1
|
Shin YC, Than N, Park SJ, Kim HJ. Bioengineered human gut-on-a-chip for advancing non-clinical pharmaco-toxicology. Expert Opin Drug Metab Toxicol 2024; 20:593-606. [PMID: 38849312 DOI: 10.1080/17425255.2024.2365254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION There is a growing need for alternative models to advance current non-clinical experimental models because they often fail to accurately predict drug responses in human clinical trials. Human organ-on-a-chip models have emerged as promising approaches for advancing the predictability of drug behaviors and responses. AREAS COVERED We summarize up-to-date human gut-on-a-chip models designed to demonstrate intricate interactions involving the host, microbiome, and pharmaceutical compounds since these models have been reported a decade ago. This overview covers recent advances in gut-on-a-chip models as a bridge technology between non-clinical and clinical assessments of drug toxicity and metabolism. We highlight the promising potential of gut-on-a-chip platforms, offering a reliable and valid framework for investigating reciprocal crosstalk between the host, gut microbiome, and drug compounds. EXPERT OPINION Gut-on-a-chip platforms can attract multiple end users as predictive, human-relevant, and non-clinical model. Notably, gut-on-a-chip platforms provide a unique opportunity to recreate a human intestinal microenvironment, including dynamic bowel movement, luminal flow, oxygen gradient, host-microbiome interactions, and disease-specific manipulations restricted in animal and in vitro cell culture models. Additionally, given the profound impact of the gut microbiome on pharmacological bioprocess, it is critical to leverage breakthroughs of gut-on-a-chip technology to address knowledge gaps and drive innovations in predictive drug toxicology and metabolism.
Collapse
|
2
|
Kim J, Bae E, Park H, Park HJ, Shah SSA, Lee K, Lee J, Oh HS, Park PK, Shin YC, Moon H, Naddeo V, Choo KH. Membrane reciprocation and quorum quenching: An innovative combination for fouling control and energy saving in membrane bioreactors. WATER RESEARCH 2024; 250:121035. [PMID: 38154339 DOI: 10.1016/j.watres.2023.121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Membrane bioreactors (MBRs) play a crucial role in wastewater treatment, but they face considerable challenges due to fouling. To tackle this issue, innovative strategies are needed. This study investigated the effectiveness of membrane reciprocation and quorum quenching (QQ) to control fouling in MBRs. The study compared MBRs using membrane reciprocation (30 rpm) and QQ (injecting media containing 100 or 200 mg/L BH4) with conventional MBRs employing different air-scouring intensities. The results demonstrated that combining membrane reciprocation (30 rpm) with QQ (200 mg/L BH4) significantly extended the service time of MBRs, making it approximately six times longer than conventional methods. Moreover, this approach reduced physically reversible resistance. The reduction in signal molecules related to biofouling due to QQ showcased its critical role in controlling biofouling, even under high shear caused by membrane reciprocation. However, the impact of QQ on microbial community structure appeared relatively insignificant when compared to factors such as operation time, aeration intensity, and membrane reciprocation. By combining membrane reciprocation and QQ, the study achieved a remarkable 81 % energy saving compared to extensive aeration (103 s-1 in velocity gradient), in addition to the extended service time. Importantly, this combined antifouling approach did not negatively affect microbial characteristics and wastewater treatment, emphasizing its effectiveness in MBRs. Overall, the findings of this study offer valuable insights for developing synergistic fouling control strategies in MBRs, significantly improving the energy efficiency of the wastewater treatment process.
Collapse
|
3
|
Park R, Kang MS, Heo G, Shin YC, Han DW, Hong SW. Regulated Behavior in Living Cells with Highly Aligned Configurations on Nanowrinkled Graphene Oxide Substrates: Deep Learning Based on Interplay of Cellular Contact Guidance. ACS NANO 2024; 18:1325-1344. [PMID: 38099607 DOI: 10.1021/acsnano.2c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Micro-/nanotopographical cues have emerged as a practical and promising strategy for controlling cell fate and reprogramming, which play a key role as biophysical regulators in diverse cellular processes and behaviors. Extracellular biophysical factors can trigger intracellular physiological signaling via mechanotransduction and promote cellular responses such as cell adhesion, migration, proliferation, gene/protein expression, and differentiation. Here, we engineered a highly ordered nanowrinkled graphene oxide (GO) surface via the mechanical deformation of an ultrathin GO film on an elastomeric substrate to observe specific cellular responses based on surface-mediated topographical cues. The ultrathin GO film on the uniaxially prestrained elastomeric substrate through self-assembly and subsequent compressive force produced GO nanowrinkles with periodic amplitude. To examine the acute cellular behaviors on the GO-based cell interface with nanostructured arrays of wrinkles, we cultured L929 fibroblasts and HT22 hippocampal neuronal cells. As a result, our developed cell-culture substrate obviously provided a directional guidance effect. In addition, based on the observed results, we adapted a deep learning (DL)-based data processing technique to precisely interpret the cell behaviors on the nanowrinkled GO surfaces. According to the learning/transfer learning protocol of the DL network, we detected cell boundaries, elongation, and orientation and quantitatively evaluated cell velocity, traveling distance, displacement, and orientation. The presented experimental results have intriguing implications such that the nanotopographical microenvironment could engineer the living cells' morphological polarization to assemble them into useful tissue chips consisting of multiple cell types.
