1
|
Li X, Zhang W, Li X. CEMIP induces TGF-β/Smad signaling to promote keloid development by binding to SPARC. Clinics (Sao Paulo) 2024; 79:100523. [PMID: 39481283 DOI: 10.1016/j.clinsp.2024.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/08/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Cell Migration Inducing Hyaluronidase 1 (CEMIP) is a protein that plays regulatory functions in a variety of cellular processes in many diseases. Nevertheless, its role and molecular mechanism in keloid hyperplasia are still elusive. METHODS Expressions of CEMIP and Secreted Protein acidic and Rich in Cysteine (SPARC) were detected by qRT-PCR and western blot. CCK-8 assay, along with immunofluorescence staining, was applied for the assessment of cell proliferation. The capabilities of cells to migrate and invade were evaluated utilizing wound healing and Transwell, while Extracellular Matrix (ECM) deposition was measured by immunofluorescence and western blot. The interaction of CEMIP and SPARC was predicted by the Coexpedia and PPA-red databases and verified by co-IP. Western blot was adopted for the estimation of TGF-β/Smad pathway-related proteins. RESULTS The data demonstrated that CEMIP expression was elevated in Keloid Fibroblasts (KF). CEMIP interference suppressed cell proliferative, migrative and invasive capabilities and ECM deposition in KF. Mechanistically, bioinformatics analysis revealed that CEMIP was co-expressed with SPARC and CEMIP protein could bind to SPARC. SPARC expression was reduced in CEMIP-silenced cells. SPARC overexpression counteracted the impacts of CEMIP silencing on cell proliferative, migrative and invasive capabilities and ECM deposition in KF. In addition, the expressions of TGF-β/Smad signaling-related proteins were decreased by CEMIP silencing via the inhibition of SPARC. CONCLUSION In summary, this study revealed that CEMIP modulated KF proliferation, migration, invasion and ECM deposition by TGF-β/Smad signaling through binding to SPARC.
Collapse
|
2
|
Sun H, Wang Z, Tu B, Shao Z, Li Y, Han D, Jiang Y, Zhang P, Zhang W, Wu Y, Wu X, Liu CM. Capsaicin reduces blood glucose and prevents prostate growth by regulating androgen, RAGE/IGF-1/Akt, TGF-β/Smad signalling pathway and reversing epithelial-mesenchymal transition in streptozotocin-induced diabetic mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7659-7671. [PMID: 38700794 DOI: 10.1007/s00210-024-03092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease. Diabetes increases the risk of benign prostatic hyperplasia (BPH). Capsaicin is extracted from chili peppers and possesses many pharmacological properties, including anti-diabetic, pain-relieving, and anti-cancer properties. This study aimed to investigate the effects of capsaicin on glucose metabolism and prostate growth in T2DM mice and uncover the related mechanisms. Mice model of diabetes was established by administering a high-fat diet and streptozotocin. Oral administration of capsaicin for 2 weeks inhibited prostate growth in testosterone propionate (TP)-treated mice. Furthermore, oral administration of capsaicin (5 mg/kg) for 2 weeks decreased fasting blood glucose, prostate weight, and prostate index in diabetic and TP-DM mice. Histopathological alterations were measured using hematoxylin & eosin (H&E) staining. The protein expression of 5α-reductase type II, androgen receptor (AR), and prostate-specific antigen (PSA) were upregulated in diabetic and TP-DM mice, but capsaicin reversed these effects. Capsaicin decreased the protein expression of p-AKT, insulin-like growth factor-1 (IGF-1), IGF-1R, and the receptor for advanced glycation end products (RAGE) in diabetic and TP-DM mice. Capsaicin also regulated epithelial-mesenchymal transition (EMT) and modulated the expression of fibrosis-related proteins, including E-cadherin, N-cadherin, vimentin, fibronectin, α-SMA, TGFBR2, TGF-β1, and p-Smad in TP-DM mice. In this study, capsaicin alleviated diabetic prostate growth by attenuating EMT. Mechanistically, capsaicin affected EMT by regulating RAGE/IGF-1/AKT, AR, and TGF-β/Smad signalling pathways. These results provide with new therapeutic approach for treating T2DM or T2DM-induced prostate growth.
Collapse
|
3
|
Huang L, Yang X, Feng Y, Huang HX, Hu JQ, Yan PY, Pan HD, Xie Y. ShaShen-MaiDong decoction attenuates bleomycin-induced pulmonary fibrosis by inhibiting TGF-β/smad3, AKT/MAPK, and YAP/TAZ pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118755. [PMID: 39209002 DOI: 10.1016/j.jep.2024.118755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is progressive and terminal lung disease, which is also the most common sequelae of Corona Virus Disease (2019) (COVID-19) survivors. Unfortunately, there is currently no cure for PF. ShaShen-MaiDong decoction (SMT), a traditional Chinese medicine, has been employed in treating various lung diseases, which may offer potential therapeutic benefits for PF. AIM OF THE STUDY To investigate the antifibrotic efficacy of SMT and its major active ingredients as well as the underlying mechanisms for treating PF. MATERIALS AND METHODS Fist, we build the UPLC-MS based qualitative and quantitative profiling for the quality control of SMT. Then, the antifibrotic efficacy of SMT was investigated in bleomycin (BLM)-induced PF mice model. Network pharmacology was used to predict the mechanism and active components of SMT for the treatment of PF, which was further verified in vitro and in vivo. RESULTS SMT improved the weight loss and attenuated hydroxyproline, inflammatory cytokines, and collagen deposition in BLM-induced PF mice model in a dose-dependent manner. Mechanistically, as predicted by network pharmacology analysis, SMT and its active compounds (kaempferol, quercetin, and isorhamnetin) regulated the mitogen-activated protein kinase (MAPK) signaling pathways, TGF-β/Smad signaling pathway, and YAP/TAZ signaling pathway, which was further verified in the PF mice and TGF-β-induced A549 cell model. Moreover, SMT balanced the proportions of increased CD4+ and decreased CD8+ T cells in the peripheral blood of PF mice model. CONCLUSIONS Considering the high mortality and complex pathogenesis of fibrotic diseases, our results provide novel evidence that SMT would be beneficial for pulmonary fibrosis therapy by modulating MAPK, TGF-β/Smad, and YAP/TAZ signaling pathways at same time.
