1
|
Viteri JA, Temporal S, Schulz DJ. Distinct Strategies Regulate Correlated Ion Channel mRNAs and Ionic Currents in Continually versus Episodically Active Neurons. eNeuro 2024; 11:ENEURO.0320-24.2024. [PMID: 39496483 PMCID: PMC11574698 DOI: 10.1523/eneuro.0320-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Relationships among membrane currents allow central pattern generator (CPG) neurons to reliably drive motor programs. We hypothesize that continually active CPG neurons utilize activity-dependent feedback to correlate expression of ion channel genes to balance essential membrane currents. However, episodically activated neurons experience absences of activity-dependent feedback and, thus, presumably employ other strategies to coregulate the balance of ionic currents necessary to generate appropriate output after periods of quiescence. To investigate this, we compared continually active pyloric dilator (PD) neurons with episodically active lateral gastric (LG) CPG neurons of the stomatogastric ganglion (STG) in male Cancer borealis crabs. After experimentally activating LG for 8 h, we measured three potassium currents and abundances of their corresponding channel mRNAs. We found that ionic current relationships were correlated in LG's silent state, but ion channel mRNA relationships were correlated in the active state. In continuously active PD neurons, ion channel mRNAs and ionic currents are simultaneously correlated. Therefore, two distinct relationships exist between channel mRNA abundance and the ionic current encoded in these cells: in PD, a direct correlation exists between Shal channel mRNA levels and the A-type potassium current it carries. Conversely, such channel mRNA-current relationships are not detected and appear to be temporally uncoupled in LG neurons. Our results suggest that ongoing feedback maintains membrane current and channel mRNA relationships in continually active PD neurons, while in LG neurons, episodic activity serves to establish channel mRNA relationships necessary to produce the ionic current profile necessary for the next bout of activity.
Collapse
|
2
|
Levy I, Arvidson R. Cephalic ganglia transcriptomics of the American cockroach Periplaneta americana (Blattodea: Blattidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:12. [PMID: 39688382 DOI: 10.1093/jisesa/ieae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
The American cockroach Periplaneta americana (L.) (Blattodea, Blattidae) has been a model organism for biochemical and physiological study for almost a century, however, its use does not benefit from the genetic tools found in key model species such as Drosophila melanogaster. To facilitate the use of the cockroach as a model system in neuroscience and to serve as a foundation for functional and translational experimentation, a transcriptome of the cephalic ganglia was assembled and annotated, and differential expression profiles between these ganglia were assessed. The transcriptome assembly yielded >400 k transcripts, with >40 k putative coding sequences. Gene ontology and protein domain searches indicate the cerebral and gnathal ganglia (GNG) have distinct genetic expression profiles. The developmental Toll signaling pathway appears to be active in the adult central nervous system (CNS), which may suggest a separate role for this pathway besides innate immune activation or embryonic development. The catabolic glycolytic and citric acid cycle enzymes are well represented in both ganglia, but key enzymes are more highly expressed in the GNG. Both ganglia express gluconeogenic and trehaloneogenic enzymes, suggesting a larger role of the CNS in regulating hemolymph sugar homeostasis than previously appreciated. The annotation and quantification of the cephalic ganglia transcriptome reveal both canonical and novel pathways in signaling and metabolism in an adult insect and lay a foundation for future functional and genetic analysis.
Collapse
|
3
|
Rivi V, Rigillo G, Batabyal A, Lukowiak K, Pani L, Tascedda F, Benatti C, Blom JMC. Different stressors uniquely affect the expression of endocannabinoid-metabolizing enzymes in the central ring ganglia of Lymnaea stagnalis. J Neurochem 2024; 168:2848-2867. [PMID: 38922726 DOI: 10.1111/jnc.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.