Collapse
|
4
|
Kim D, Lee YJ, Jang BH, Park JS, Park S, D'Adamo CR, Shin YC, Ko SG. Analysis of factors associated with the use of Korean medicine after spinal surgery using a nationwide database in Korea. Sci Rep 2023; 13:20177. [PMID: 37978330 PMCID: PMC10656548 DOI: 10.1038/s41598-023-47454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Many patients in Korea use Korean Medicine (KM) after spine surgery, but related research is lacking. Therefore, this retrospective cohort study aimed to analyze factors affecting the use and costs of KM using nationally representative data from the National Health Insurance Service-National Sample Cohort, South Korea. Patients who underwent spinal surgery for spinal diseases from 2011 to 2014 were followed up for 5 years, and their medical care was described. The association between patient and spinal surgery characteristics and the use of KM was analyzed. A two-part model was used to analyze factors affecting the use of KM in patients undergoing spinal surgery. Of 11,802 patients who underwent spinal surgery, 11,367 who met the inclusion criteria were included. Overall, 55.5% were female, 32.3% were aged ≥ 70 years, and 50.2% received KM treatment during the follow-up period. Open discectomy was the most common surgical procedure performed (58.6%), and 40.2% of surgeries were performed because of lumbar disc disorder. Female sex, older age, high Charlson Comorbidity Index score, and use of KM before surgery were associated with increased KM use and expenditure after surgery. In conclusion, patient characteristics, rather than surgical characteristics, appeared to be more strongly associated with the use of KM after surgery, particularly prior experience with KM use. This study is significant in that it analyzed the entire spine surgery to provide a comprehensive view of the use of KM after spine surgery and analyzed the impact of various factors related patients and surgical characteristics on KM use. The results of this study may be useful to patients with spinal diseases, clinicians, and policymakers.
Collapse
|
5
|
Kang MS, Park R, Jo HJ, Shin YC, Kim CS, Hyon SH, Hong SW, Oh J, Han DW. Spontaneous Osteogenic Differentiation of Human Mesenchymal Stem Cells by Tuna-Bone-Derived Hydroxyapatite Composites with Green Tea Polyphenol-Reduced Graphene Oxide. Cells 2023; 12:1448. [PMID: 37296569 PMCID: PMC10252354 DOI: 10.3390/cells12111448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, bone tissue engineering (BTE) has made significant progress in promoting the direct and functional connection between bone and graft, including osseointegration and osteoconduction, to facilitate the healing of damaged bone tissues. Herein, we introduce a new, environmentally friendly, and cost-effective method for synthesizing reduced graphene oxide (rGO) and hydroxyapatite (HAp). The method uses epigallocatechin-3-O-gallate (EGCG) as a reducing agent to synthesize rGO (E-rGO), and HAp powder is obtained from Atlantic bluefin tuna (Thunnus thynnus). The physicochemical analysis indicated that the E-rGO/HAp composites had exceptional properties for use as BTE scaffolds, as well as high purity. Moreover, we discovered that E-rGO/HAp composites facilitated not only the proliferation, but also early and late osteogenic differentiation of human mesenchymal stem cells (hMSCs). Our work suggests that E-rGO/HAp composites may play a significant role in promoting the spontaneous osteogenic differentiation of hMSCs, and we envision that E-rGO/HAp composites could serve as promising candidates for BTE scaffolds, stem-cell differentiation stimulators, and implantable device components because of their biocompatible and bioactive properties. Overall, we suggest a new approach for developing cost-effective and environmentally friendly E-rGO/HAp composite materials for BTE application.
Collapse
|
6
|
Ku JM, Kim MJ, Choi YJ, Lee SY, Im JY, Jo YK, Yoon S, Kim JH, Cha JW, Shin YC, Ko SG. JI017 Induces Cell Autophagy and Apoptosis via Elevated Levels of Reactive Oxygen Species in Human Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24087528. [PMID: 37108692 PMCID: PMC10145189 DOI: 10.3390/ijms24087528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is one of the most common malignant tumors and a leading cause of cancer-related death in the worldwide. Various anticancer drugs, such as cisplatin and pemetrexed, have been developed for lung cancer treatment but due their drug resistance and side effects, novel treatments need to be developed. In this study, the efficacy of the natural drug JI017, which is known to have few side effects, was tested in lung cancer cells. JI017 inhibited A549, H460, and H1299 cell proliferation. JI017 induced apoptosis, regulated apoptotic molecules, and inhibited colony formation. Additionally, JI017 increased intracellular ROS generation. JI017 downregulated PI3K, AKT, and mTOR expression. JI017 increased the cytosolic accumulation of LC3. We found that JI017 promoted apoptosis through ROS-induced autophagy. Additionally, the xenograft tumor size was smaller in JI017-treated mice. We found that JI017 treatment increased MDA concentrations, decreased Ki-67 protein levels, and increased cleaved caspase-3 and LC3 levels in vivo. JI017 decreased cell proliferation and increased apoptosis by inducing autophagy signaling in H460 and H1299 lung cancer cells. Targeting JI017 and autophagy signaling could be useful in lung cancer treatment.
