related to the AI calculation of coronary flow reserve fraction and coronary artery calcification, based on coronary CT to identify CAD and cardiovascular risk, was a key research topic in this field. The potential link between cardiovascular risk stratification and radiomics is currently at the forefront of the field. CONCLUSIONS This study is the first to use a bibliometric approach to visualize and analyze AI and CAD-related research. The findings provide insights into recent research trends and hotspots in the field and can serve as a reference for scholars to identify critical issues in this field.
Collapse
|
11
|
Luo C, Xu R, Wu D, Zhang X, Cheng X, Wang H, Yin X, Xu J, Ma Q, Chen F. Sulfate radical-based advanced oxidation process effects on tire wear particles aging and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167497. [PMID: 37778564 DOI: 10.1016/j.scitotenv.2023.167497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Tire wear particles (TWPs) are widely distributed in natural water and pose as major pollutants in aquatic environments. In this study, heat-activated persulfate (HPT) and ultraviolet-activated persulfate treatments (UPT) were employed to investigate the influence of sulfate radical (SO4-•)-based advanced oxidation process (SAOPs) on TWP physicochemical properties and to clarify their ecotoxic effects in laboratory-level studies. Results showed that the specific surface areas of TWPs increased after UPT but decreased after HPT. In terms of chemical properties, the increase of oxygen-containing functional groups on the surfaces of TWPs was more evident in UPT than that in HPT. The atrazine (ATZ) adsorption capacity of TWPs after HPT and UPT was increased compared with the untreated TWPs. Atrazine adsorbed by TWPs was easily resolved and released in artificial intestinal fluid (1.89-2.08 mg/g) and artificial gastric fluid (1.60-2.04 mg/g) conditions. Acute toxicity experiments of Photobacterium phosphoreum and SEM-EDS detection results suggested that various heavy metals (e.g., Zn2+, Cu2+) in the TWPs would be released into the water system in SAOPs. ATZ released from TWPs that adsorbed ATZ herbicide, rather than TWPs themselves, had a negative effect on aquatic plant growth (e.g., C. vulgaris). The leaching solution of oxidized TWPs (after HPT and UPT) showed a more significant inhibition effect on the zebrafish survival compared with that of untreated TWPs, which was possibly caused by the generation of oxidation byproducts such as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone.
Collapse
|
12
|
Zhang L, Wang B, Zhang L, Lian L, Cheng X, Yang Z, Jin Y, Chen J, Ren Z, Qi Y, Chen F, Wu D, Wang L. Responses of Chlorella vulgaris to the native bacteria in real wastewater: Improvement in wastewater treatment and lipid production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122737. [PMID: 37838313 DOI: 10.1016/j.envpol.2023.122737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Alga-bacterium interaction can improve wastewater treatment efficiency. To unravel the mystery of the interaction between microalgae and bacteria in wastewater, mono-cultures and co-cultures of Chlorella vulgaris and native bacteria in pretreated biochemical wastewater from landfill leachate were investigated. The results showed that the microalgae selected dominant commensal bacteria, creating a further reduction in species richness for the co-culture, which in turn aids in the dominant commensal bacteria's survival, thereby enhancing algal and bacterial metabolic activity. Strikingly, the lipid productivity of Chlorella in co-culture - namely 41.5 mg/L·d - was 1.4 times higher than in algal monoculture. Additionally, pollutant removal was enhanced in co-cultures, attributed to the bacterial community associated with pollutants' degradation. Furthermore, this study provides an important advance towards observations on the migration and transformation pathways of nutrients and metals, and bridges the gap in algal-bacterial synergistic mechanisms in real wastewater, laying the theoretical foundation for improving wastewater treatment.