Collapse
|
4
|
Rivi V, Caruso G, Caraci F, Alboni S, Pani L, Tascedda F, Lukowiak K, Blom JMC, Benatti C. Behavioral and transcriptional effects of carnosine in the central ring ganglia of the pond snail Lymnaea stagnalis. J Neurosci Res 2024; 102:e25371. [PMID: 39078068 DOI: 10.1002/jnr.25371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Carnosine is a naturally occurring endogenous dipeptide with well-recognized anti-inflammatory, antioxidant, and neuroprotective effects at the central nervous system level. To date, very few studies have been focused on the ability of carnosine to rescue and/or enhance memory. Here, we used a well-known invertebrate model system, the pond snail Lymnaea stagnalis, and a well-studied associative learning procedure, operant conditioning of aerial respiration, to investigate the ability of carnosine to enhance long-term memory (LTM) formation and reverse memory obstruction caused by an immune challenge (i.e., lipopolysaccharide [LPS] injection). Exposing snails to 1 mM carnosine for 1 h before training in addition to enhancing memory formation resulted in a significant upregulation of the expression levels of key neuroplasticity genes (i.e., glutamate ionotropic receptor N-methyl-d-aspartate [NMDA]-type subunit 1-LymGRIN1, and the transcription factor cAMP-response element-binding protein 1-LymCREB1) in snails' central ring ganglia. Moreover, pre-exposure to 1 mM carnosine before an LPS injection reversed the memory deficit brought about by inflammation, by preventing the upregulation of key targets for immune and stress response (i.e., Toll-like receptor 4-LymTLR4, molluscan defense molecule-LymMDM, heat shock protein 70-LymHSP70). Our data are thus consistent with the hypothesis that carnosine can have positive benefits on cognitive ability and be able to reverse memory aversive states induced by neuroinflammation.
Collapse
|
5
|
Ramirez MD, Bui TN, Katz PS. Cellular-resolution gene expression mapping reveals organization in the head ganglia of the gastropod, Berghia stephanieae. J Comp Neurol 2024; 532:e25628. [PMID: 38852042 PMCID: PMC11198006 DOI: 10.1002/cne.25628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
Gastropod molluscs such as Aplysia, Lymnaea, and Tritonia have been important for determining fundamental rules of motor control, learning, and memory because of their large, individually identifiable neurons. Yet only a small number of gastropod neurons have known molecular markers, limiting the ability to establish brain-wide structure-function relations. Here we combine high-throughput, single-cell RNA sequencing with in situ hybridization chain reaction in the nudibranch Berghia stephanieae to identify and visualize the expression of markers for cell types. Broad neuronal classes were characterized by genes associated with neurotransmitters, like acetylcholine, glutamate, serotonin, and GABA, as well as neuropeptides. These classes were subdivided by other genes including transcriptional regulators and unannotated genes. Marker genes expressed by neurons and glia formed discrete, previously unrecognized regions within and between ganglia. This study provides the foundation for understanding the fundamental cellular organization of gastropod nervous systems.
Collapse
|
6
|
Ngernsoungnern P, Rungsawang P, Janthaweera A, Duangsuwan P, Saowakon N, Sritangos P, Ngernsoungnern A. Ultrastructural study of neuronal cells and localization of ghrelin-like peptide and its receptor in the ganglia of the golden apple snail (Pomacea canaliculata). Tissue Cell 2024; 88:102348. [PMID: 38493758 DOI: 10.1016/j.tice.2024.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Pomacea canaliculata is an invasive snail species causing major problems in agriculture. The snail biology was then investigated. The main objective of the present study was to investigate the nervous system of the snail. The nervous system comprises pairs of cerebral, buccal, pedal, pleural, parietal ganglia and an unpaired visceral ganglion. Most neurons were concentrated at the periphery of the ganglia. The neurons were classified into four types: NR1, NR2, NR3, and NR4. The percentages of the NR3 and NR4 in the pleural and pedal ganglia were significantly higher than those of other ganglia. Ultrastructural study revealed that nuclei of all neuronal types exhibited mostly euchromatins. Many organelles including ribosomes and endoplasmic reticulum were found in their cytoplasm. However, various mitochondria were found in the NR2 and NR3. The immunohistochemistry revealed immunoreactivity of ghrelin-like peptide in the neurons of the cerebral, pleural and pedal ganglia. However, immunoreactivity of GHS-R1a-like peptide existed only in the neurons of the pleural and pedal ganglia. The present study is the first to demonstrate the existence of ghrelin-like peptide and its receptor in P. canaliculata nervous system.