Collapse
|
7
|
Min S, Than N, Shin YC, Hu G, Shin W, Ambrosini YM, Kim HJ. Live probiotic bacteria administered in a pathomimetic Leaky Gut Chip ameliorate impaired epithelial barrier and mucosal inflammation. Sci Rep 2022; 12:22641. [PMID: 36587177 PMCID: PMC9805460 DOI: 10.1038/s41598-022-27300-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
Here, we report a pathomimetic Leaky Gut Chip that recapitulates increased epithelial permeability and intestinal inflammation to assess probiotic intervention as live biotherapeutics. We leveraged a mechanodynamic human gut-on-a-chip (Gut Chip) that recreates three-dimensional epithelial layers in a controlled oxygen gradient and biomechanical cues, where the addition of a cocktail of pro-inflammatory cytokines, TNF-α and IL-1β, reproducibly induced impaired epithelial barrier followed by intestinal inflammation. This inflamed leaky epithelium was not recovered for up to 3 days, although the cytokine treatment ceased. However, when probiotic bacteria, either Lactobacillus rhamnosus GG or a multi-species mixture (VSL#3), were respectively administered on the leaky epithelium, bacterial cells colonized mucosal surface and significantly improved barrier function, enhanced the localization of tight junction proteins such as ZO-1 and occludin, and elevated mucus production. In addition, inflammatory markers, including p65, pSTAT3, and MYD88, that were highly expressed in the germ-free control were significantly reduced when probiotic bacteria were co-cultured in a Leaky Gut Chip. Probiotic treatment also significantly reduced the production of secretory pro-inflammatory cytokines. Hence, our pathomimetic Leaky Gut Chip may offer a translational strategy to dissect the therapeutic mechanism of live biotherapeutic products and validate their clinical potential by incorporating patient-derived organoids.
Collapse
|
8
|
Youn BY, Moon S, Mok K, Cheon C, Ko Y, Park S, Jang BH, Shin YC, Ko SG. Use of traditional, complementary and alternative medicine in nine countries: A cross-sectional multinational survey. Complement Ther Med 2022; 71:102889. [PMID: 36162719 DOI: 10.1016/j.ctim.2022.102889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Traditional, complementary, and alternative medicine (TC&AM) play an exceptional role in health care around the world as many patients has sought a holistic approach. SETTING In this study, a multinational survey was developed and administered to obtain experience, attitude, and promotion information with regard to the international use of TC&AM among nine countries: Germany, United States, Japan, China, Malaysia, Vietnam, Russia, Kazakhstan, and United Arab Emirates (UAE). The survey was administered via online to members of SurveyMonkey Audience, a proprietary panel of respondents who were recruited from a diverse population worldwide. RESULTS A total of 1071 participants has completed the survey. The participants were in favor of the treatments and therapies as well as expressed positive attitudes and also have used herbal medicine treatment more than acupuncture therapy and also used the modalities to promote metabolism rather than treating musculoskeletal diseases. Moreover, participants mentioned that TC&AM should be applied for treating and managing infectious diseases, such as COVID-19. Additionally, participants recommended using Facebook channel to promote its treatments and therapies. CONCLUSION Based on the results, this study provides initial insights on TC&AM that may influence the non-users globally and perhaps inspire a need for further research including more countries in different continents.
Collapse
|
9
|
Yoon HJ, Lee S, Kim TY, Yu SE, Kim HS, Chung YS, Chung S, Park S, Shin YC, Wang EK, Noh J, Kim HJ, Ku CR, Koh H, Kim CS, Park JS, Shin YM, Sung HJ. Sprayable nanomicelle hydrogels and inflammatory bowel disease patient cell chips for development of intestinal lesion-specific therapy. Bioact Mater 2022; 18:433-445. [PMID: 35415304 PMCID: PMC8971598 DOI: 10.1016/j.bioactmat.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022] Open
Abstract
All-in-one treatments represent a paradigm shift in future medicine. For example, inflammatory bowel disease (IBD) is mainly diagnosed by endoscopy, which could be applied for not only on-site monitoring but also the intestinal lesion-targeted spray of injectable hydrogels. Furthermore, molecular conjugation to the hydrogels would program both lesion-specific adhesion and drug-free therapy. This study validated this concept of all-in-one treatment by first utilizing a well-known injectable hydrogel that underwent efficient solution-to-gel transition and nanomicelle formation as a translatable component. These properties enabled spraying of the hydrogel onto the intestinal walls during endoscopy. Next, peptide conjugation to the hydrogel guided endoscopic monitoring of IBD progress upon adhesive gelation with subsequent moisturization of inflammatory lesions, specifically by nanomicelles. The peptide was designed to mimic the major component that mediates intestinal interaction with Bacillus subtilis flagellin during IBD initiation. Hence, the peptide-guided efficient adhesion of the hydrogel nanomicelles onto Toll-like receptor 5 (TLR5) as the main target of flagellin binding and Notch-1. The peptide binding potently suppressed inflammatory signaling without drug loading, where TLR5 and Notch-1 operated collaboratively through downstream actions of tumor necrosis factor-alpha. The results were produced using a human colorectal cell line, clinical IBD patient cells, gut-on-a-chip, a mouse IBD model, and pig experiments to validate the translational utility. Injectable nanomicelle hydrogel for all-in-one treatment of intestinal inflammation. Spraying of the hydrogel onto the intestinal walls during endoscopy. Peptide-guided detection and moisturization of inflammatory lesions.