Collapse
|
13
|
Wang YR, Wu WL, Cheng X, Gao HX, Li W, Liu ZY. A risk model based on the tumor microenvironment to predict survival and immunotherapy efficacy for ovarian cancer. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2023; 27:11614-11634. [PMID: 38095409 DOI: 10.26355/eurrev_202312_34600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Based on the interactions between immune components in the tumor microenvironment and ovarian cancer (OC) cells, immunotherapies have been demonstrated to be effective in dramatically increasing survival rates. This study aimed to identify landmark genes, develop a prognostic risk model, and explore its relevance to the efficacy of immunotherapy. MATERIALS AND METHODS A risk model was built based on the immune- and stromal-related genes, which were extracted from the OC gene expression data of "The Cancer Genome Atlas" (TCGA) database. Survival analysis and receiver operating characteristic (ROC) analysis were then conducted through the model's risk score pattern, which was established depending on the TCGA training cohort and verified based on the internal TCGA cohort and external "Gene Expression Omnibus" (GEO) datasets. Furthermore, the immune-related characteristics and prognostic values of the risk model were evaluated. RESULTS The prognostic risk model for ovarian cancer demonstrated excellent performance in predicting survival rates, as validated in both the TCGA and GEO databases. The model showed significant associations with 17 functional immune cells, 17 immune checkpoints, PD-1, and several immune pathways, suggesting its potential to enhance the efficacy of immunotherapy in OC. CONCLUSIONS The risk model developed in this study has the potential to serve as a prognostic marker for OC, enabling the development of personalized immunotherapy protocols and providing a theoretical basis for novel combinations of immunotherapeutic approaches.
Collapse
|
14
|
Yang F, Li X, Cheng X. [A case of hypertension secondary to juxtaglomerular cell tumor in a young female patient]. ZHONGHUA XIN XUE GUAN BING ZA ZHI 2023; 51:1194-1196. [PMID: 37963756 DOI: 10.3760/cma.j.cn112148-20230726-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
|
15
|
Zhao J, Yang L, Yang J, Zhang H, Wang H, Liu D, Wang J, Cheng X, Zhu X, Liang H. Overlooked flocs in electrocoagulation-based ultrafiltration systems: A new understanding of the structural interfacial properties. WATER RESEARCH 2023; 246:120675. [PMID: 37827039 DOI: 10.1016/j.watres.2023.120675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
An integrated ferrate-induced electrocoagulation-ultrafiltration (FECUF) process is proposed to cope with the growing demand for water treatment. Although flocs formed during the electrocoagulation (EC) process are useful for contaminant reduction and mitigation of membrane fouling, few studies have been focused on their structures and properties. Herein, we investigated the formation and structural transformations of flocs and their responses to organic matter, as well as the relationships between their interfacial properties and membrane fouling mitigation. It was found that ferrate contributed to the fast formation of flocs during the ferrate-induced electrocoagulation (FEC) process, which accelerated the FECUF process. Physicochemical analyses indicated that the flocs formed in the FEC process were mainly composed of Fe(III)-(hydr)oxides with abundant hydroxyl groups and poor crystallinity, which allowed complexation with NOM. Therefore, the mobilities of the NOM and the soluble coagulant ions were reduced. The responses of flocs to NOM suggested that the period of 0-20 min resulted in the most efficient NOM removal. In addition, two patterns revealed the relationships between the interfacial properties of the small colloidal particles (SCPs) and the membrane filtration performance: i) the decline in the initial flux was closely related to the composition (gel-type substances or metal-(hydr)oxides) of the SCPs and ii) the steady-state flux was influenced by the energy barrier between the SCPs. However, when the SCPs had the same composition, the interfacial properties influenced both the initial flux and the steady-state flux. This study provides an alternative FECUF process for intensive upgrades of centralized water treatment systems.
Collapse
|
16
|
Dong SY, Deng SY, Fan R, Chen JZ, Cheng X, Hao X, Dai WC. [Predictive value of aMAP risk score for early recurrence of small hepatocellular carcinoma after microwave ablation]. ZHONGHUA NEI KE ZA ZHI 2023; 62:1329-1334. [PMID: 37935500 DOI: 10.3760/cma.j.cn112138-20221108-00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Objective: To explore the value of the aMAP risk score (age, male, albumin-bilirubin, and platelets) to predict early recurrence within one year after microwave ablation in patients with small hepatocellular carcinoma. Methods: This was a retrospective study that enrolled 142 patients diagnosed with hepatocellular carcinoma who were treated with microwave ablation in the Department of Hepatology Unit of Nanfang Hospital, Southern Medical University from July 2016 to July 2021. The cohort enrolled 121 male and 21 female patients, including 110 patients that were <60 years old. All the patients were followed-up after microwave ablation to evaluate residual tumor and recurrence of tumor by computed tomography or magnetic resonance imaging. The observation indices mainly included general data and imaging data of patients. Using the X-tile tools, patients were divided into two groups: a high aMAP score group and a low aMAP score group. Multivariate Cox regression analysis was conducted for comparison of independent risk factors. Results: Multivariate Cox regression showed that high aMAP score, maximum tumor diameter >20 mm, and high AFP were the independent risk factors of early recurrence (all P<0.05). Kaplan-Meier survival curves showed that the median recurrence-free survival was 25.5 months in the low aMAP score group and 6.1 months in the high aMAP score group (P=0.001). Conclusions: The aMAP score could predict the early recurrence within 1 year of small hepatocellular carcinoma after microwave ablation. Patients with high aMAP score should undergo rigorous postoperative follow-up evaluations..