Collapse
|
4
|
Li P, Han M, Wang L, Gao C. Serum deprivation protein response intervenes in the proliferation, motility, and extracellular matrix production in keloid fibroblasts by blocking the amplification of TGF-β1/SMAD signal cascade via ERK1/2. Toxicol Appl Pharmacol 2024; 489:117012. [PMID: 38906511 DOI: 10.1016/j.taap.2024.117012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Keloid formation has been linked to abnormal fibroblast function, such as excessive proliferation and extracellular matrix (ECM) production. Serum deprivation protein response (SDPR) is a crucial regulator of cellular function under diverse pathological conditions, yet its role in keloid formation remains unknown. The current work investigated the function of SDPR in regulating the proliferation, motility, and ECM production of keloid fibroblasts (KFs), as well as to decipher the mechanisms involved. Analysis of RNA sequencing data from the GEO database demonstrated significant down-regulation of SDPR in KF compared to normal fibroblasts (NFs). This down-regulation was also observed in clinical keloid specimens and isolated KFs. Overexpression of SDPR suppressed the proliferation, motility, and ECM production of KFs, while depletion of SDPR exacerbated the enhancing impact of TGF-β1 on the proliferation, motility, and ECM production of NFs. Mechanistic studies revealed that SDPR overexpression repressed TGF-β/Smad signal cascade activation in KFs along with decreased levels of phosphorylated Samd2/3, while SDPR depletion exacerbated TGF-β/Smad activation in TGF-β1-stimulated NFs. SDPR overexpression also repressed ERK1/2 activation in KFs, while SDPR depletion exacerbated ERK1/2 activation in TGF-β1-stimulated NFs. Inhibition of ERK1/2 abolished SDPR-depletion-induced TGF-β1/Smad activation, cell proliferation, motility, and ECM production in NFs. In conclusion, SDPR represses the proliferation, motility, and ECM production in KFs by blocking the TGF-β1/Smad pathway in an ERK1/2-dependent manner. The findings highlight the role of SDPR in regulating abnormal behaviors of fibroblasts associated with keloid formation and suggest it as a potential target for anti-keloid therapy development.
Collapse
|
5
|
Ma L, Liu C, Zhao Y, Liu M, Liu Y, Zhang H, Yang S, An J, Tian Y, Cao Y, Qu G, Song S, Cao Q. Anti-pulmonary fibrosis activity analysis of methyl rosmarinate obtained from Salvia castanea Diels f. tomentosa Stib. using a scalable process. Front Pharmacol 2024; 15:1374669. [PMID: 38895626 PMCID: PMC11183283 DOI: 10.3389/fphar.2024.1374669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Pulmonary fibrosis is a progressive, irreversible, chronic interstitial lung disease associated with high morbidity and mortality rates. Current clinical drugs, while effective, do not reverse or cure pulmonary fibrosis and have major side effects, there are urgent needs to develop new anti-pulmonary fibrosis medicine, and corresponding industrially scalable process as well. Salvia castanea Diels f. tomentosa Stib., a unique herb in Nyingchi, Xizang, China, is a variant of S. castanea. and its main active ingredient is rosmarinic acid (RA), which can be used to prepare methyl rosmarinate (MR) with greater drug potential. This study presented an industrially scalable process for the preparation of MR, which includes steps such as polyamide resin chromatography, crystallization and esterification, using S. castanea Diels f. tomentosa Stib. as the starting material and the structure of the product was verified by NMR technology. The anti-pulmonary fibrosis effects of MR were further investigated in vivo and in vitro. Results showed that this process can easily obtain high-purity RA and MR, and MR attenuated bleomycin-induced pulmonary fibrosis in mice. In vitro, MR could effectively inhibit TGF-β1-induced proliferation and migration of mouse fibroblasts L929 cells, promote cell apoptosis, and decrease extracellular matrix accumulation thereby suppressing progressive pulmonary fibrosis. The anti-fibrosis effect of MR was stronger than that of the prodrug RA. Further study confirmed that MR could retard pulmonary fibrosis by down-regulating the phosphorylation of the TGF-β1/Smad and MAPK signaling pathways. These results suggest that MR has potential therapeutic implications for pulmonary fibrosis, and the establishment of this scalable preparation technology ensures the development of MR as a new anti-pulmonary fibrosis medicine.
Collapse
|
6
|
Baek J, Kim JH, Park J, Kim DH, Sa S, Han JS, Kim W. 1-Kestose Blocks UVB-Induced Skin Inflammation and Promotes Type I Procollagen Synthesis via Regulating MAPK/AP-1, NF-κB and TGF-β/Smad Pathway. J Microbiol Biotechnol 2024; 34:911-919. [PMID: 38379292 DOI: 10.4014/jmb.2311.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
Solar UVB irradiation cause skin photoaging by inducing the high expression of matrix metalloproteinase (MMPs) to inhibit the expression of Type1 procollagen synthesis. 1-Kestose, a natural trisaccharide, has been indicated to show a cytoprotective role in UVB radiation-induced-HaCaT cells. However, few studies have confirmed the anti-aging effects. In the present study, we evaluated the anti-photoaging and pathological mechanism of 1-kestose using Human keratinocytes (HaCaT) cells. The results found that 1-kestose pretreatment remarkably reduced UVB-generated reactive oxygen species (ROS) accumulation in HaCaT cells. 1-Kestose suppressed UVB radiation-induced MMPs expressions by blocking MAPK/AP-1 and NF-κB p65 translocation. 1-Kestose pretreatment increased Type 1 procollagen gene expression levels by activating TGF-β/Smad signaling pathway. Taken together, our results demonstrate that 1-kestose may serve as a potent natural trisaccharide for inflammation and photoaging prevention.
