1
|
Duque MP, Naser AM, dos Santos GR, O’Driscoll M, Paul KK, Rahman M, Alam MS, Al-Amin HM, Rahman MZ, Hossain ME, Paul RC, Luby SP, Cauchemez S, Vanhomwegen J, Gurley ES, Salje H. Informing an investment case for Japanese encephalitis vaccine introduction in Bangladesh. SCIENCE ADVANCES 2024; 10:eadp1657. [PMID: 39121225 PMCID: PMC11313847 DOI: 10.1126/sciadv.adp1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Japanese encephalitis virus (JEV) is a major threat to human health. Bangladesh is considering introducing a JEV vaccine; however, the investment case is hampered by a limited understanding of key aspects of JEV ecology. We conducted a seroprevalence study in a high-incidence region using an assay that limits cross-reactivity with dengue virus. We also trapped mosquitoes and collected information about potential host species. We used mathematical models to recover risk factors for infection and underlying probabilities of severe disease and death. We observed 19.0% [95% confidence interval (CI):17.1 to 21.1] of JEV antibodies. On average, 0.7% (95% CI: 0.2 to 2.0) of the susceptible population gets infected yearly, with pig proximity being the main human infection risk factor. Our traps captured 10 different mosquito species that have been linked with JEV transmission. We estimated that 1 in 1000 infections results in severe disease, 1 in 10,000 results in death, and 76% of severe cases are missed by surveillance.
Collapse
|
2
|
Marti A, Nater A, Pego Magalhaes J, Almeida L, Lewandowska M, Liniger M, Ruggli N, Grau-Roma L, Brito F, Alnaji FG, Vignuzzi M, García-Nicolás O, Summerfield A. Fitness adaptations of Japanese encephalitis virus in pigs following vector-free serial passaging. PLoS Pathog 2024; 20:e1012059. [PMID: 39186783 PMCID: PMC11379391 DOI: 10.1371/journal.ppat.1012059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/06/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic mosquito-transmitted Flavivirus circulating in birds and pigs. In humans, JEV can cause severe viral encephalitis with high mortality. Considering that vector-free direct virus transmission was observed in experimentally infected pigs, JEV introduction into an immunologically naïve pig population could result in a series of direct transmissions disrupting the alternating host cycling between vertebrates and mosquitoes. To assess the potential consequences of such a realistic scenario, we passaged JEV ten times in pigs. This resulted in higher in vivo viral replication, increased shedding, and stronger innate immune responses in pigs. Nevertheless, the viral tissue tropism remained similar, and frequency of direct transmission was not enhanced. Next generation sequencing showed single nucleotide deviations in 10% of the genome during passaging. In total, 25 point mutations were selected to reach a frequency of at least 35% in one of the passages. From these, six mutations resulted in amino acid changes located in the precursor of membrane, the envelope, the non-structural 3 and the non-structural 5 proteins. In a competition experiment with two lines of passaging, the mutation M374L in the envelope protein and N275D in the non-structural protein 5 showed a fitness advantage in pigs. Altogether, the interruption of the alternating host cycle of JEV caused a prominent selection of viral quasispecies as well as selection of de novo mutations associated with fitness gains in pigs, albeit without enhancing direct transmission frequency.
Collapse
|
3
|
Krambrich J, Akaberi D, Lindahl JF, Lundkvist Å, Hesson JC. Vector competence of Swedish Culex pipiens mosquitoes for Japanese encephalitis virus. Parasit Vectors 2024; 17:220. [PMID: 38741172 PMCID: PMC11092019 DOI: 10.1186/s13071-024-06269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.
Collapse
|
4
|
Ballav S, Biswas AK, Saha P, Guha U, Pramanik T, Maji AK, Guha SK. Japanese Encephalitis Virus Infection among Wild Caught Vectors Mosquitoes and Domestic Pigs in Northern West Bengal, India. Indian J Public Health 2023; 67:646-653. [PMID: 38934834 DOI: 10.4103/ijph.ijph_1734_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 10/30/2023] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Japanese encephalitis (JE) is an emerging zoonotic disease caused by JE virus (JEV) and transmitted to humans from pigs or aquatic birds by vector mosquitoes in southeast Asian countries. In this study, JEV infection rate among vector mosquitoes and domestic pigs was determined by detecting viral RNA and anti-JEV antibody (immunoglobulin G), respectively. MATERIALS AND METHODS A total of 146 pool mosquitoes of Culexvishnui subgroup and 278 pig blood samples were analyzed by reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay methods, respectively. E and premembrane (PrM) gene of JEV detected among vectors were sequenced and a phylogenetic tree was constructed. RESULTS Five (5.81%) pools of Culextritaeniorhynchus were positive for JEV with pooled infection rate 1.70/1000 mosquitoes. A total of 108 (38.84%) blood samples were positive for anti-JEV antibody. Phylogenetic analysis revealed that our own E and PrM gene sequence of JEV belonging to Genotype III and showed 96.95% sequence similarities with the vaccine strain SA14-14-2. CONCLUSION It was observed that domestic pigs of northern West Bengal were highly infected with JEV. Hence, the transmission should be blocked by pig vaccination. A pilot study may be undertaken for mass vaccination of the prevailing pig population to observe any reduced rate of JEV transmission from both pig to pig and pig to human.