Collapse
|
10
|
Kim WH, Shin YC, Lee SH, Kang MS, Lee MS, Lee JH, Lee JH, Han DW, Kim B. Dental implants with electrochemical nanopattern formation to increase osseointegration. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Shin YC, Wu A, Min S, Kim D, Shin W, Eckhardt SG, Fleming RYD, Kim HJ. Abstract 3862: Microbial immunomodulation for enhancing immunotherapeutic efficacy in a patient-specific colorectal cancer chip. Cancer Res 2022. [DOI: 10.1158/1538-7445.am2022-3862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Immune checkpoint inhibitors (ICI) targeting PD-1, PD-L1, or CTLA-4 have shown remarkable therapeutic outcomes in various cancers. However, the therapeutic efficacy of ICI-based immunotherapy in microsatellite stable (MSS) colorectal cancer (CRC) has been extremely limited. Recent studies strikingly revealed that the human gut microbiome controls the efficacy of immune checkpoint blockades. Yet, the effect of the gut microbiome on reinforcing the ICI efficacy in MSS tumors in CRC is unknown. Here, we suggest a microengineered CRC Chip that recapitulates the tumor microenvironment of individual CRC patients by introducing biopsy-derived colonic organoid epithelium. We have built a three-dimensional (3D) lumen-capillary interface under peristalsis-like motions and flow in an oxygen-controlled microenvironment. We leverage this pathomimetic CRC Chip to recapitulate the patient-specific tumor-microbiome-immune axis to demonstrate microbial immunomodulation on the tumor cells and cytotoxic tumor immunity. We co-cultured various human intestinal bacteria in a CRC Chip to assess the immunomodulatory contribution to the tumor epithelium. We found that living Bifidobacterium sp. significantly reduces the PD-L1 on the tumor surface, followed by elevated anti-tumor activity after CD8 T cell-mediated cytotoxic interactions. We envision that our CRC Chip model can potentially reduce the knowledge gap between the bench and bedside. Furthermore, our innovative CRC Chip model may potentially offer a platform to validate the “Druggable microbiome” and the utility of the patient’s avatar model for Precision Medicine.
Citation Format: Yong Cheol Shin, Alexander Wu, Soyoun Min, Daesung Kim, Woojung Shin, S. Gail Eckhardt, R. Y. Declan Fleming, Hyun Jung Kim. Microbial immunomodulation for enhancing immunotherapeutic efficacy in a patient-specific colorectal cancer chip [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3862.
Collapse
|
12
|
Kim MJ, Ku JM, Choi YJ, Lee SY, Hong SH, Kim HI, Shin YC, Ko SG. Reduced HIF-1α Stability Induced by 6-Gingerol Inhibits Lung Cancer Growth through the Induction of Cell Death. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072106. [PMID: 35408505 PMCID: PMC9000891 DOI: 10.3390/molecules27072106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer (LC) is the leading global cause of cancer-related death, and metastasis is a great challenge in LC therapy. Additionally, solid cancer, including lung, prostate, and colon cancer, are characterized by hypoxia. A low-oxygen state is facilitated by the oncogene pathway, which correlates with a poor cancer prognosis. Thus, we need to understand the related mechanisms in solid tumors to improve and develop new anticancer strategies. The experiments herein describe an anticancer mechanism in which heat shock protein 90 (HSP90) stabilizes HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate the efficacy of 6-gingerol and the molecular mechanism by which 6-gingerol inhibits LC metastasis in different oxygen environments. Our results showed that cell proliferation was inhibited after 6-gingerol treatment. Additionally, HIF-1α, a transcriptional regulator, was found to be recruited to the hypoxia response element (HRE) of target genes to induce the transcription of a series of target genes, including MMP-9, vimentin and snail. Interestingly, we found that 6-gingerol treatment suppressed activation of the transcription factor HIF-1α by downregulating HSP90 under both normoxic and hypoxic conditions. Furthermore, an experiment in an in vivo xenograft model revealed decreased tumor growth after 6-gingerol treatment. Both in vitro and in vivo analyses showed the inhibition of metastasis through HIF-1α/HSP90 after 6-gingerol treatment. In summary, our study demonstrates that 6-gingerol suppresses proliferation and blocks the nuclear translocation of HIF-1α and activation of the EMT pathway. These data suggest that 6-gingerol is a candidate antimetastatic treatment for LC.
Collapse
|
13
|
Shin YC, Bae JH, Lee JH, Raja IS, Kang MS, Kim B, Hong SW, Huh JB, Han DW. Enhanced osseointegration of dental implants with reduced graphene oxide coating. Biomater Res 2022; 26:11. [PMID: 35313996 PMCID: PMC8935794 DOI: 10.1186/s40824-022-00257-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/24/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The implants of pure titanium (Ti) and its alloys can lead to implant failure because of their poor interaction with bone-associated cells during bone regeneration. Surface modification over implants has achieved successful implants for enhanced osseointegration. Herein, we report a robust strategy to implement bioactive surface modification for implant interface enabled by the combinatorial system of reduced graphene oxide (rGO)-coated sandblasted, large-grit, and acid-etched (SLA) Ti to impart benefits to the implant. METHODS We prepared SLA Ti (ST) implants with different surface modifications [i.e., rGO and recombinant human bone morphogenetic protein-2 (rhBMP-2)] and investigated their dental tissue regenerating ability in animal models. We performed comparative studies in surface property, in vitro cellular behaviors, and in vivo osseointegration activity among different groups, including ST (control), rhBMP-2-immobilized ST (BI-ST), rhBMP-2-treated ST (BT-ST), and rGO-coated ST (R-ST). RESULTS Spectroscopic, diffractometric, and microscopic analyses confirmed that rGO was coated well around the surfaces of Ti discs (for cell study) and implant fixtures (for animal study). Furthermore, in vitro and in vivo studies revealed that the R-ST group showed significantly better effects in cell attachment and proliferation, alkaline phosphatase activity, matrix mineralization, expression of osteogenesis-related genes and protein, and osseointegration than the control (ST), BI-ST, and BT-ST groups. CONCLUSION Hence, we suggest that the rGO-coated Ti can be a promising candidate for the application to dental or even orthopedic implants due to its ability to accelerate the healing rate with the high potential of osseointegration.