Collapse
|
17
|
Wang J, Cheng X, Li P, Fan Q, Wu D, Liang H. Activation of peroxymonosulfate with biochar-supported CuO (CuO@BC) for natural organic matter removal and membrane fouling control. CHEMOSPHERE 2023; 341:140044. [PMID: 37660795 DOI: 10.1016/j.chemosphere.2023.140044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
To achieve excellent activation efficiency of peroxymonosulfate (PMS), this work prepared a biochar-supported CuO (CuO@BC) catalyst, and the CuO@BC/PMS system was proposed to remove the organic matter in natural surface water and reduce the fouling of ultrafiltration membrane. The successful synthesis of CuO@BC was demonstrated through characterization of its microscopic morphology and chemical composition by various techniques. The prepared heterogeneous catalyst showed a strong catalytic effect on PMS, which significantly removed natural organic matter through the production of active substances (•OH, SO4•-, O2•- and 1O2) from water. With respective degradation rates of 39.4% and 59.4%, the concentrations of DOC and UV254 dropped to 1.702 mg/L and 0.026 cm-1, respectively. Additionally, the CuO@BC/PMS oxidation displayed potent oxidation capabilities for contaminants and fluorescent organics with various molecular weights. The system effectively decreased the amount of organic matter that caused reversible and irreversible fouling of polyethersulfone membranes in natural water by 85.8% and 56.3%, respectively. The main fouling mechanisms changed as well, with standard and complete blocking dominating the entire filtration process. The results demonstrated the capacity of the CuO@BC/PMS system to remove contaminants in natural water and mitigate membrane fouling.
Collapse
|
18
|
Zhao C, Liu B, Zhu T, Zhu X, Cheng X. Mechanistic insight into single-atom Fe loaded catalytic membrane with peracetic acid and visible light activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132506. [PMID: 37696210 DOI: 10.1016/j.jhazmat.2023.132506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Advanced oxidation is an effective method for removing hard-to-degrade organic pollutants from water. In this paper, a novel structure of a single atom Fe anchored g-C3N4 (FeCN) membrane was proposed to remove pollutants from water by coupling membrane technology with photocatalytic and peroxyacetic acid oxidation. The presence of zero-dimensional Fe atoms in FeCN membranes allows for the removal of acetaminophen (APAP) in mobile membrane filtration systems without compromising permeation performance by simultaneously possessing visible photocatalytic capability and peroxyacetic acid (PAA) activation. Existence of inter-membrane domain-limiting conditions led to 100 % degradation of APAP within 10.5 ms, which is 5 orders of magnitude faster than conventional catalytic systems. Notably, photo-generated electrons/holes generated by light and HClO generated by Cl- promote the conversion of Fe(V) and the removal of pollutants during the catalytic process. The spatial separation ability of the membrane catalytic layer surface mitigates the catalyst's passivation by macromolecular organics. Furthermore, surface photocatalysis of the membrane and interlayer catalysis generated by PAA mitigate the surface and interlayer pollutants of the membrane, respectively. This study explores a novel approach for the development of highly efficient atom-catalyzed membrane systems with multiple purposes.