Collapse
|
5
|
Chiou SS, Chen JM, Chen YY, Chia MY, Fan YC. The feasibility of field collected pig oronasal secretions as specimens for the virologic surveillance of Japanese encephalitis virus. PLoS Negl Trop Dis 2021; 15:e0009977. [PMID: 34860839 PMCID: PMC8673640 DOI: 10.1371/journal.pntd.0009977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/15/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Virologic surveillance of Japanese encephalitis virus (JEV) relies on collecting pig blood specimens and adult mosquitoes in the past. Viral RNAs extracted from pig blood specimens suffer from low detecting positivity by reverse transcription PCR (RT-PCR). The oronasal transmission of the virus has been demonstrated in experimentally infected pigs. This observation suggested oronasal specimens could be useful source in the virus surveillance. However, the role of this unusual route of transmission remains unproven in the operational pig farm. In this study, we explore the feasibility of using pig oronasal secretions collected by chewing ropes to improve the positivity of detection in commercial pig farms. The multiplex genotype-specific RT-PCR was used in this study to determine and compare the positivity of detecting JEV viral RNAs in pig’s oronasal secretions and blood specimens, and the primary mosquito vector. Oronasal specimens had the overall positive rate of 6.0% (95% CI 1.3%–16.6%) (3/50) to 10.0% (95% CI 2.1%–26.5%) (3/30) for JEV during transmission period despite the negative results of all blood-derived specimens (n = 2442). Interestingly, pig oronasal secretions and female Culex tritaeniorhynchus mosquito samples collected from the same pig farm showed similar viral RNA positive rates, 10.0% (95% CI 2.1%–26.5%) (3/30) and 8.9% (95% CI 2.5%–21.2%) (4/45), respectively (p> 0.05). Pig oronasal secretion-based surveillance revealed the seasonality of viral activity and identified closely related genotype I virus derived from the mosquito isolates. This finding indicates oronasal secretion-based RT-PCR assay can be a non-invasive, alternative method of implementing JEV surveillance in the epidemic area prior to the circulation of virus-positive mosquitoes. Mosquito-borne Japanese encephalitis virus (JEV) has either endemic or seasonal patterns of transmission in Asia and Australia. Most hosts infected by the virus remains asymptomatic but can result in severe encephalitis in humans and horses, and abortion or stillbirth in pregnant sows. Isolation of virus in adult mosquitoes or pig seroconversion has been used as an early indicator of upcoming JE outbreak in humans. Genotype identification of the virus is important since current human and domestic animal vaccines are all genotype III (GIII) specific. GIII vaccine elicited immunity has reduced cross-protections to genotypes other than GIII. Our virologic surveillance using pig’s oronasal secretion detected higher prevalence and earlier genotype I virus activity than using pig’s blood and mosquitoes, respectively. This proposed surveillance tool might be more effective that will allow the public health agency to properly implement the preventive measures, such as implementing mosquito control, encouraging booster vaccination, and encouraging the use of mosquito repellent, to reduce the impact of upcoming outbreak. Collection of pig’s oronasal secretion is non-invasive to pigs and less technically demanding to operators. Thus we propose the use of pig’s oronasal secretions as the novel source of specimens for virologic surveillance to replace the traditional pig blood or adult mosquito specimens to monitor and control JE outbreak/epidemic in the future.
Collapse
|
6
|
Moore SM. The current burden of Japanese encephalitis and the estimated impacts of vaccination: Combining estimates of the spatial distribution and transmission intensity of a zoonotic pathogen. PLoS Negl Trop Dis 2021; 15:e0009385. [PMID: 34644296 PMCID: PMC8544850 DOI: 10.1371/journal.pntd.0009385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a major cause of neurological disability in Asia and causes thousands of severe encephalitis cases and deaths each year. Although Japanese encephalitis (JE) is a WHO reportable disease, cases and deaths are significantly underreported and the true burden of the disease is not well understood in most endemic countries. Here, we first conducted a spatial analysis of the risk factors associated with JE to identify the areas suitable for sustained JEV transmission and the size of the population living in at-risk areas. We then estimated the force of infection (FOI) for JE-endemic countries from age-specific incidence data. Estimates of the susceptible population size and the current FOI were then used to estimate the JE burden from 2010 to 2019, as well as the impact of vaccination. Overall, 1,543.1 million (range: 1,292.6-2,019.9 million) people were estimated to live in areas suitable for endemic JEV transmission, which represents only 37.7% (range: 31.6-53.5%) of the over four billion people living in countries with endemic JEV transmission. Based on the baseline number of people at risk of infection, there were an estimated 56,847 (95% CI: 18,003-184,525) JE cases and 20,642 (95% CI: 2,252-77,204) deaths in 2019. Estimated incidence declined from 81,258 (95% CI: 25,437-273,640) cases and 29,520 (95% CI: 3,334-112,498) deaths in 2010, largely due to increases in vaccination coverage which have prevented an estimated 314,793 (95% CI: 94,566-1,049,645) cases and 114,946 (95% CI: 11,421-431,224) deaths over the past decade. India had the largest estimated JE burden in 2019, followed by Bangladesh and China. From 2010-2019, we estimate that vaccination had the largest absolute impact in China, with 204,734 (95% CI: 74,419-664,871) cases and 74,893 (95% CI: 8,989-286,239) deaths prevented, while Taiwan (91.2%) and Malaysia (80.1%) had the largest percent reductions in JE burden due to vaccination. Our estimates of the size of at-risk populations and current JE incidence highlight countries where increasing vaccination coverage could have the largest impact on reducing their JE burden. Japanese encephalitis is a vector-transmitted, zoonotic disease that is endemic throughout a large portion of Asia. Vaccination has significantly reduced the JE burden in several formerly high-burden countries, but vaccination coverage remains limited in several other countries with high JE burdens. A better understanding of both the spatial distribution and the magnitude of the burden in endemic countries is critical for future disease prevention efforts. To estimate the number of people living in areas within Asia suitable for JEV transmission we conducted a spatial analysis of the risk factors associated with JE. We estimate that over one billion people live in areas suitable for local JEV transmission. We then combined these population-at-risk estimates with estimates of the force of infection (FOI) to model the national-level burden of JE (annual cases and deaths) over the past decade. Increases in vaccination coverage have reduced JE incidence from over 80,000 cases in 2010 to fewer than 57,000 cases in 2019. We estimate that vaccination has prevented almost 315,000 cases and 115,000 deaths in the past decade. Our results also call attention to the countries, and high-risk areas within countries, where increases in vaccination coverage are most needed.