Collapse
|
7
|
Veenstra JA. The neuropeptide SMYamide, a SIFamide paralog, is expressed by salivary gland innervating neurons in the American cockroach and likely functions as a hormone. Peptides 2021; 136:170466. [PMID: 33253775 DOI: 10.1016/j.peptides.2020.170466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
The SMYamide genes are paralogs of the SIFamide genes and code for neuropeptides that are structurally similar to SIFamide. In the American cockroach, Periplanea americana, the SMYamide gene is specifically expressed in the SN2 neurons that innervate the salivary glands and are known to produce action potentials during feeding. The SN2 axon terminals surround rather than directly innervate the salivary gland acini. Therefore one may expect that on activation of these neurons significant amounts of SMYamide will be released into the hemolymph, thus suggesting that SMYamide may also have a hormonal function. In the Periplaneta genome there are two putative SIFamide receptors and these are both expressed not only in the central nervous system and the salivary gland, but also in the gonads and other peripheral tissues. This reinforces the hypothesis that SMYamide also has an endocrine function in this species.
Collapse
|
8
|
Liu J, Liu A, Liu F, Huang H, Ye H. Role of neuroparsin 1 in vitellogenesis in the mud crab, Scylla paramamosain. Gen Comp Endocrinol 2020; 285:113248. [PMID: 31430448 DOI: 10.1016/j.ygcen.2019.113248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/07/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Neuroparsin (NP) is an important neuropeptide in invertebrates. It is well-known that NP displays multiple biological activities, including antidiuretic and inhibition of vitellogenesis in insects. However, the information about its effect in crustaceans is scarce. In this study, the sequence of Sp-NP1 was selected from the transcriptome database from the mud crab, Scylla paramamosain. Sequence analyses indicate that the Sp-NP1 amino acid (AA) sequences consist of a 27 AA signal peptide and a 74 AA mature peptide, which contains 12 cysteine residues. qRT-PCR analysis has revealed that the expressions of Sp-NP1 gene are high in the nervous tissues and extremely low in the ovary and hepatopancreas. In situ hybridization has shown that the positive signals are localized in cell cluster 6 of protocerebrum and cell clusters 10 and 11 of deutocerebrum. The presence of Sp-NP1 in the haemolymph has been detected in S. paramamosain through western blot, which indicates that Sp-NP1 serves as an endocrine factor in the regulation of physiological activities. In vitro experiments have further shown that the mRNA level of vitellogenin in the hepatopancreas notably decreases following administration of recombinant Sp-NP1, while the mRNA level of vitellogenin receptor and cyclin B in the ovary shows no significant differences. Collectively, Sp-NP1 possibly can inhibit the production of vitellogenin in the hepatopancreas and has no direct effect on the ovary in S. paramamosain.
Collapse
|
9
|
Ray M, Acharya S, Shambhavi S, Lakhotia SC. Over-expression of Hsp83 in grossly depleted hsrω lncRNA background causes synthetic lethality and l(2)gl phenocopy in Drosophila. J Biosci 2019; 44:36. [PMID: 31180049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We examined interactions between the 83 kDa heat-shock protein (Hsp83) and hsrω long noncoding RNAs (lncRNAs) in hsrω66 Hsp90GFP homozygotes, which almost completely lack hsrω lncRNAs but over-express Hsp83. All +/+; hsrω66 Hsp90GFP progeny died before the third instar. Rare Sp/CyO; hsrω66 Hsp90GFP reached the third instar stage but phenocopied l(2)gl mutants, becoming progressively bulbous and transparent with enlarged brain and died after prolonged larval life. Additionally, ventral ganglia too were elongated. However, hsrω66 Hsp90GFP/TM6B heterozygotes, carrying +/+ or Sp/CyO second chromosomes, developed normally. Total RNA sequencing (+/+, +/+; hsrω66/hsrω66, Sp/CyO; hsrω66/ hsrω66, +/+; Hsp90GFP/Hsp90GFP and Sp/CyO; hsrω66 Hsp90GFP/hsrω66 Hsp90GFP late third instar larvae) revealed similar effects on many genes in hsrω66 and Hsp90GFP homozygotes. Besides additive effect on many of them, numerous additional genes were affected in Sp/CyO; hsrω66 Hsp90GFP larvae, with l(2)gl and several genes regulating the central nervous system being highly down-regulated in surviving Sp/CyO; hsrω66 Hsp90GFP larvae, but not in hsrω66 or Hsp90GFP single mutants. Hsp83 and several omega speckle-associated hnRNPs were bioinformatically found to potentially bind with these gene promoters and transcripts. Since Hsp83 and hnRNPs are also known to interact, elevated Hsp83 in an altered background of hnRNP distribution and dynamics, due to near absence of hsrω lncRNAs and omega speckles, can severely perturb regulatory circuits with unexpected consequences, including down-regulation of tumoursuppressor genes such as l(2)gl.