Collapse
|
14
|
Sood A, Sievers C, Shin YC, Chen V, Chen S, Smithe KKH, Chatterjee S, Donadio D, Goodson KE, Pop E. Engineering Thermal Transport across Layered Graphene-MoS 2 Superlattices. ACS NANO 2021; 15:19503-19512. [PMID: 34813267 DOI: 10.1021/acsnano.1c06299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Layering two-dimensional van der Waals materials provides a high degree of control over atomic placement, which could enable tailoring of vibrational spectra and heat flow at the sub-nanometer scale. Here, using spatially resolved ultrafast thermoreflectance and spectroscopy, we uncover the design rules governing cross-plane heat transport in superlattices assembled from monolayers of graphene (G) and MoS2 (M). Using a combinatorial experimental approach, we probe nine different stacking sequences, G, GG, MG, GGG, GMG, GGMG, GMGG, GMMG, and GMGMG, and identify the effects of vibrational mismatch, interlayer adhesion, and junction asymmetry on thermal transport. Pure G sequences display evidence of quasi-ballistic transport, whereas adding even a single M layer strongly disrupts heat conduction. The experimental data are described well by molecular dynamics simulations, which include thermal expansion, accounting for the effect of finite temperature on the interlayer spacing. The simulations show that an increase of ∼2.4% in the layer separation of GMGMG, relative to its value at 300 K, can lead to a doubling of the thermal resistance. Using these design rules, we experimentally demonstrate a five-layer GMGMG superlattice "thermal metamaterial" with an ultralow effective cross-plane thermal conductivity comparable to that of air.
Collapse
|
15
|
Jeon S, Lee JH, Jang HJ, Lee YB, Kim B, Kang MS, Shin YC, Shin DM, Hong SW, Han DW. Spontaneously promoted osteogenic differentiation of MC3T3-E1 preosteoblasts on ultrathin layers of black phosphorus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112309. [PMID: 34474860 DOI: 10.1016/j.msec.2021.112309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Recently, black phosphorus (BP) has garnered great attention as one of newly emerging two-dimensional nanomaterials. Especially, the degraded platelets of BP in the physiological environment were shown to be nontoxic phosphate anions, which are a component of bone tissue and can be used for mineralization. Here, our study presents the potential of BP as biofunctional and biocompatible nanomaterials for the application to bone tissue engineering and regeneration. An ultrathin layer of BP nanodots (BPNDs) was created on a glass substrate by using a flow-enabled self-assembly process, which yielded a highly uniform deposition of BPNDs in a unique confined geometry. The BPND-coated substrates represented unprecedented favorable topographical microenvironments and supportive matrices suitable for the growth and survival of MC3T3-E1 preosteoblasts. The prepared substrates promoted the spontaneous osteodifferentiation of preosteoblasts, which had been confirmed by determining alkaline phosphatase activity and extracellular calcium deposition as early- and late-stage markers of osteogenic differentiation, respectively. Furthermore, the BPND-coated substrates upregulated the expression of some specific genes (i.e., RUNX2, OCN, OPN, and Vinculin) and proteins, which are closely related to osteogenesis. Conclusively, our BPND-coating strategy suggests that a biologically inert surface can be readily activated as a cell-favorable nanoplatform enabled with excellent biocompatibility and osteogenic ability.
Collapse
|
16
|
Kim MJ, Ku JM, Hong SH, Kim HI, Kwon YY, Park JS, Jung DH, Shin YC, Ko SG. In vitro Anticancer Effects of JI017 on Two Prostate Cancer Cell Lines Involve Endoplasmic Reticulum Stress Mediated by Elevated Levels of Reactive Oxygen Species. Front Pharmacol 2021; 12:683575. [PMID: 34054558 PMCID: PMC8155384 DOI: 10.3389/fphar.2021.683575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer, and prostate cancer is the second most common cause of cancer death in United States men after lung cancer. Many therapies are used to treat prostate cancer, and chemotherapy is one of the most relevant treatments. However, chemotherapy has many side effects, and repeated administration of chemotherapeutic agents leads to acquired resistance. Thus, new drugs with few side effects are needed. We investigated the molecular mechanism of action of JI017 in human prostate cancer cells. We identified an endoplasmic reticulum (ER) stress pathway that depended on the reactive oxygen species (ROS) pathway and played a crucial role in JI017-induced apoptosis. We measured cell viability by the MTS assay to determine the effect of JI017. Analysis of apoptosis, mitochondrial dysfunction, and cell cycle features was performed by flow cytometry. We used western blot and RT-PCR to measure the levels of the proteins of the unfolded protein response (UPR) pathway and apoptosis markers. Immunoprecipitation assay and transfection were used to determine the expression levels of proteins interacting with the pathways influenced by JI017 in prostate cancer cells. The anticancer effects induced by JI017 were evaluated. JI017 induced cell death that regulated apoptotic molecules and caused cell cycle arrest that inhibited the proliferation of cancer cells. Moreover, JI017 generated ROS. Accumulation of ROS caused ER stress through the PERK-eIF2α-CHOP and IRE1α-CHOP pathways. Furthermore, persistent activation of the UPR pathway induced by JI017 treatment triggered mitochondrial dysfunction, including dissipation of mitochondrial membrane potential, which activated intrinsic apoptotic pathway in human prostate cancer cells. The data indicated that N-acetyl-L-cysteine diminished apoptosis. We demonstrated that JI017 induced ER stress and cell death. Anticancer properties of JI017 in prostate cancer cells and in a human prostate cancer model involved ROS-mediated ER stress. Thus, JI017 treatment provides a new strategy for chemotherapy of prostate cancer.