Collapse
|
7
|
Auerswald H, Maquart PO, Chevalier V, Boyer S. Mosquito Vector Competence for Japanese Encephalitis Virus. Viruses 2021; 13:v13061154. [PMID: 34208737 PMCID: PMC8234777 DOI: 10.3390/v13061154] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic pathogen mainly found in East and Southeast Asia and transmitted by mosquitoes. The objective of this review is to summarize the knowledge on the diversity of JEV mosquito vector species. Therefore, we systematically analyzed reports of JEV found in field-caught mosquitoes as well as experimental vector competence studies. Based on the investigated publications, we classified 14 species as confirmed vectors for JEV due to their documented experimental vector competence and evidence of JEV found in wild mosquitoes. Additionally, we identified 11 mosquito species, belonging to five genera, with an experimentally confirmed vector competence for JEV but lacking evidence on their JEV transmission capacity from field-caught mosquitoes. Our study highlights the diversity of confirmed and potential JEV vector species. We also emphasize the variety in the study design of vector competence investigations. To account for the diversity of the vector species and regional circumstances, JEV vector competence should be studied in the local context, using local mosquitoes with local virus strains under local climate conditions to achieve reliable data. In addition, harmonization of the design of vector competence experiments would lead to better comparable data, informing vector and disease control measures.
Collapse
|
8
|
Tu T, Xu K, Xu L, Gao Y, Zhou Y, He Y, Liu Y, Liu Q, Ji H, Tang W. Association between meteorological factors and the prevalence dynamics of Japanese encephalitis. PLoS One 2021; 16:e0247980. [PMID: 33657174 PMCID: PMC7928514 DOI: 10.1371/journal.pone.0247980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
Japanese encephalitis (JE) is an acute infectious disease caused by the Japanese encephalitis virus (JEV) and is transmitted by mosquitoes. Meteorological conditions are known to play a pivotal role in the spread of JEV. In this study, a zero-inflated generalised additive model and a long short-term memory model were used to assess the relationship between the meteorological factors and population density of Culex tritaeniorhynchus as well as the incidence of JE and to predict the prevalence dynamics of JE, respectively. The incidence of JE in the previous month, the mean air temperature and the average of relative humidity had positive effects on the outbreak risk and intensity. Meanwhile, the density of all mosquito species in livestock sheds (DMSL) only affected the outbreak risk. Moreover, the region-specific prediction model of JE was developed in Chongqing by used the Long Short-Term Memory Neural Network. Our study contributes to a better understanding of the JE dynamics and helps the local government establish precise prevention and control measures.
Collapse
|
9
|
Hameed M, Wahaab A, Nawaz M, Khan S, Nazir J, Liu K, Wei J, Ma Z. Potential Role of Birds in Japanese Encephalitis Virus Zoonotic Transmission and Genotype Shift. Viruses 2021; 13:357. [PMID: 33668224 PMCID: PMC7996159 DOI: 10.3390/v13030357] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Japanese encephalitis (JE) is a vaccine-preventable disease caused by the Japanese encephalitis virus (JEV), which is primarily prevalent in Asia. JEV is a Flavivirus, classified into a single serotype with five genetically distinct genotypes (I, II, III, IV, and V). JEV genotype III (GIII) had been the most dominant strain and caused numerous outbreaks in the JEV endemic countries until 1990. However, recent data shows the emergence of JEV genotype I (GI) as a dominant genotype and it is gradually displacing GIII. The exact mechanism of this genotype displacement is still unclear. The virus can replicate in mosquito vectors and vertebrate hosts to maintain its zoonotic life cycle; pigs and aquatic wading birds act as an amplifying/reservoir hosts, and the humans and equines are dead-end hosts. The important role of pigs as an amplifying host for the JEV is well known. However, the influence of other domestic animals, especially birds, that live in high abundance and close proximity to the human is not well studied. Here, we strive to briefly highlight the role of birds in the JEV zoonotic transmission, discovery of birds as a natural reservoirs and amplifying host for JEV, species of birds susceptible to the JEV infection, and the proposed effect of JEV on the poultry industry in the future, a perspective that has been neglected for a long time. We also discuss the recent in vitro and in vivo studies that show that the newly emerged GI viruses replicated more efficiently in bird-derived cells and ducklings/chicks than GIII, and an important role of birds in the JEV genotype shift from GIII to GI.