Collapse
|
7
|
Shi Q, Xia Y, Wu M, Pan Y, Wu S, Lin J, Kong Y, Yu Z, Zan X, Liu P, Xia J. Mi-BMSCs alleviate inflammation and fibrosis in CCl 4-and TAA-induced liver cirrhosis by inhibiting TGF-β/Smad signaling. Mater Today Bio 2024; 25:100958. [PMID: 38327975 PMCID: PMC10847164 DOI: 10.1016/j.mtbio.2024.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cirrhosis is an aggressive disease, and over 80 % of liver cancer patients are complicated by cirrhosis, which lacks effective therapies. Transplantation of mesenchymal stem cells (MSCs) is a promising option for treating liver cirrhosis. However, this therapeutic approach is often challenged by the low homing ability and short survival time of transplanted MSCs in vivo. Therefore, a novel and efficient cell delivery system for MSCs is urgently required. This new system can effectively extend the persistence and duration of MSCs in vivo. In this study, we present novel porous microspheres with microfluidic electrospray technology for the encapsulation of bone marrow-derived MSCs (BMSCs) in the treatment of liver cirrhosis. Porous microspheres loaded with BMSCs (Mi-BMSCs) exhibit good biocompatibility and demonstrate better anti-inflammatory properties than BMSCs alone. Mi-BMSCs significantly increase the duration of BMSCs and exert potent anti-inflammatory and anti-fibrosis effects against CCl4 and TAA-induced liver cirrhosis by targeting the TGF-β/Smad signaling pathway to ameliorate cirrhosis, which highlight the potential of Mi-BMSCs as a promising therapeutic approach for early liver cirrhosis.
Collapse
|
8
|
Zhao B, Yin J, Ding L, Luo J, Luo J, Mu J, Pan S, Du J, Zhong Y, Zhang L, Liu L. SPAG6 regulates cell proliferation and apoptosis via TGF-β/Smad signal pathway in adult B-cell acute lymphoblastic leukemia. Int J Hematol 2024; 119:119-129. [PMID: 38147275 DOI: 10.1007/s12185-023-03684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023]
Abstract
Adult B-cell acute lymphoblastic leukemia (B-ALL) prognosis remains unsatisfactory, and searching for new therapeutic targets is crucial for improving patient prognosis. Sperm-associated antigen 6 (SPAG6), a member of the cancer-testis antigen family, plays an important role in tumors, especially hematologic tumors; however, it is unknown whether SPAG6 plays a role in adult B-ALL. In this study, we demonstrated for the first time that SPAG6 expression was up-regulated in the bone marrow of adult B-ALL patients compared to healthy donors, and expression was significantly reduced in patients who achieved complete remission (CR) after treatment. In addition, patients with high SPAG6 expression were older (≥ 35 years; P = 0.015), had elevated white blood cell counts (WBC > 30 × 109/L; P = 0.021), and a low rate of CR (P = 0.036). We explored the SPAG6 effect on cell function by lentiviral transfection of adult B-ALL cell lines BALL-1 and NALM-6, and discovered that knocking down SPAG6 significantly inhibited cell proliferation and promoted apoptosis. We identified that SPAG6 knockdown might regulate cell proliferation and apoptosis via the transforming growth factor-β (TGF-β)/Smad signaling pathway.
Collapse
|
9
|
Yang J, Zhang L, Sun S, Zhang S, Ding Q, Chai G, Yu W, Zhao T, Shen L, Gao Y, Liu W, Ding C. A dihydromyricetin-loaded phellinus igniarius polysaccharide/l-arginine modified chitosan-based hydrogel for promoting wound recovery in diabetic mice via JNK and TGF-β/Smad signaling pathway. Int J Biol Macromol 2024; 259:129124. [PMID: 38176509 DOI: 10.1016/j.ijbiomac.2023.129124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The wound of diabetes has long-term excessive inflammation leading to wound fibrosis and scar formation. In the process of diabetic wound healing, good wound dressing is required for intervention. In this study, we designed a dihydromyricetin-loaded hydrogel (PCD) based on phellinus igniarius polysaccharide and l-arginine modified chitosan as an alternative material to promote diabetes wound healing. PCD had a uniform porous structure, good thermal stability, excellent mechanical properties, high water absorption, excellent antioxidant and anti-inflammatory activities and good biocompatibility and biodegradability. In addition, in the full-thickness skin trauma model of diabetes, PCD significantly inhibited the JNK signaling pathway to reduce inflammatory response, and significantly down-regulated the expression of TGF-β1, Smad2, Smad3 and Smad4 to directly inhibit the TGF-β/Smad signaling pathway to accelerate wound healing and slow down scar formation in diabetes mice. Therefore, PCD has a broad application prospect in promoting diabetes wound healing.
Collapse
|
10
|
Bai J, Qian B, Cai T, Chen Y, Li T, Cheng Y, Wu Z, Liu C, Ye M, Du Y, Fu W. Aloin Attenuates Oxidative Stress, Inflammation, and CCl 4-Induced Liver Fibrosis in Mice: Possible Role of TGF-β/Smad Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19475-19487. [PMID: 38038700 PMCID: PMC10723061 DOI: 10.1021/acs.jafc.3c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Liver fibrosis refers to the excessive buildup of extracellular matrix (ECM) components in liver tissue. It is considered a pathological response to liver damage for which there is no effective treatment. Aloin, an anthraquinone compound isolated from the aloe plant, has shown good pharmacological effects in the treatment of gastric cancer, ulcerative colitis, myocardial hypertrophy, traumatic brain injury, and other diseases; however, its specific impact on liver fibrosis remains unclear. To address this gap, we conducted a study to explore the mechanisms underlying the potential antifibrotic effect of aloin. We constructed a mouse liver fibrosis model using carbon tetrachloride (CCl4) dissolved in olive oil as a modeling drug. Additionally, a cellular model was developed by using transforming growth factor β1 (TGF-β1) as a stimulus applied to hepatic stellate cells. After aloin intervention, serum alanine aminotransferase, hepatic hydroxyproline, and serum aspartate aminotransferase were reduced in mice after aloin intervention compared to CCl4-mediated liver injury without aloin intervention. Aloin relieved the oxidative stress caused by CCl4 via reducing hepatic malondialdehyde in liver tissue and increasing the level of superoxide dismutase. Aloin treatment decreased interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and increased the expression of IL-10, which inhibited the inflammatory response in liver injury. In addition, aloin inhibited the activation of hepatic stellate cells and reduced the level of α-smooth muscle actin (α-SMA) and collagen type I. In cell and animal experiments, aloin attenuated liver fibrosis, acting through the TGF-β/Smad2/3 signaling pathway, and mitigated CCl4- and TGF-β1-induced inflammation. Thus, the findings of this study provided theoretical data support and a new possible treatment strategy for liver fibrosis.