Collapse
|
19
|
Yang T, An L, Zeng G, Mai J, Li Y, Lian J, Zhang H, Li J, Cheng X, Jia J, Liu M, Ma J. Enhanced hydroxyl radical generation for micropollutant degradation in the In 2O 3/Vis-LED process through the addition of periodate. WATER RESEARCH 2023; 243:120401. [PMID: 37536249 DOI: 10.1016/j.watres.2023.120401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Periodate (PI) as an oxidant has been extensively studied for organic foulants removal in advanced oxidation processes. Here PI was introduced into In2O3/Vis-LED process to enhance the formation of ·OH for promoting the degradation of organic foulants. Results showed that the addition of PI would significantly promote the removal of sulfamethoxazole (SMX) in the In2O3/Vis-LED process (from 9.26% to 100%), and ·OH was proved to be the dominant species in the system. Besides, the process exhibited non-selectivity in the removal of different organic foulants. Comparatively, various oxidants (e.g., peroxymonosulfate, peroxydisulfate, and hydrogen peroxide) did not markedly promote the removal of SMX in the In2O3/Vis-LED process. Electrochemical analyses demonstrated that PI could effectively receive photoelectrons, thus inhibiting the recombination of photogenerated electron-hole (e-/h+) pairs. The holes then oxidized the adsorbed H2O to generate ·OH, and the PI converted to iodate at the same time. Additionally, the removal rate of SMX reduced from 100% to 17.2% as Vis-LED wavelengths increased from 440 to 560 nm, because of the low energy of photons produced at longer wavelengths. Notably, the species of PI do not affect its ability to accept electrons, resulting in the degradation efficiency of SMX irrespective of pH (4.0-10.0). The coexistence of inorganic cations and anions (such as Cl-, CO32-/HCO3-, SO42-, Ca2+, and Mg2+) also had an insignificant effect on SMX degradation. Furthermore, the process also showed excellent degradation potential in real water. The proposed strategy provides a new insight for visible light-catalyzed activation of PI and guidance to explore green catalytic processes for high-efficiency removal of various organic foulants.
Collapse
|
20
|
Li SY, Hong L, Liu XY, Zhang YR, Ling YF, Cheng X. [The association between cortical venous outflow and futile recanalization in patients with acute ischemic stroke due to large vessel occlusion in the anterior circulation]. ZHONGHUA YI XUE ZA ZHI 2023; 103:2210-2217. [PMID: 37544756 DOI: 10.3760/cma.j.cn112137-20221230-02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Objective: To explore the association of baseline venous outflow (VO) profile with futile recanalization in patients with acute ischemic stroke due to large vessel occlusion in the anterior circulation. Methods: The clinical and imaging data of patients presented with large vessel occlusion in the anterior circulation and underwent emergency endovascular treatment at Huashan Hospital from March 2015 to December 2021 were retrospectively included in the study. All patients were assessed by the National Institutes of Health Stroke Scale (NIHSS) at baseline.Baseline VO profile was determined by a 0-6 semi-quantitative scoring system which assessed opacification of the ipsilateral superficial middle cerebral vein, vein of Labbé and vein of Trolard on single-phase CT angiography (CTA) images. A 90-day telephone follow-up was performed and functional outcome was evaluated by 90 d modified Rankin scale (mRS). Successful recanalization of the occluded artery, defined as final modified Thrombolysis in Cerebral Infarction scale (mTICI) 2b-3, was considered to be futile if patients failed to achieve functional independence (90 d mRS 0-2). Univariate analysis and receiver operating characteristic (ROC) curve analysis were used to explore the optimal cutoff predicting functional indendence. The associations between cortical VO in ischemic area and futile recanalization were evaluated using binary logistic regression analysis and backward linear regression based on Akaike information criterion (AIC). Results: A total of 150 patients met the inclusion criteria, with 92 males (61.3%) and 58 females (38.7%). The median age [M(Q1, Q3)]was 71 (61, 78) years and the median baseline National Institute of Health Stroke Scale (NIHSS) score [M(Q1, Q3)]was 15 (11, 18). Univariate logistic regression analysis showed that baseline VO was associated with 90-day functional independence (OR=1.587, 95%CI: 1.185-2.1873). After classifying VO into two categories based on the receiver operating characteristic (ROC) curve, VO≥4 showed an independent association with functional independence (OR=5.133, 95%CI: 1.530-9.361) after adjusting for age, baseline glucose, NIHSS score, baseline infarct core volume, modified Tan (mTan) score, hypoperfusion intensity ratio (HIR), etiological classification, recanalization, presence of any hemorrhagic transformation and final infarct volume. Futile recanalization was observed in 44 (48.4%) of the 91 patients who achieved successful recanalization. Stepwise logistic regression revealed that VO≥4 was an independent protective factor for futile recanalization (OR=0.234, 95%CI: 0.054-0.878). Moreover, in patients with mTICI 2c-3, VO≥4 showed a stronger association with futile recanalization (OR=0.018, 95%CI: 0-0.255). Conclusion: A favorable VO profile at onset protects against futile recanalization in patients with large vessel occlusion in the anterior circulation, and provides a simple and feasible auxiliary method for predicting the prognosis of endovascular therapy in such patients.