Collapse
|
10
|
Faizah AN, Kobayashi D, Amoa-Bosompem M, Higa Y, Tsuda Y, Itokawa K, Miura K, Hirayama K, Sawabe K, Isawa H. Evaluating the competence of the primary vector, Culex tritaeniorhynchus, and the invasive mosquito species, Aedes japonicus japonicus, in transmitting three Japanese encephalitis virus genotypes. PLoS Negl Trop Dis 2020; 14:e0008986. [PMID: 33370301 PMCID: PMC7793266 DOI: 10.1371/journal.pntd.0008986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/08/2021] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
Japanese encephalitis virus (JEV) is maintained in an enzootic cycle between swine, water birds, and mosquitoes. JEV has circulated indigenously in Asia, with Culex tritaeniorhynchus as the primary vector. In some areas where the primary vector is scarce or absent, sporadic cases of Japanese encephalitis have been reported, with Aedes japonicus japonicus presumed to have the potential as a secondary vector. As one of the world's most invasive culicid species, Ae. j. japonicus carries a considerable health risk for spreading diseases to wider areas, including Europe and North America. Thus, evaluation of its competency as a JEV vector, particularly in a native population, will be essential in preventing potential disease spread. In this study, the two mosquito species' vector competence in transmitting three JEV genotypes (I, III, and V) was assessed, with Cx. tritaeniorhynchus serving as a point of reference. The mosquitoes were virus-fed and the infection rate (IR), dissemination rate (DR), and transmission rate (TR) evaluated individually by either RT-qPCR or focus forming assay. Results showed striking differences between the two species, with IR of 95% (261/274) and 9% (16/177) in Cx. tritaeniorhynchus and Ae. j. japonicus, respectively. Both mosquitoes were susceptible to all three JEV genotypes with significant differences in IR and mean viral titer. Results confirm the primary vector's competence, but the fact that JEV was able to establish in Ae. j. japonicus is of public health significance, and with 2%-16% transmission rate it has the potential to successfully transmit JEV to the next host. This may explain the human cases and infrequent detection in primary vector-free areas. Importantly, Ae. j. japonicus could be a relevant vector spreading the disease into new areas, indicating the need for security measures in areas where the mosquito is distributed or where it may be introduced.
Collapse
|
11
|
Liu K, Xiao C, Xi S, Hameed M, Wahaab A, Shao D, Li Z, Li B, Wei J, Qiu Y, Miao D, Zhu H, Ma Z. Mosquito Defensins Enhance Japanese Encephalitis Virus Infection by Facilitating Virus Adsorption and Entry within the Mosquito. J Virol 2020; 94:e01164-20. [PMID: 32796073 PMCID: PMC7565626 DOI: 10.1128/jvi.01164-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a viral zoonosis that can cause viral encephalitis, death, and disability. Although the Culex mosquito is the primary vector of JEV, little is known about JEV transmission by this kind of mosquito. Here, we found that mosquito defensin facilitated the adsorption of JEV on target cells via the defensin/lipoprotein receptor-related protein 2 (LRP2) axis. Mosquito defensin bound the ED III domain of the viral envelope (E) protein and directly mediated efficient virus adsorption on the target cell surface; the receptor LRP2, which is expressed on the cell surface, affected defensin-dependent adsorption. As a result, mosquito defensin enhanced JEV infection in the salivary gland, increasing the possibility of viral transmission by mosquitoes. These findings demonstrate the novel role of mosquito defensin in JEV infection and the mechanisms through which the virus exploits mosquito defensin for infection and transmission.IMPORTANCE In this study, we observed the complex roles of mosquito defensin in JEV infection; mosquito defensin exhibited a weak antiviral effect but strongly enhanced binding. In the latter, defensin directly binds the ED III domain of the viral E protein and promotes the adsorption of JEV to target cells by interacting with lipoprotein receptor-related protein 2 (LRP2), thus accelerating virus entry. Together, our results indicate that mosquito defensin plays an important role in facilitating JEV infection and potential transmission.