Collapse
|
11
|
Zhou X, Wang W, Liu L. Somatostatin Inhibited the EMT of Pancreatic Cancer Cells by Mediating the TGF-β/Smad Signaling Pathway. DISCOVERY MEDICINE 2023; 35:1086-1092. [PMID: 38058074 DOI: 10.24976/discov.med.202335179.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
BACKGROUND Pancreatic cancer (PC), a commonly recognized malignancy, arises within the digestive tract. Somatostatin (SOM) is a regulatory peptide that acts on secretion in vivo. Several studies have shown that SOM has inhibitory effects on various cancers. This work aims to probe the inhibitory effect, and mechanism of SOM action, on the epithelial-mesenchymal transition (EMT) of PC cells. METHODS First, the effects of SOM and transforming growth factor-β (TGF-β) on the proliferation of PC cells was determined by Cell Counting Kit-8 (CCK-8) assay. Next, we assessed the impact of SOM and TGF-β on the metastasis and apoptosis of PC cells using transwell assays and flow cytometry. Finally, we evaluated the effects of SOM and TGF-β on the expression of EMT-related proteins, apoptosis-related proteins, and proteins related to the TGF-β/Smad signaling pathway in PC cells using western blot analysis. RESULTS SOM suppressed the growth and metastasis of PC cells, and facilitated their apoptosis (p < 0.05). Moreover, SOM reversed pro-apoptotic effects of TGF-β (p < 0.05). Specifically, SOM increased the expression of Cysteine-aspartic acid protease 3 (Caspase-3) and Bcl-2-associated X protein (Bax) proteins while reducing the expression of B-cell lymphoma 2 (Bcl-2) protein (p < 0.05). SOM also reversed the TGF-β-induced EMT process. The TGF-β1, Smad2, and Smad3 proteins in PC cells treated with SOM were significantly down-regulated (p < 0.05). CONCLUSIONS SOM suppressed the EMT progression in PC cells through its regulation of the TGF-β/Smad signaling pathway.
Collapse
|
12
|
Li BZ, Lin CY, Xu WB, Zhang YM, Shao QJ, Dong WR, Shu MA. The first identification and functional analysis of two drosophila mothers against decapentaplegic protein genes (SpSmad1 and SpSmad2/3) and their involvement in the innate immune response in Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109183. [PMID: 37884105 DOI: 10.1016/j.fsi.2023.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Smad,a member of the TGF-β superfamily,controls cell proliferation,growth and guiding cell differentiation, thus playing a crucial role in diseases. However, the presence as well as specific function of Smad in crabs is still unknown. In this study, two Smads (Smad1 and Smad2/3) were identified for the first time from the mud crab Scylla paramamosain. The complete open reading frames of SpSmad1 and SpSmad2/3 were 1,497bp and 1,338bp, encoding deduced proteins of 498 and 445 amino acids respectively. Moreover, under the administration of Vibrio alginolyticus and WSSV, the relative expression levels of SpSmad1 and SpSmad2/3 were significantly increased, indicating their involvement in the innate immune response of mud crabs. Knockdown of SpSmad1 and SpSmad2/3 in vivo not only led to the increasement of the expressions of NF-κB signaling genes and antimicrobial peptides genes, but also significantly affected the bacterial clearance process of mud crabs. Additionally, overexpression of SpSmad1 and SpSmad2/3 in HEK293T cells could markedly activate NF-κB signaling. These results indicated that Smad1 and Smad2/3 participated in the innate immunity of Scylla paramamosain, and might provide a better understanding of the presence and immune regulatory functions of Smad1 and Smad2/3 in crabs and even invertebrates.
Collapse
|
13
|
Zhang X, Wu T, Qin R, Cai X, Zhou Y, Wang X, Shang Z, Li G, Yang R, Dong C, Li J, Ren Y, Ding R, Li Y. The New Role of HNF1A-NAS1/miR-214/INHBA Signaling Axis in Colorectal Cancer. FRONT BIOSCI-LANDMRK 2023; 28:301. [PMID: 38062804 DOI: 10.31083/j.fbl2811301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer and one of the leading causes of death worldwide. Seriously threatens human life and health. Previous studies have identified that inhibin βA (INHBA) could induce tumorgenesis and progression of CRC through the regulation of the TGF-β/Smad signal axis. The abnormal expression of INHBA is related to the poor prognosis of patients. The aim of this study was to identify the molecular mechanism of HNF1A-AS1 and miR-214 regulating INHBA and carcinogenesis through bioinformatics combined with experiments. METHODS The expression of HNF1A-AS1, miRNA-214-5p, INHBA in pan-cancer and CRC were investigated in the Cancer Genome Atlas (TCGA). The correlation between HNF1A-AS1 and immune-related genes or miRNAs was explored via the Gene Expression Profiling Interactive Analysis (GEPIA) and volcano plots, respectively. The association between HNF1A-AS1 and differentially expressed miRNAs was constructed by TargetScan. The miRDB, miRWalk, and TargetScan databases were utilized to predict the target genes of hsa-miR-214. The expression of INHBA in tissues and cell lines of CRC was examined by RT-qPCR and western blot assay. RESULTS The INHBA and HNF1A-AS1 expressions were increased in Colon adenocarcinoma (COAD) and Rectum adenocarcinoma (READ) of the TCGA database. Hsa-miR-214 was relatively less expressed in CRC tissues compared with para-cancer tissues. The expression of HNF1A-AS1 was negatively correlated with hsa-miR-214. INHBA was one of the target genes of hsa-miR-214 based on miRDB, miRWalk, and TargetScan databases. The specific binding sites of INHBA-3'UTR and miR-214-5p were identified by starBase. The expression level of INHBA was positively correlated with the T stage of tumor and negatively correlated with overall survival (OS) and disease-free survival (DFS) in CRC patients. The results of RT-qPCR and western blot indicated that the expression of INHBA in tissues and cell lines in CRC was higher than those in para-carcinoma tissues and normal colon cell lines, respectively. CONCLUSIONS These findings suggested that HNF1A-AS1 and miRNA-214-5p were key upstream non-coding RNAs of INHBA. The HNF1A-AS1/miR-214/INHBA signal axis plays a significant role in the tumorgenesis and progression of CRC. By interfering with HNF1A-AS1 and INHBA genes on HT29 and SW480 cells, it was found that HNF1A-AS1 and INHBA genes may be important target genes in CRC.