Collapse
|
21
|
Song W, Gao Z, Tan F, Cheng X, Yang T, Wu D, Yang J, Liang H. Calcium sulfite oxidation activated by ferrous iron integrated with membrane filtration for removal of typical algal contaminants. CHEMOSPHERE 2023; 333:138956. [PMID: 37209855 DOI: 10.1016/j.chemosphere.2023.138956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Oxidation treatment of algae-laden water may cause cells rupture and emission of intracellular organics, thus restricting its further popularization. As a moderate oxidant, calcium sulfite could be slowly released in the liquid phase, thus exhibiting a potential to maintain the cells integrity. To this end, calcium sulfite oxidation activated by ferrous iron was proposed integrated with ultrafiltration (UF) for removal of Microcystis aeruginosa, Chlorella vulgaris and Scenedesmus quadricauda. The organic pollutants were significantly eliminated, and the repulsion between algal cells was obviously weakened. Through fluorescent components extraction and molecular weights distribution analyses, the degradation of fluorescent substances and the generation of micromolecular organics were verified. Moreover, the algal cells were dramatically agglomerated and formed larger flocs under the premise of maintaining high cell integrity. The terminal normalized flux was ascended from 0.048 to 0.072 to 0.711-0.956, and the fouling resistances were extraordinarily decreased. Due to the distinctive spiny structure and minimal electrostatic repulsion, Scenedesmus quadricauda was easier to form flocs, and its fouling was more readily mitigated. The fouling mechanism was remarkably altered through postponing the formation of cake filtration. The membrane interface characteristics including microstructures and functional groups firmly proved the fouling control efficiency. The reactive oxygen species (i.e., SO4•- and 1O2) generated through the principal reactions and Fe-Ca composite flocs played dominant roles in alleviating membrane fouling. Overall, the proposed pretreatment exhibits a brilliant application potential for enhancing UF in algal removal.
Collapse
|
22
|
Song W, Gao Z, Hou C, Cheng X, Lian J, Yang T, Zhou Z, Wu D, Liang H. Improving ultrafiltration of algae-laden water with chitosan quaternary ammonium salt enhanced by sodium percarbonate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 888:164235. [PMID: 37196939 DOI: 10.1016/j.scitotenv.2023.164235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Ultrafiltration (UF) is extensively used for algae removal because of its ability to retain algal cells with high efficiency, but it still faces the problem of membrane fouling and low retention capacity of dissolved organics. Hence, a strategy of coagulation with chitosan quaternary ammonium salt (HTCC) enhanced by sodium percarbonate (SPC) pre-oxidation was proposed to improve the UF performance. The fouling resistances were calculated by a resistance-in-series model based on Darcy's formula, and the membrane fouling mechanism was evaluated using a pore plugging-cake filtration model. The effect of SPC-HTCC treatment on the properties of algal foulants was explored, and the result showed that the water quality was improved with the maximum removal rates of 78.8 %, 52.4 % and 79.5 % for algal cells, dissolved organic carbon and turbidity, respectively. The SPC could achieve a mild oxidation effect that degraded the electronegative organics attached to algal cells without destroying the cell integrity, making the algal pollutants easier to agglomerate through subsequent HTCC coagulation by forming larger flocs. In terms of membrane filtration, the terminal normalized flux was increased from 0.25 to 0.71, with the reversible and irreversible resistances reduced by 90.8 % and 40.2 %, individually. The synergistic treatment reduced the accumulation of algal cells and algae-derived organics on the membrane surface as inferred from the interface fouling characteristics. The interfacial free energy analysis showed that the synergistic treatment reduced the adhesion of contaminants to the membrane surface, as well as the attraction among pollutants. Overall, the proposed process has high application prospects for algae-laden water purification.