Collapse
|
17
|
Yoon HJ, Lee YJ, Baek S, Chung YS, Kim DH, Lee JH, Shin YC, Shin YM, Ryu C, Kim HS, Ahn SH, Kim H, Won YB, Lee I, Jeon MJ, Cho SH, Lee BS, Sung HJ, Choi YS. Hormone autocrination by vascularized hydrogel delivery of ovary spheroids to rescue ovarian dysfunctions. SCIENCE ADVANCES 2021; 7:7/18/eabe8873. [PMID: 33910892 PMCID: PMC8081364 DOI: 10.1126/sciadv.abe8873] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/18/2021] [Indexed: 05/25/2023]
Abstract
The regeneration potential of implantable organ model hydrogels is applied to treat a loss of ovarian endocrine function in women experiencing menopause and/or cancer therapy. A rat ovariectomy model is used to harvest autologous ovary cells while subsequently producing a layer-by-layer form of follicle spheroids. Implantation of a microchannel network hydrogel with cell spheroids [vascularized hydrogel with ovarian spheroids (VHOS)] into an ischemic hindlimb of ovariectomized rats significantly aids the recovery of endocrine function with hormone release, leading to full endometrium regeneration. The VHOS implantation effectively suppresses the side effects observed with synthetic hormone treatment (i.e., tissue overgrowth, hyperplasia, cancer progression, deep vein thrombosis) to the normal levels, while effectively preventing the representative aftereffects of menopause (i.e., gaining fatty weight, inducing osteoporosis). These results highlight the unprecedented therapeutic potential of an implantable VHOS against menopause and suggest that it may be used as an alternative approach to standard hormone therapy.
Collapse
|
18
|
Hong SH, Ku JM, Lim YS, Kim HI, Shin YC, Ko SG. Cervus nippon var. mantchuricus water extract treated with digestive enzymes (CE) modulates M1 macrophage polarization through TLR4/MAPK/NF-κB signaling pathways on murine macrophages. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the effects of Cervus nippon var. mantchuricus water extract treated with digestive enzymes (CE) on the promotion of M1 macrophage polarization in murine macrophages. Macrophages polarize either to one phenotype after stimulation with LPS or IFN-γ or to an alternatively activated phenotype that is induced by IL-4 or IL-13. Cell viability of RAW264.7 cells was determined by WST-1 assay. NO production was measured by Griess assay. IL-6, IL-12, TNF-α, and iNOS mRNA levels were measured by RT-PCR. IL-6, IL-12, and IL-10 cytokine levels were determined by ELISA. TLR4/MAPK/NF-κB signaling in RAW264.7 cells was evaluated by western blotting. The level of NF-κB was determined by immunoblotting. CE induced the differentiation of M1 macrophages. CE promoted M1 macrophages to elevate NO production and cytokine levels. CE-stimulated M1 macrophages had enhanced IL-6, IL-12, and TNF-α. CE promoted M1 macrophages to activate TLR4/MAPK/NF-κB phosphorylation. M2 markers were downregulated, while M1 markers were upregulated in murine macrophages by CE. Consequently, CE has immunomodulatory activity and can be used to promote M1 macrophage polarization through the TLR4/MAPK/NF-κB signaling pathways.
Collapse
|
19
|
Kim JK, Kim KH, Shin YC, Jang BH, Ko SG. Utilization of traditional medicine in primary health care in low- and middle-income countries: a systematic review. Health Policy Plan 2020; 35:1070-1083. [PMID: 32516397 DOI: 10.1093/heapol/czaa022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 01/24/2023] Open
Abstract
This paper reports the findings from the first systematic review of the utilization of traditional medicine (TM) in primary health care (PHC) in low- and middle-income countries (LMICs). PHC is an important component of health care and essential for achieving universal health coverage (UHC). For countries where there is a gap in PHC, TM plays a vital role. It is widely used and has the potential to increase the coverage of PHC and UHC. Hence in situations where TM is recognized in a considerable magnitude, there are scarce evidence and minimal regulation on it and TM practitioners (TMPs). This study aims to identify the current situation in the utilization of TM in PHC or UHC in LMICs. A systematic review and thematic synthesis of qualitative and quantitative studies have been conducted. A total of 56 articles met the criteria and were included in the review. In all, 14 analytic themes have been developed including the current use of TM in PHC, higher accessibility of TM, medical pluralism, national health system, national health policy and national health insurance to include TM, including TMPs in the referral system, utilizing TMPs as community health workers, the needs of scientific research on TM and the need for training both TMPs and conventional medical staffs for better collaboration. The study concluded that it is necessary to further focus on TM in the macro level on strengthening the referral system by including TM to establish a comprehensive service delivery network under UHC and in the micro level to focus on training the TMPs and conventional medicine health workers on both areas to attain more in-depth understanding of each other, which can lead to better collaboration and quality patient care.