Collapse
|
14
|
Yang HW, Lan Y, Li A, Wu H, Song ZW, Wan AL, Wang Y, Li SB, Ji S, Wang ZC, Wu XY, Lan T. Myricetin suppresses TGF-β-induced epithelial-to-mesenchymal transition in ovarian cancer. Front Pharmacol 2023; 14:1288883. [PMID: 38026996 PMCID: PMC10665490 DOI: 10.3389/fphar.2023.1288883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Ovarian cancer (OC) is the second most common gynecological malignancy and has a high mortality rate. The current chemotherapeutic drugs have the disadvantages of drug resistance and side effects. Myricetin, a kind of natural compound, has the advantages of easy extraction, low price, and fewer side effects. Multiple studies have demonstrated the anti-cancer properties of myricetin. However, its impact on OC is still unknown and needs further investigation. Therefore, this study aimed to elucidate the mechanism by which myricetin suppresses transforming growth factor-β (TGF-β) -induced epithelial-to-mesenchymal transition (EMT) in OC through in vivo and in vitro experiments. Methods: In vitro experiments were conducted to evaluate the effects of myricetin on cell proliferation and apoptosis using CCK8 assay, plate clonal formation assay, and flow cytometry. Western blot was employed to evaluate the expression levels of caspase-3, PARP, and the MAPK/ERK and PI3K/AKT signaling pathways. Wound healing, transwell, western blot and immunofluorescence assay were used to detect TGF-β-induced cell migration, invasion, EMT and the levels of Smad3, MAPK/ERK, PI3K/AKT signaling pathways. Additionally, a mouse xenograft model was established to verify the effects of myricetin on OC in vivo. Results: Myricetin inhibited OC proliferation through MAPK/ERK and PI3K/AKT signaling pathways. Flow cytometry and western blot analyses demonstrated that myricetin promoted apoptosis by increasing the expression of cleaved-PARP and cleaved-caspase-3 and the ratio of Bax/Bcl-2 in OC. Furthermore, myricetin suppressed the TGF-β-induced migration and invasion by transwell and wound healing assays. Mechanistically, western blot indicated that myricetin reversed TGF-β-induced metastasis through Smad3, MAPK/ERK and PI3K/AKT signaling pathway. In vivo, myricetin significantly repressed OC progression and liver and lung metastasis. Conclusion: Myricetin exhibited inhibitory effects on OC progression and metastasis both in vivo and in vitro. And it also reversed TGF-β-induced EMT through the classical and non-classical Smad signaling pathways.
Collapse
|
15
|
Liu H, Sun M, Wu N, Liu B, Liu Q, Fan X. TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF: Their mechanisms and roles in vascular remodeling related diseases. Immun Inflamm Dis 2023; 11:e1060. [PMID: 38018603 PMCID: PMC10629241 DOI: 10.1002/iid3.1060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
Vascular remodeling is a basic pathological process in various diseases characterized by abnormal changes in the morphology, structure, and function of vascular cells, such as migration, proliferation, hypertrophy, and apoptosis. Various growth factors and pathways are involved in the process of vascular remodeling. The transforming growth factor-β (TGF-β) signaling pathway, which is mainly mediated by TGF-β1, is an important factor in vascular wall enhancement during vascular development and regulates the vascular response to injury by promoting the accumulation of intimal tissue. Vascular endothelial growth factor (VEGF) has an important effect on initiating the formation of blood vessels. The Hippo-YAP/TAZ signaling pathway also plays an important role in angiogenesis. In addition, studies have shown that there is a certain interaction between the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF. Many studies have shown that in the development of atherosclerosis, hypertension, aneurysm, vertebrobasilar dolichoectasia, pulmonary hypertension, restenosis after percutaneous transluminal angioplasty, and other diseases, various inflammatory reactions lead to changes in vascular structure and vascular microenvironment, which leads to vascular remodeling. The occurrence of vascular remodeling changes the morphology of blood vessels and thus changes the hemodynamics, which is the cause of further development of the disease process. Vascular remodeling can cause vascular smooth muscle cell dysfunction and vascular homeostasis regulation. This review aims to explore the mechanisms of the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and vascular endothelial growth factor in vascular remodeling and related diseases. This paper is expected to provide new ideas for research on the occurrence and development of related diseases and provide a new direction for research on the treatment of related diseases.
Collapse
|
16
|
Hou M, Guo R, Ren T, Wang T, Jiang JH, He J. Selective Proteolysis of Activated Transcriptional Factor by NIR-Responsive Palindromic DNA Thalidomide Conjugate Inhibits the Canonical Smad Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302525. [PMID: 37415558 DOI: 10.1002/smll.202302525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Dysfunctional transcription factors that activate abnormal expressions of specific proteins are often associated with the progression of various diseases. Despite being attractive drug targets, the lack of druggable sites has dramatically hindered their drug development. The emergence of proteolysis targeting chimeras (PROTACs) has revitalized the drug development of many conventional hard-to-drug protein targets. Here, the use of a palindromic double-strand DNA thalidomide conjugate (PASTE) to selectively bind and induce proteolysis of targeted activated transcription factor (PROTAF) is reported. The selective proteolysis of the dimerized phosphorylated receptor-regulated Smad2/3 and inhibition of the canonical Smad pathway validates PASTE-mediated PROTAF. Further aptamer-guided active delivery of PASTE and near-infrared light-triggered PROTAF are demonstrated. Great potential in using PASTE for the selective degradation of the activated transcription factor is seen, providing a powerful tool for studying signaling pathways and developing precision medicines.