Collapse
|
23
|
Cheng X, Huang L. The Mechanism of the Anti-Cardiac Hypertrophy Effect of Glycyrrhizic Acid Is Related to Reducing STIM1-Dependent Store-Operated Calcium Entry. Bull Exp Biol Med 2023; 174:701-706. [PMID: 37162628 DOI: 10.1007/s10517-023-05774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 05/11/2023]
Abstract
We explored the anti-cardiac hypertrophy mechanism of glycyrrhizic acid from the perspective of calcium regulation under pathological conditions. For this purpose, we used a rat model of myocardial hypertrophy induced by pressure overload. The effect of glycyrrhizic acid on BP was measured non-invasively with a sphygmomanometer and recorded in PC. In rats with modeled cardiac hypertrophy, the effect of GA on expression of type 1 matrix interaction molecules was determined in horizontal tissues and cultured cardiomyocytes of the left ventricle. The laser confocal microscopy and calcium ion probe Fluo-4 AM were used to assess the effect of glycyrrhizic acid on stromal interaction molecule 1 (STIM1)-dependent store-operated calcium entry in cultured cardiomyocytes derived from the hypertrophic myocardium. Glycyrrhizic acid exerted the anti-hypertrophic effect in rats with hypertrophic myocardium by down-regulating STIM1 protein expression and reducing the intensity of STIM1-dependent store-operated calcium entry.
Collapse
|
24
|
Maimaitijiang W, Zhai X, Ayixiamu K, Shi G, Wang S, Cheng X, Kaderya E, Zhao J. [Visceral leishmaniasis in Xinjiang Uygur Autonomous Region during the COVID-19 pandemic: a case report]. ZHONGGUO XUE XI CHONG BING FANG ZHI ZA ZHI = CHINESE JOURNAL OF SCHISTOSOMIASIS CONTROL 2023; 35:213-216. [PMID: 37253573 DOI: 10.16250/j.32.1374.2022209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVE To perform an epidemiological investigation on a case of visceral leishmaniasis reported from Shule County, Kashi Prefecture, Xinjiang Uygur Autonomous Region in 2021, so as to provide insights into differential diagnosis of visceral leishmaniasis during the COVID-19 pandemic. METHODS The epidemiological history of this case was collected, and the case was diagnosed for Leishmania infection with the immunochromatographic (rK39) strip test, bone marrow smear microscopy and PCR assay. RESULTS The patient had typical clinical symptoms of leishmaniasis, including irregular fever, hepatosplenomeg- aly, low serum albumin and elevated globulin. Bone marrow smear microscopy identified L. donovani amastigotes, and both rK39 strip test and PCR assay were positive, while the case was tested negative for SARS-CoV-2. COVID-19 was therefore excluded and visceral leishmaniasis was diagnosed. Standard full-dose treatment with sodium stibogluconate was given, and no Leishmania was found on blood smears during the reexamination. No recurrence was found during the followup after discharge for hospital. CONCLUSIONS During the COVID-19 pandemic, it is recommended to increase the perception of differential diagnosis of visceral leishmaniasis among first-contact doctors, and reinforce the capability of differential diagnosis and health education of visceral leishmaniasis among medical and healthcare institutions at all levels, to prevent missed diagnosis and misdiagnosis of visceral leishmaniasis.
Collapse
|
25
|
Cheng X, Priest ER, Li HT, Chen J, Aulanier G, Chitta LP, Wang YL, Peter H, Zhu XS, Xing C, Ding MD, Solanki SK, Berghmans D, Teriaca L, Aznar Cuadrado R, Zhukov AN, Guo Y, Long D, Harra L, Smith PJ, Rodriguez L, Verbeeck C, Barczynski K, Parenti S. Author Correction: Ultra-high-resolution observations of persistent null-point reconnection in the solar corona. Nat Commun 2023; 14:2372. [PMID: 37185588 PMCID: PMC10130028 DOI: 10.1038/s41467-023-38149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
|