Collapse
|
20
|
Shin W, Ambrosini YM, Shin YC, Wu A, Min S, Koh D, Park S, Kim S, Koh H, Kim HJ. Robust Formation of an Epithelial Layer of Human Intestinal Organoids in a Polydimethylsiloxane-Based Gut-on-a-Chip Microdevice. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2. [PMID: 33532747 PMCID: PMC7849371 DOI: 10.3389/fmedt.2020.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is a silicone polymer that has been predominantly used in a human organ-on-a-chip microphysiological system. The hydrophobic surface of a microfluidic channel made of PDMS often results in poor adhesion of the extracellular matrix (ECM) as well as cell attachment. The surface modification by plasma or UV/ozone treatment in a PDMS-based device produces a hydrophilic surface that allows robust ECM coating and the reproducible attachment of human intestinal immortalized cell lines. However, these surface-activating methods have not been successful in forming a monolayer of the biopsy-derived primary organoid epithelium. Several existing protocols to grow human intestinal organoid cells in a PDMS microchannel are not always reproducibly operative due to the limited information. Here, we report an optimized methodology that enables robust and reproducible attachment of the intestinal organoid epithelium in a PDMS-based gut-on-a-chip. Among several reported protocols, we optimized a method by performing polyethyleneimine-based surface functionalization followed by the glutaraldehyde cross linking to activate the PDMS surface. Moreover, we discovered that the post-functionalization step contributes to provide uniform ECM deposition that allows to produce a robust attachment of the dissociated intestinal organoid epithelium in a PDMS-based microdevice. We envision that our optimized protocol may disseminate an enabling methodology to advance the integration of human organotypic cultures in a human organ-on-a-chip for patient-specific disease modeling.
Collapse
|
21
|
Shin W, Wu A, Min S, Shin YC, Fleming RYD, Eckhardt SG, Kim HJ. Spatiotemporal Gradient and Instability of Wnt Induce Heterogeneous Growth and Differentiation of Human Intestinal Organoids. iScience 2020; 23:101372. [PMID: 32745985 PMCID: PMC7398973 DOI: 10.1016/j.isci.2020.101372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
In a conventional culture of three-dimensional human intestinal organoids, extracellular matrix hydrogel has been used to provide a physical space for the growth and morphogenesis of organoids in the presence of exogenous morphogens such as Wnt3a. We found that organoids embedded in a dome-shaped hydrogel show significant size heterogeneity in different locations inside the hydrogel. Computational simulations revealed that the instability and diffusion limitation of Wnt3a constitutively generate a concentration gradient inside the hydrogel. The location-dependent heterogeneity of organoids in a hydrogel dome substantially perturbed the transcriptome profile associated with epithelial functions, cytodifferentiation including mucin 2 expression, and morphological characteristics. This heterogeneous phenotype was significantly mitigated when the Wnt3a was frequently replenished in the culture medium. Our finding suggests that the morphological, transcriptional, translational, and functional heterogeneity in conventional organoid cultures may lead to a false interpretation of the experimental results in organoid-based studies.
Collapse
|
22
|
Shin YC, Shin W, Koh D, Wu A, Ambrosini YM, Min S, Eckhardt SG, Fleming RYD, Kim S, Park S, Koh H, Yoo TK, Kim HJ. Three-Dimensional Regeneration of Patient-Derived Intestinal Organoid Epithelium in a Physiodynamic Mucosal Interface-on-a-Chip. MICROMACHINES 2020; 11:E663. [PMID: 32645991 PMCID: PMC7408321 DOI: 10.3390/mi11070663] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/29/2022]
Abstract
The regeneration of the mucosal interface of the human intestine is critical in the host-gut microbiome crosstalk associated with gastrointestinal diseases. The biopsy-derived intestinal organoids provide genetic information of patients with physiological cytodifferentiation. However, the enclosed lumen and static culture condition substantially limit the utility of patient-derived organoids for microbiome-associated disease modeling. Here, we report a patient-specific three-dimensional (3D) physiodynamic mucosal interface-on-a-chip (PMI Chip) that provides a microphysiological intestinal milieu under defined biomechanics. The real-time imaging and computational simulation of the PMI Chip verified the recapitulation of non-linear luminal and microvascular flow that simulates the hydrodynamics in a living human gut. The multiaxial deformations in a convoluted microchannel not only induced dynamic cell strains but also enhanced particle mixing in the lumen microchannel. Under this physiodynamic condition, an organoid-derived epithelium obtained from the patients diagnosed with Crohn's disease, ulcerative colitis, or colorectal cancer independently formed 3D epithelial layers with disease-specific differentiations. Moreover, co-culture with the human fecal microbiome in an anoxic-oxic interface resulted in the formation of stochastic microcolonies without a loss of epithelial barrier function. We envision that the patient-specific PMI Chip that conveys genetic, epigenetic, and environmental factors of individual patients will potentially demonstrate the pathophysiological dynamics and complex host-microbiome crosstalk to target a patient-specific disease modeling.
Collapse
|
23
|
Kim J, Oh S, Shin YC, Wang C, Kang MS, Lee JH, Yun W, Cho JA, Hwang DY, Han DW, Lee J. Au nanozyme-driven antioxidation for preventing frailty. Colloids Surf B Biointerfaces 2020; 189:110839. [PMID: 32036333 DOI: 10.1016/j.colsurfb.2020.110839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
From senescence and frailty that may result from various biological, mechanical, nutritional, and metabolic processes, the human body has its own antioxidant defense enzymes to remove by-products of oxygen metabolism, and if unregulated, can cause several types of cell damage. Herein, an antioxidant, artificial nanoscale enzyme, called nanozyme (NZs), is introduced that is composed of Au nanoparticles (NPs) synthesized with a mixture of two representative phytochemicals, namely, gallic acid (GA) and isoflavone (IF), referred to as GI-Au NZs. Their unique antioxidant and anti-aging effects are monitored using Cell Counting Kit-8 and senescence-associated β-galactosidase assays on neonatal human dermal fibroblasts (nHDFs). Furthermore, alterations in epidermal thickness and SOD activity are measured under ultraviolet light to investigate the effects of the topical application of NZs on the histological structure and antioxidant activity in hairless mice skin. Then, hepatotoxicity and nephrotoxicity in the hairless mice are monitored. It is concluded that the NZs can effectively prevent serial passage-induced senescence in nHDFs, as well as oxidative stress in mice skin, suggesting a range of strategies to further develop novel therapeutics for acute frailty.