Collapse
|
17
|
Xie L, Huang L, Zhang G, Su Y. Inhibition of keloid by 32P isotope radiotherapy through suppressing TGF-β/Smad signaling pathway. Aging (Albany NY) 2023; 15:11985-11993. [PMID: 37910782 PMCID: PMC10683590 DOI: 10.18632/aging.205160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Keloid seriously affects the appearance, and is accompanied by some symptoms including pain, burning, itching. Radioactive nuclides such as 32P have been proved to be effective in inhibiting the formation of keloid, but the mechanism remains unclear. METHODS The keloid animal model was established through keloid tissues implantation. Hematoxylin-Eosin (HE) and Masson staining were performed to investigate histological changes and collagen deposition. The mRNA and protein expression were assessed using RT-PCR and western blotting, respectively. Cell apoptosis and cycle were evaluated through flow cytometry. RESULTS Both 32P isotope injection and skin path significantly reduced the size of keloid, and inhibited TGF-β/Smad signaling pathway. SRI-011381, the agonist of TGF-β/Smad signaling pathway, markedly reversed the influence of 32P isotope on cell proliferation, cell apoptosis, cell cycle of LNCaP cells and TGF-β/Smad signaling pathway. CONCLUSIONS 32P isotope injection and skin path greatly reduced the size of keloid, and the TGF-β/Smad signaling pathway was remarkably inhibited by 32P isotope treatment. The regulation of dermal fibroblast by 32P isotope was reversed by SRI-011381. 32P isotope might inhibit keloid through suppressing TGF-β/Smad signaling pathway. Our study provides a novel therapeutic strategy for the treatment of keloid.
Collapse
|
18
|
Li Q, Lyu C, Chen D, Cai W, Kou F, Li Q, Wei H, Zhang H. Gallic Acid Treats Hypertrophic Scar in Rabbit Ears via the TGF-β/Smad and TRPC3 Signaling Pathways. Pharmaceuticals (Basel) 2023; 16:1514. [PMID: 38004381 PMCID: PMC10675562 DOI: 10.3390/ph16111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertrophic scars (HSs) develop due to excessive collagen deposition and abnormal fibroblast proliferation during wound healing, significantly impacting patient quality of life. Three dosages of GA ointments were administered to rabbit ear HS models to investigate the potential efficacy and mechanism of gallic acid (GA) on HS. Daily application of ointment was performed on the matrix group, the GA ointment groups, and the silicone gel group for 28 days. (No drug treatment was performed on the skin and model groups as a blank group and vehicle group, and silicone gel ointment was topically administered to the silicone gel group as a positive control group.) Scar specimens were collected for histopathology analysis, RNA sequencing analysis, real-time quantitative polymerase chain reaction, and Western blot analysis at the first, second, and fourth weeks after the treatment. Low-dose and medium-dose GA effectively suppressed HS formation and markedly decreased fibroblast infiltration levels and scar thickness. Moreover, decreased expression of TRPC3 mRNA and TGF-β1, p-Smad2/3, and Smad2/3 protein was observed in the low- and medium-dose GA groups and the silicone gel group. This study provides evidence for the efficacy of GA in treating HS and sheds light on its potential underlying pharmacological mechanisms.
Collapse
|
19
|
Hao M, Guan Z, Zhang Z, Ai H, Peng X, Zhou H, Xu J, Gu Q. Atractylodinol prevents pulmonary fibrosis through inhibiting TGF-β receptor 1 recycling by stabilizing vimentin. Mol Ther 2023; 31:3015-3033. [PMID: 37641404 PMCID: PMC10556230 DOI: 10.1016/j.ymthe.2023.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Pirfenidone and nintedanib are only anti-pulmonary fibrosis (PF) drugs approved by the FDA. However, they are not target specific, and unable to modify the disease status. Therefore, it is still desirable to discover more effective agents against PF. Vimentin (VIM) plays key roles in tissue regeneration and wound healing, but its molecular mechanism remains unknown. In this work, we demonstrated that atractylodinol (ATD) significantly inhibits TGF-β1-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transition in vitro. ATD also reduces bleomycin-induced lung injury and fibrosis in mice models. Mechanistically, ATD inhibited TGF-β receptor I recycling by binding to VIM (KD = 454 nM) and inducing the formation of filamentous aggregates. In conclusion, we proved that ATD (derived from Atractylodes lancea) modified PF by targeting VIM and inhibiting the TGF-β/Smad signaling pathway. Therefore, VIM is a druggable target and ATD is a proper drug candidate against PF. We prove a novel VIM function that TGF-β receptor I recycling. These findings paved the way to develop new targeted therapeutics against PF.
Collapse
|
20
|
Mo M, Zeng Y, Zeng Y, Li S, He X, Chen X, Luo Q, Liu M, Luo C, Dou X, Peng F, Long H. N-methylpiperazine-diepoxyovatodiolide ameliorates peritoneal fibrosis via suppressing TGF-β/Smad and JAK/STAT signaling pathway. Chem Biol Interact 2023; 382:110589. [PMID: 37268199 DOI: 10.1016/j.cbi.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Peritoneal fibrosis (PF) is the main cause of peritoneal ultrafiltration failure in patients undergoing long-term peritoneal dialysis (PD). Epithelial-mesenchymal transition (EMT) is the key pathogenesis of PF. However, currently, no specific treatments are available to suppress PF. N-methylpiperazine-diepoxyovatodiolide (NMPDOva) is a newly synthesized compound that involves a chemical modification of ovatodiolide. In this study, we aimed to explore the antifibrotic effects of NMPDOva in PD-related PF and underlying mechanisms. A mouse model of PD-related PF was established via daily intraperitoneal injection of 4.25% glucose PD fluid. In vitro studies were performed using the transforming growth factor-beta1 (TGF-β1)-stimulated HMrSV5 cell line. Pathological changes were observed, and fibrotic markers were significantly elevated in the peritoneal membrane in mice model of PD-related PF. However, NMPDOva treatment significantly alleviated PD-related PF by decreasing the extracellular matrix accumulation. NMPDOva treatment decreased the expression of fibronectin, collagen Ⅰ, and alpha-smooth muscle actin (α-SMA) in mice with PD-related PF. Moreover, NMPDOva could alleviate TGF-β1-induced EMT in HMrSV5 cells, inhibited phosphorylation and nuclear translocation of Smad2/3, and increased the expression of Smad7. Meanwhile, NMPDOva inhibited phosphorylation of JAK2 and STAT3. Collectively, these results indicated that NMPDOva prevents PD-related PF by inhibiting the TGF-β1/Smad and JAK/STAT signaling pathway. Therefore, because of these antifibrotic effects, NMPDOva may be a promising therapeutic agent for PD-related PF.