Collapse
|
12
|
Ghosh SK, Podder D, Panja AK, Mukherjee S. In target areas where human mosquito-borne diseases are diagnosed, the inclusion of the pre-adult mosquito aquatic niches parameters will improve the integrated mosquito control program. PLoS Negl Trop Dis 2020; 14:e0008605. [PMID: 32797109 PMCID: PMC7449462 DOI: 10.1371/journal.pntd.0008605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/26/2020] [Accepted: 07/15/2020] [Indexed: 11/19/2022] Open
Abstract
In human communities inhabiting areas-such as West Bengal- India-where perpetuate the pre-imago & adult developmental stages of mosquitoes; many infectious diseases are still diagnosed such as Dengue, Malaria and Acute Encephalitis Syndrome. The control of the aquatic developmental stages is one of the easiest way to prevent the emergence of adults-the blood feeding adult females being thus prevented to sample their blood meal and to lay their eggs in the aquatic milieu where develop the aquatic pre-imaginal developmental stages. Moreover, reducing the adult population size also the probability of for the blood feeding adult female mosquitoes to act as hosts and vectors of the arboviruses such as dengue virus & Japanese encephalitis virus as well as of Plasmodium. Several environmental factors including water quality parameters are responsible for the selection of oviposition sites by the female mosquitoes. In our study, larval densities of three important mosquitoes (Aedes/A. albopictus, Anopheles/An. stephensi and Culex/C. vishnui) were measured and water qualities of their habitat i.e. pH, Specific Conductance, Dissolved Oxygen, Chemical Oxygen Demand, Total alkalinity (Talk), Hardness, Nitrate nitrogen and Ammonia nitrogen were analyzed in 2017 and 2018 in many districts of West Bengal where humans beings are suffering from arboviruses and /or malaria. Whereas we have found positive correlation of density of C. vishnui and A. albopictus with the water factors except Chemical Oxygen Demand (COD) and Talk, for An. stephensi all these factors except pH, COD and Talk have positive correlation. Hardness of the water shows positive correlation with the density of An. stephensi and C. vishnui but negative correlation with density of A. albopictus. Contour plot analysis demonstrates that occurrence of each mosquito species lies in between specific range of water factors. Inter- correlation analysis revealed that mosquitoes were negatively correlated with each other. A positive correlation of the water quality parameters and larval density, over two successive years, was also noticed. In conclusion, the increasing level of pollution due to industrial and other irresponsible waste management system which changes the water quality parameters may also influence mosquito population.
Collapse
|
13
|
Mileno MD. Japanese Encephalitis Vaccine. RHODE ISLAND MEDICAL JOURNAL (2013) 2020; 103:49-50. [PMID: 32752568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Travelers to 24 endemic countries in Asia may be at risk for Japanese encephalitis. The ACIP has recently expanded guidelines on the use of Ixiaro, the inactivated Japanese encephalitis vaccine. This article reviews the disease burden of Japanese encephalitis and the role of a travel clinic in guiding travelers to Asia regarding decision-making about the use of this highly protective vaccine.
Collapse
|
14
|
Ladreyt H, Durand B, Dussart P, Chevalier V. How Central Is the Domestic Pig in the Epidemiological Cycle of Japanese Encephalitis Virus? A Review of Scientific Evidence and Implications for Disease Control. Viruses 2019; 11:E949. [PMID: 31618959 PMCID: PMC6832429 DOI: 10.3390/v11100949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the existence of human vaccines, Japanese encephalitis (JE) remains the leading cause of human encephalitis in Asia. Pigs are described as the main amplifying host, but their role in JE epidemiology needs to be reassessed in order to identify and implement efficient control strategies, for both human and animal health. We aimed to provide a systematic review of publications linked to JE in swine, in terms of both individual and population characteristics of JE virus (JEV) infection and circulation, as well as observed epidemiological patterns. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to select and analyze relevant articles from the Scopus database, 127 of which were included in the review. Pigs are central, but the implication of secondary hosts cannot be ruled out and should be further investigated. Although human vaccination cannot eradicate the virus, it is clearly the most important means of preventing human disease. However, a better understanding of the actual involvement of domestic pigs as well as other potential JEV hosts in different JEV epidemiological cycles and patterns could help to identify additional/complementary control measures, either by targeting pigs or not, and in some specific epidemiological contexts, contribute to reduce virus circulation and protect humans from JEV infection.