Collapse
|
24
|
Park JY, Lee JB, Shin WB, Kang ML, Shin YC, Son DH, Yi SW, Yoon JK, Kim JY, Ko J, Kim CS, Yoon JS, Sung HJ. Nasolacrimal stent with shape memory as an advanced alternative to silicone products. Acta Biomater 2020; 101:273-284. [PMID: 31707084 DOI: 10.1016/j.actbio.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/27/2023]
Abstract
Epiphora is the overflow of tears typically caused by obstruction or occlusion of the nasolacrimal duct. More attention is required to address this global health issue owing to the increase in air pollution. Implantation of a silicone stent is the preferred treatment for epiphora; however, introducing a silicone stent into a narrow duct with complex geometry is challenging as it requires guidance by a sharp metal needle. Additionally, silicone can cause adverse reactions such as biofilm formation and tear flow resistance due to its extreme hydrophobicity. To overcome these problems, in this study we developed a new type of biocompatible shape memory polymer (SMP) stent with elasticity capacity for self-expansion. First, SMPs in the form of x%poly(ε-caprolactone)-co-y%poly(glycidyl methacrylate) (x%PCL-y%PGMA) were synthesized via ring opening polymerization by varying the molar ratio of PCL (x%) and PGMA (y%). Second, the shape memory and mechanical properties were tuned by controlling the crosslinking degree and concentration of x%PCL-y%PGMA solution to produce a test type of SMP stent. Lastly, this 94%PCL-06%PGMA stent exhibited more standout critical functions in a series of in vitro and in vivo experiments such as a cell growth-supporting level of biocompatibility with nasal epithelial cells without significant inflammatory responses, better resistance to biofilm formation, and more efficient capacity to drain tear than the silicone control. Overall, 94%PCL-06%PGMA can be suggested as a superior alternative to the currently used materials for nasolacrimal stents. STATEMENT OF SIGNIFICANCE: Silicone intubation (stenting) has been widely used to treat nasolacrimal duct obstruction, however, it can cause adverse clinical effects such as bacterial infection; presents procedural challenges because of the curved nasolacrimal duct structure; and shows poor drainage efficiency stemming from the highly hydrophobic nature of silicone. In this work, we describe an innovative shape memory polymer (SMP) as a superior alternative to conventional silicone-based materials for nasolacrimal duct intubation. We demonstrate the clear advantages of the SMP over conventional silicone, including a much higher drainage capacity and superior resistance to bacterial infection.
Collapse
|
25
|
Ku JM, Hong SH, Kim HI, Kim MJ, Kim SK, Kim M, Choi SY, Park J, Kim HK, Kim JH, Seo HS, Shin YC, Ko SG. Synergistic anticancer effect of combined use of Trichosanthes kirilowii with cisplatin and pemetrexed enhances apoptosis of H1299 non-small-cell lung cancer cells via modulation of ErbB3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153109. [PMID: 31790894 DOI: 10.1016/j.phymed.2019.153109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lung cancer is one of the most common malignancies worldwide. To treat lung cancer, various anticancer drugs were developed and tested, but they failed because of drug resistance. In the present study, we tested herbal medicines, such as TK and CuD, as anticancer drugs to decrease side effects and resistance. METHODS Cell viability was measured by an MTT assay. Analysis of cell cycle arrest was performed by flow cytometry. Induction of apoptosis by cucurbitacin D was measured by an annexin V-FITC/PI assay. We performed RTK kit analysis. Levels of p-ErbB3, p-STAT3, p-NF-κB, and caspases were measured by western blot analysis. Nuclear staining of ErbB3 was measured by immunocytochemistry. Transcriptional activity of STAT3 and NF-κB was detected by STAT3 and NF-κB luciferase reporter gene assays. RESULTS We found a synergistic effect of TK with CDDP and PXD in primary culture of human NSCLC tumor cells. The combination of CDDP/PXD and TK or CuD inhibited the proliferation of H1299 cells. The combination of CDDP/PXD and TK or CuD induced sub-G1 and G2/M cell cycle arrest in H1299 cells. The combination of CDDP/PXD and TK or CuD induced apoptosis, regulated apoptotic molecules, caused morphological changes and inhibited colony formation in H1299 cells. We found that TK suppresses p-ErbB3 expression and signaling. The combination of CDDP/PXD and TK or CuD inhibited p-AKT, p-Erk, and p-JNK signaling and suppressed Stat3 and NF-κB transcriptional activity in H1299 cells. More importantly, the combination of CDDP/PXD and TK or CuD inhibited p-ErbB3 and downstream molecules in H1299 cells. The combination of CDDP/PXD and TK or CuD inhibited ErbB2/ErbB3 dimerization. Our results clearly demonstrate that the synergistic effect of CDDP/PXD and TK or CuD inhibits cell growth and induces apoptosis by inhibiting ErbB3 signaling. CONCLUSION The combination of CDDP/PXD and TK or CuD decreases cell proliferation and induces apoptosis by inhibiting ErbB3 signaling in H1299 lung cancer cells. TK or CuD could be useful as a compound to treat lung cancer. Additionally, targeting ErbB3 may also be useful for treating lung cancer.
Collapse
|