Collapse
|
21
|
Gan C, Wang Y, Xiang Z, Liu H, Tan Z, Xie Y, Yao Y, Ouyang L, Gong C, Ye T. Niclosamide-loaded nanoparticles (Ncl-NPs) reverse pulmonary fibrosis in vivo and in vitro. J Adv Res 2023; 51:109-120. [PMID: 36347425 PMCID: PMC10491968 DOI: 10.1016/j.jare.2022.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF), a life-threatening interstitial lung disease, is characterized by excessive activation and proliferation of fibroblasts and epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) accompanied by a large amount of extracellular matrix aggregation. There are no therapies to reverse pulmonary fibrosis, and nintedanib and pirfenidone could only slow down the decline of lung function of IPF patients and delay their survival time. Niclosamide (Ncl) is an antihelminthic drug approved by FDA, which has been reported to have pleiotropic pharmacological activities in recent years, but it's almost complete insolubility in water limits its clinical application. OBJECTIVES To improve the water solubility of Ncl, explore its ability to reverse BLM-induced pulmonary fibrosis and its specific mechanism of action. METHODS The Niclosamide-loaded nanoparticles (Ncl-NPs) were formed by emulsification solvent evaporation method. A mouse model induced by bleomycin (BLM) was established to evaluate its effects and mechanisms of inhibiting and reversing fibrosis in vivo. The cell models treated by transforming growth factor-β1 (TGF-β1) were used to examine the mechanism of Ncl-NPs inhibiting fibrosis in vitro. Flow cytometry, IHC, IL-4-induced macrophage model and co-culture system were used to assess the effect of Ncl-NPs on M2 polarization of macrophages. RESULTS The Ncl-NPs improved the poor water solubility of Ncl. The lower dose of Ncl-NPs (2.5 mg/kg) showed the same effect of reversing established pulmonary fibrosis as free Ncl (5 mg/kg). Mechanistic studies revealed that Ncl-NPs blocked TGF-β/Smad and signaling transducer and activator of transcription 3 (Stat3) signaling pathways and inhibited the M2 polarization of macrophages. Additionally, H&E staining of the tissues initially showed the safety of Ncl-NPs. CONCLUSION These results indicate Ncl-NPs may serve as a new idea for the treatment of pulmonary fibrosis.
Collapse
|
22
|
Wu S, Xia Y, Yang C, Li M. Protective effects of aloin on asthmatic mice by activating Nrf2/HO-1 pathway and inhibiting TGF-β/ Smad2/3 pathway. Allergol Immunopathol (Madr) 2023; 51:10-18. [PMID: 37422775 DOI: 10.15586/aei.v51i4.863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Asthma is a severe chronic respiratory disease affecting all age groups with increasing prevalence. Anti-inflammatory strategies are promising options for the treatment of asthma. Although the inhibitory effect of aloin on inflammation has been demonstrated in various diseases, its effect on asthma remains unknown. METHODS A mice asthma model was established by treating with ovalbumin (OVA). The effects and mechanism of aloin on the OVA-treated mice were determined by enzyme-linked--immunosorbent serologic assay, biochemical examination, hematoxylin and eosin and Masson's staining, and Western blot assay. RESULTS OVA treatment in mice significantly increased the number of total cells, neutrophils, eosinophils, and macrophages and the concentration of interleukin (IL)-4, IL-5, and IL-13, which were attenuated with the administration of aloin. The content of malondialdehyde was enhanced in OVA-treated mice, with the decreased levels of superoxide dismutase and glutathione, which were reversed with aloin treatment. Aloin treatment reduced the airway resistance of OVA-induced mice. The inflammatory cell infiltration around small airways was accompanied by the thickening and contraction of bronchial walls and pulmonary collagen deposition in OVA-treated mice; however, these conditions were ameliorated with aloin treatment. Mechanically, aloin upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase 1 (HO-1) pathway but inhibited the level of transforming growth factor beta-SMAD2/3 genes (TGF-β/Smad2/3) axis in OVA-induced mice. CONCLUSION Aloin treatment lessened airway hyperresponsiveness, airway remodeling, inflammation, and oxidative stress in OVA-treated mice, and was closely related to the activation of Nrf2/HO-1 pathway and the weakening of TGF-β/Smad2/3 pathway.