Collapse
|
15
|
Hameed M, Liu K, Anwar MN, Wahaab A, Safdar A, Di D, Boruah P, Xu J, Wang X, Li B, Zhu H, Nawaz M, Shao D, Qiu Y, Wei J, Ma Z. The emerged genotype I of Japanese encephalitis virus shows an infectivity similar to genotype III in Culex pipiens mosquitoes from China. PLoS Negl Trop Dis 2019; 13:e0007716. [PMID: 31557156 PMCID: PMC6762057 DOI: 10.1371/journal.pntd.0007716] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Japanese Encephalitis virus (JEV) is a zoonotic flavivirus that represents the most significant etiology of childhood viral neurological infections throughout the Asia. During the last 20 years, JEV genotype dominance has shifted from genotype III (GIII) to genotype I (GI). To date, the exact mechanism of this displacement is still not known. Culex (Cx.) mosquitoes are the most common species in China and play an essential role in maintaining JEV enzootic transmission cycle. In this study, we used Cx. pipiens mosquitoes from China as an in vivo mosquito model to explore if mosquitoes played a potential role in JEV genotype shift. We exposed female Cx. pipiens mosquitoes orally to either GI or GIII JEV strains. Midgut, whole mosquitoes, secondary organs, and salivary glands of JEV-infected mosquitoes were collected at 7 and 14 days of post infection (dpi) and subjected to measure the infection rate, replication kinetics, dissemination rate and transmission potential of the infected JEV strains in Cx. pipiens mosquitoes by 50% tissue culture infective dose assay. We found that Cx. pipiens mosquito was competent vector for both GI and GIII JEV infection, with similar infection rates and growth kinetics. After the establishment of infection, Cx. pipiens mosquitoes disseminated both JEV genotypes to secondary organs at similar rates of dissemination. A few GI-infected mosquito salivary glands (16.2%) were positive for GI virus, whereas GIII virus was undetectable in GIII-infected mosquito salivary glands at 7 dpi. However, 29.4% (5/17) and 36.3% (8/22) were positive for GI- and GIII-infected mosquito salivary glands at 14 dpi, respectively, showing an increase in JEV positive rate. No statistical difference in the transmission rate between GI- and GIII-infected mosquitoes was detected. Our experiment data demonstrated that GI and GIII viruses have similar infectivity in Cx. pipiens mosquitoes, suggesting that Cx. pipiens mosquitoes from China may not play a critical role in JEV genotype shift. Although the current data were obtained solely from Cx. pipiens mosquitoes, it is likely that the conclusion drawn could be extrapolated to the role of mosquitoes in JEV genotype shift.
Collapse
|
16
|
Sahu SS, Sonia T, Dash S, Gunasekaran K, Jambulingam P. Insecticide resistance status of three vectors of Japanese encephalitis in east central India. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:213-219. [PMID: 30565276 DOI: 10.1111/mve.12352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/10/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Japanese encephalitis (JE) has been reported in different districts of Odisha state (east central India) since 1992. During 2016, a major outbreak of JE and acute encephalitis syndrome (AES) occurred in the Malkangiri district of Odisha, causing 103 deaths in children, of which 37 were caused by JE and 66 by AES. Information on insecticide resistance in JE vectors is important for the selection of appropriate insecticides for use in vector control. The present study was designed to determine the resistance status of three important vectors of JE, Culex vishnui, Culex tritaeniorhynchus and Culex bitaeniorhynchus (Diptera: Culicidae), against dichlorodiphenyltrichloroethane (DDT), malathion and deltamethrin in three districts of Odisha state affected by JE. Female adult mosquitoes were collected using mouth aspirators both indoors and outdoors in JE-affected villages and used in susceptibility bioassays following World Health Organization guidelines. Knock-downs were recorded every 10 min up to 1 h and mortality rates were recorded at 24 h post-exposure. Culex vishnui and Cx. tritaeniorhynchus showed resistance to DDT, malathion and deltamethrin, whereas Cx. bitaeniorhynchus was susceptible in all study districts. The information generated by this study will be highly useful in the planning and implementing of appropriate vector control operations for the prevention and control of JE in east central India.
Collapse
|
17
|
Chai C, Palinski R, Xu Y, Wang Q, Cao S, Geng Y, Zhao Q, Wen Y, Huang X, Yan Q, Ma X, Wen X, Huang Y, Han X, Ma W, Wu R. Aerosol and Contact Transmission Following Intranasal Infection of Mice with Japanese Encephalitis Virus. Viruses 2019; 11:v11010087. [PMID: 30669601 PMCID: PMC6356382 DOI: 10.3390/v11010087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Japanese encephalitis virus (JEV), a causative agent of severe viral encephalitis in humans, has a biological cycle fluctuating between transmission in mosquitoes and avian species and amplification in pigs. Contact transmission of JEV was recently shown in pigs in the absence of arthropod vectors. Here, we show JEV transmission between infected and contact mice and further demonstrate that JEV transmission occurs between animals via aerosols, as both viral RNA and infectious JEV were detected in direct contact- and aerosol-exposed contact animals. The results of this study change our understanding of JEV transmission in densely populated regions and may help to explain JEV outbreaks without the presence of arthropod vectors.