Collapse
|
23
|
Liu CM, Shao Z, Chen X, Chen H, Su M, Zhang Z, Wu Z, Zhang P, An L, Jiang Y, Ouyang AJ. Neferine attenuates development of testosterone-induced benign prostatic hyperplasia in mice by regulating androgen and TGF-β/Smad signaling pathways. Saudi Pharm J 2023; 31:1219-1228. [PMID: 37293563 PMCID: PMC10244910 DOI: 10.1016/j.jsps.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common urinary disease among the elderly, characterized by abnormal prostatic cell proliferation. Neferine is a dibenzyl isoquinoline alkaloid extracted from Nelumbo nucifera and has antioxidant, anti-inflammatory and anti-prostate cancer effects. The beneficial therapeutic effects and mechanism of action of neferine in BPH remain unclear. A mouse model of BPH was generated by subcutaneous injection of 7.5 mg/kg testosterone propionate (TP) and 2 or 5 mg/kg neferine was given orally for 14 or 28 days. Pathological and morphological characteristics were evaluated. Prostate weight, prostate index (prostate/body weight ratio), expression of type Ⅱ 5α-reductase, androgen receptor (AR) and prostate specific antigen were all decreased in prostate tissue of BPH mice after administration of neferine. Neferine also downregulated the expression of pro-caspase-3, uncleaved PARP, TGF-β1, TGF-β receptor Ⅱ (TGFBR2), p-Smad2/3, N-cadherin and vimentin. Expression of E-cadherin, cleaved PARP and cleaved caspase-3 was increased by neferine treatment. 1-100 μM neferine with 1 μM testosterone or 10 nM TGF-β1 were added to the culture medium of the normal human prostate stroma cell line, WPMY-1, for 24 h or 48 h. Neferine inhibited cell growth and production of reactive oxygen species (ROS) in testosterone-treated WPMY-1 cells and regulated the expression of androgen signaling pathway proteins and those related to epithelial-mesenchymal transition (EMT). Moreover, TGF-β1, TGFBR2 and p-Smad2/3, N-cadherin and vimentin expression were increased but E-cadherin was decreased after 24 h TGF-β1 treatment in WPMY-1 cells. Neferine reversed the effects of TGF-β1 treatment in WPMY-1 cells. Neferine appeared to suppress prostate growth by regulating the EMT, AR and TGF-β/Smad signaling pathways in the prostate and is suggested as a potential agent for BPH treatment.
Collapse
|
24
|
Li ZY, Lv S, Qiao J, Wang SQ, Ji F, Li D, Yan J, Wei Y, Wu L, Gao C, Li ML. Acacetin Alleviates Cardiac Fibrosis via TGF-β1/Smad and AKT/mTOR Signal Pathways in Spontaneous Hypertensive Rats. Gerontology 2023; 69:1076-1094. [PMID: 37348478 DOI: 10.1159/000531596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
INTRODUCTION Attenuating cardiac fibroblasts activation contributes to reducing excessive extracellular matrix deposition and cardiac structural remodeling in hypertensive hearts. Acacetin plays a protective role in doxorubicin-induced cardiomyopathy and ischemia/reperfusion injury. The aim of this study was to investigate the potential molecular mechanisms underlying the protective role of acacetin on hypertension-induced cardiac fibrosis. METHODS Echocardiography, histopathological methods, and Western blotting techniques were used to evaluate the anti-fibrosis effects in spontaneous hypertensive rat (SHR) which were daily intragastrically administrated with acacetin (10 mg/kg and 20 mg/kg) for 6 weeks. Angiotensin II (Ang II) was used to induce cellular fibrosis in human cardiac fibroblasts (HCFs) in the absence and presence of acacetin treatment for 48 h. RESULTS Acacetin significantly alleviated hypertension-induced increase in left ventricular (LV) posterior wall thickness and LV mass index in SHR. The expressions of collagen-1, collagen-III, and alpha-smooth muscle actin (α-SMA) were remarkedly decreased after treatment with acacetin (n = 6, p < 0.05). In cultured HCFs, acacetin significantly attenuated Ang II-induced migration and proliferation (n = 6, p < 0.05). Moreover, acacetin substantially inhibited Ang II-induced upregulation of collagen-1 and collagen-III (n = 6, p < 0.05) and downregulated the expression of alpha-SMA in HCFs. Additionally, acacetin decreased the expression of TGF-β1, p-Smad3/Smad3, and p-AKT and p-mTOR but increased the expression of Smad7 (n = 6, p < 0.05). Further studies found that acacetin inhibited TGF-β1 agonist SRI and AKT agonist SC79 caused fibrotic effect. CONCLUSION Acacetin inhibits the hypertension-associated cardiac fibrotic processes through regulating TGF-β/Smad3, AKT/mTOR signal transduction pathways.
Collapse
|
25
|
Lv W, Guo H, Wang J, Ma R, Niu L, Shang Y. PDLIM2 can inactivate the TGF-β/Smad pathway to inhibit the malignant behavior of ovarian cancer cells. Cell Biochem Funct 2023. [PMID: 37170668 DOI: 10.1002/cbf.3801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
PDZ-LIM domain-containing Protein 2 (PDLIM2) has been reported to be downregulated in ovarian cancer. However, its exact function and mechanism in regulating ovarian cancer progression have not been elucidated. This work researched the exert effect and mechanism of PDLIM2 on ovarian cancer progression. Briefly, PDLIM2 expression in clinical tissues of ovarian cancer patients and cells was investigated by qRT-PCR and Western blot. The function of PDLIM2 on the proliferation, colony formation, migration and invasion of ovarian cancer cells was explored via cell counting kit-8, colony formation and Transwell assays. To verify whether PDLIM2 regulates ovarian cancer progression via regulating the transforming growth factor-β (TGF-β)/Smad pathway, exogenous TGF-β (10 ng/mL) treatment was performed on the PDLIM2-overexpressed ovarian cancer cells. PDLIM2 effect on the in vivo growth of ovarian cancer cells was researched by establishing a xenograft tumor model. Immunohistochemistry and Western blot were performed to protein expression in cells and tissues. As a result, PDLIM2 was low-expressed in ovarian cancer tissues/cells. PDLIM2 upregulation attenuated the proliferation, colony formation, migration, invasion and epithelial-mesenchymal transition (EMT) of ovarian cancer cells, and inactivated the TGF-β/Smad pathway. The opposite results were found in the PDLIM2-silenced ovarian cancer cells. Exogenous TGF-β treatment abrogated the inhibition of PDLIM2 on the malignant behavior of ovarian cancer cells. PDLIM2 upregulation attenuated the in vivo growth and EMT of ovarian cancer cells. Thus, PDLIM2 attenuates the proliferation, migration, invasion and EMT of ovarian cancer cells via inactivating the TGF-β/Smad pathway. PDLIM2 may be a usefully target for ovarian cancer treatment.
Collapse
|