Collapse
|
18
|
Fang Y, Zhang Y, Zhou ZB, Xia S, Shi WQ, Xue JB, Li YY, Wu JT. New strains of Japanese encephalitis virus circulating in Shanghai, China after a ten-year hiatus in local mosquito surveillance. Parasit Vectors 2019; 12:22. [PMID: 30626442 PMCID: PMC6327439 DOI: 10.1186/s13071-018-3267-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Continuous vector pathogen surveillance is essential for preventing outbreaks of mosquito-borne diseases. Several mosquito species acting as vectors of Japanese encephalitis virus (JEV), dengue virus, Zika virus, malaria parasites and other pathogens are primary mosquito species in Shanghai, China. However, few surveys of human pathogenic arboviruses in mosquitoes in Shanghai have been reported in the last ten years. Therefore, in this study, we evaluated mosquito activity in Shanghai, China during 2016 and tested for the presence of alphaviruses, flaviviruses, orthobunyaviruses and several parasitic pathogens. RESULTS Five pooled samples were JEV-positive [4/255 pools of Culex tritaeniorhynchus and 1/256 pools of Cx. pipiens (s.l.)] based on analysis of the NS5 gene. Alphaviruses, orthobunyaviruses, Plasmodium and filariasis were not found in this study. Phylogenetic and molecular analyses revealed that the JEV strains belonged to genotype I. Moreover, newly detected Shanghai JEV strains were genetically close to previously isolated Shandong strains responsible for transmission during the 2013 Japanese encephalitis (JE) outbreak in Shandong Province, China but were more distantly related to other Shanghai strains detected in the early 2000s. The E proteins of the newly detected Shanghai JEV strains differed from that in the live attenuated vaccine SA14-14-2-derived strain at six amino residues: E130 (Ile→Val), E222 (Ala→Ser), E327 (Ser→Thr), E366 (Arg→Ser/Pro), E393 (Asn→Ser) and E433 (Val→Ile). However, no differences were observed in key amino acid sites related to antigenicity. Minimum JEV infection rates were 1.01 and 0.65 per 1000 Cx. tritaeniorhynchus and Cx. pipiens (s.l.), respectively. CONCLUSIONS Five new Shanghai JEV genotype I strains, detected after a ten-year hiatus in local mosquito surveillance, were genetically close to strains involved in the 2013 Shandong JE outbreak. Because JEV is still circulating, vaccination in children should be extensively and continuously promoted. Moreover, JEV mosquito surveillance programmes should document the genotype variation, intensity and distribution of circulating viruses for use in the development and implementation of disease prevention and control strategies.
Collapse
|
19
|
Liu MD, Li CX, Huang Y, Dong YD, Nu W, Zhao TY. Spatial Distribution of Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) in Relation to Pigsties and Other Geo-environmental Features in Dao County, Hunan Province, China. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:241-246. [PMID: 30169709 DOI: 10.1093/jme/tjy135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the spatial distribution of Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) (the vector of Japanese B Encephalitis) and geo-environmental features (rice fields, forests, watercourses, and highways) correlated with their abundance in pigsties of Dao County, Hunan Province, China. First, light trapping in pigsties was carried out to determine vector density. Second, based on Advanced Land Observing Satellite remote-sensing datasets, spatial datasets of mosquito density and various geo-environmental features were constructed using Geography Information System. Finally, spatial statistical analysis and general linear regression were used to analyze the spatial distribution of vectors in relation to the geo-environmental features correlating with the abundance of mosquitoes in pigsties. As the results show, the distribution of mosquitoes in pigsties was not spatially autocorrelated, and several geo-environmental features that were either positively or negatively correlated with mosquito abundance in pigsties were identified. The application of these results to improve the control of vectors of Japanese B Encephalitis is also discussed.
Collapse
|
20
|
Abstract
Mosquito-borne diseases have become more common as previously geographically isolated diseases have spread globally. Chikungunya, dengue, Japanese encephalitis, malaria, West Nile, yellow fever, and Zika are a few of the common and emerging viral diseases spread by mosquitoes. A thorough patient history, physical, and knowledge of diagnostic testing based on symptom duration is important to make a quick and accurate diagnosis. Because the treatment for many of these diseases is supportive, the emphasis is on reducing risk and spread of infection.
Collapse
|
21
|
Liu B, Gao X, Ma J, Jiao Z, Xiao J, Wang H. Influence of Host and Environmental Factors on the Distribution of the Japanese Encephalitis Vector Culex tritaeniorhynchus in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091848. [PMID: 30150565 PMCID: PMC6165309 DOI: 10.3390/ijerph15091848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022]
Abstract
Culex tritaeniorhynchus is an important vector that transmits a variety of human and animal diseases. Japanese encephalitis (JE), an endemic disease in the Asia-Pacific region, is primarily transmitted by Cx. tritaeniorhynchus. Insufficient monitoring of vector mosquitoes has led to a poor understanding of the distribution of Cx. tritaeniorhynchus in China. To delineate the habitat of Cx. tritaeniorhynchus and any host and environmental factors that affect its distribution, we used a maximum entropy modeling method to predict its distribution in China. Our models provided high resolution predictions on the potential distribution of Cx. tritaeniorhynchus. The predicted suitable habitats of the JE vector were correlated with areas of high JE incidence in parts of China. Factors driving the distribution of Cx. tritaeniorhynchus in China were also revealed by our models. Furthermore, human population density and the maximum NDVI were the most important predictors in our models. Bioclimate factors and elevation also significantly impacted the distribution of Cx. tritaeniorhynchus. Our findings may serve as a reference for vector and disease control.
Collapse
|
22
|
Karthika P, Vadivalagan C, Thirumurugan D, Kumar RR, Murugan K, Canale A, Benelli G. DNA barcoding of five Japanese encephalitis mosquito vectors (Culex fuscocephala, Culex gelidus, Culex tritaeniorhynchus, Culex pseudovishnui and Culex vishnui). Acta Trop 2018; 183:84-91. [PMID: 29625090 DOI: 10.1016/j.actatropica.2018.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/17/2018] [Accepted: 04/01/2018] [Indexed: 12/25/2022]
Abstract
Culex mosquitoes can act as vectors of several important diseases, including Japanese encephalitis, West Nile virus, St. Louis encephalitis and equine encephalitis. Besides the neurological sequelae caused in humans, Japanese encephalitis can lead to abortion in sows and encephalitis in horses. Effective vector control and early diagnosis, along with continuous serosurveillance in animals, are crucial to fight this arboviral disease. However, the success of vector control operations is linked with the fast and reliable identification of targeted species, and knowledge about their biology and ecology. Since the DNA barcoding of Culex vectors of Japanese encephalitis is scarcely explored, here we evaluated the efficacy of this tool to identify and analyze the variations among five overlooked Culex vectors of Japanese encephalitis, Culex fuscocephala, Culex gelidus, Culex tritaeniorhynchus, Culex pseudovishnui and Culex vishnui, relying to the analysis of mitochondrial CO1 gene. Variations in their base pair range were elucidated by the entropy Hx plot. The differences among individual conspecifics and on base pair range across the same were studied. The C (501-750 bp) region showed a moderate variation among all the selected species. C. tritaeniorhynchus exhibited the highest variation in all the ranges. The observed genetic divergence was partially non-discriminatory. i.e., the overall intra- and inter nucleotide divergence was 0.0920 (0.92%) and 0.125 (1.25%), respectively. However, 10X rule fits accurately intraspecies divergence <3% for the five selected Culex species. The analysis of individual scatter plots showed threshold values (10X) of 0.008 (0.08%), 0.005 (0.05%), 0.123 (1.23%), 0.033 (0.33%) and 0.019 (0.19%) for C. fuscocephala, C. gelidus, C. tritaeniorhynchus, C. pseudovishnui and C. vishnui, respectively. The C. tritaeniorhynchus haplotypes KU497604, KU497603, AB690847 and AB690854 exhibited the highest divergence range, i.e., from 0.465 -0.546. Comparatively, the intra-divergence among the other haplotypes of C. tritaeniorhynchus ranged from 0-0.056. The maximum parsimony tree was formed by distinctive conspecific clusters with appreciable branch values illustrating their close congruence and extensive genetic deviations. Overall, this study adds valuable knowledge to the molecular biology and systematics of five overlooked mosquito species acting as major vectors of Japanese encephalitis in Asian countries.
Collapse
|
23
|
Zhang H, Rehman MU, Li K, Luo H, Lan Y, Nabi F, Zhang L, Iqbal MK, Zhu S, Javed MT, Chamba Y, Li JK. Epidemiologic Survey of Japanese Encephalitis Virus Infection, Tibet, China, 2015. Emerg Infect Dis 2018; 23:1023-1024. [PMID: 28518046 PMCID: PMC5443422 DOI: 10.3201/eid2306.152115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We investigated Japanese encephalitis virus (JEV) prevalence in high-altitude regions of Tibet, China, by using standard assays to test mosquitoes, pigs, and humans. Results confirmed that JEV has spread to these areas. Disease prevention and control strategies should be used along with surveillance to limit spread of JEV in high-altitude regions of Tibet.
Collapse
|
24
|
Bae W, Kim JH, Kim J, Lee J, Hwang ES. Changes of Epidemiological Characteristics of Japanese Encephalitis Viral Infection and Birds as a Potential Viral Transmitter in Korea. J Korean Med Sci 2018; 33:e70. [PMID: 29441740 PMCID: PMC5811662 DOI: 10.3346/jkms.2018.33.e70] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/27/2017] [Indexed: 11/20/2022] Open
Abstract
Japanese encephalitis (JE) cases have been increasingly reported recently especially in Seoul and its vicinity. Pigs are known as amplifying host of JE virus (JEV), but do not play an important role in these recent events because pig-breeding is not common in Seoul. The distribution and the density of migratory birds are correlated with JE cases in cities and they might be highly potential hosts contributing to transmit JEV in metropolitan areas. JE genotype and sero-prevalence in birds should be determined for the verification of the transmission route of JEV in the recent sporadic occurrence of JE cases in Seoul.
Collapse
|
25
|
Cheng VCC, Sridhar S, Wong SC, Wong SCY, Chan JFW, Yip CCY, Chau CH, Au TWK, Hwang YY, Yau CSW, Lo JYC, Lee CK, Yuen KY. Japanese Encephalitis Virus Transmitted Via Blood Transfusion, Hong Kong, China. Emerg Infect Dis 2018; 24. [PMID: 29043965 PMCID: PMC5749455 DOI: 10.3201/eid2401.171297] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquitoborne virus endemic to China and Southeast Asia that causes severe encephalitis in <1% of infected persons. Transmission of JEV via blood transfusion has not been reported. We report transmission of JEV via blood donation products from an asymptomatic viremic donor to 2 immunocompromised recipients. One recipient on high-dose immunosuppressive drugs received JEV-positive packed red blood cells after a double lung transplant; severe encephalitis and a poor clinical outcome resulted. JEV RNA was detected in serum, cerebrospinal fluid, and bronchoalveolar lavage fluid specimens. The second recipient had leukemia and received platelets after undergoing chemotherapy. This patient was asymptomatic; JEV infection was confirmed in this person by IgM seroconversion. This study illustrates that, consistent with other pathogenic flaviviruses, JEV can be transmitted via blood products. Targeted donor screening and pathogen reduction technologies could be used to prevent transfusion-transmitted JEV infection in highly JEV-endemic areas.
Collapse
|