Collapse
|
10
|
Xu C, Li Q, Efimova O, Jiang X, Petrova M, K Vinarskaya A, Kolosov P, Aseyev N, Koshkareva K, Ierusalimsky VN, Balaban PM, Khaitovich P. Identification of Immediate Early Genes in the Nervous System of Snail Helix lucorum. eNeuro 2019; 6:ENEURO.0416-18.2019. [PMID: 31053606 PMCID: PMC6584072 DOI: 10.1523/eneuro.0416-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/02/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Immediate early genes (IEGs) are useful markers of neuronal activation and essential components of neuronal response. While studies of gastropods have provided many insights into the basic learning and memory mechanisms, the genome-wide assessment of IEGs has been mainly restricted to vertebrates. In this study, we identified IEGs in the terrestrial snail Helix lucorum In the absence of the genome, we conducted de novo transcriptome assembly using reads with short and intermediate lengths cumulatively covering more than 98 billion nucleotides. Based on this assembly, we identified 37 proteins corresponding to contigs differentially expressed (DE) in either the parietal ganglia (PaG) or two giant interneurons located within the PaG of the snail in response to the neuronal stimulation. These proteins included homologues of well-known mammalian IEGs, such as c-jun/jund, C/EBP, c-fos/fosl2, and Egr1, as well as homologues of genes not yet implicated in the neuronal response.
Collapse
|
11
|
Patel U, Perez L, Farrell S, Steck D, Jacob A, Rosiles T, Krause E, Nguyen M, Calin-Jageman RJ, Calin-Jageman IE. Transcriptional changes before and after forgetting of a long-term sensitization memory in Aplysia californica. Neurobiol Learn Mem 2018; 155:474-485. [PMID: 30243850 PMCID: PMC6365195 DOI: 10.1016/j.nlm.2018.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
Most long-term memories are forgotten, becoming progressively less likely to be recalled. Still, some memory fragments may persist, as savings memory (easier relearning) can be detected long after recall has become impossible. What happens to a memory trace during forgetting that makes it inaccessible for recall and yet still effective to spark easier re-learning? We are addressing this question by tracking the transcriptional changes that accompany learning and then forgetting of a long-term sensitization memory in the tail-elicited siphon withdrawal reflex of Aplysia californica. First, we tracked savings memory. We found that even though recall of sensitization fades completely within 1 week of training, savings memory is still detectable at 2 weeks post training. Next, we tracked the time-course of regulation of 11 transcripts we previously identified as potentially being regulated after recall has become impossible. Remarkably, 3 transcripts still show strong regulation 2 weeks after training and an additional 4 are regulated for at least 1 week. These long-lasting changes in gene expression always begin early in the memory process, within 1 day of training. We present a synthesis of our results tracking gene expression changes accompanying sensitization and provide a testable model of how sensitization memory is forgotten.
Collapse
|
12
|
Dickinson PS, Armstrong MK, Dickinson ES, Fernandez R, Miller A, Pong S, Powers BW, Pupo-Wiss A, Stanhope ME, Walsh PJ, Wiwatpanit T, Christie AE. Three members of a peptide family are differentially distributed and elicit differential state-dependent responses in a pattern generator-effector system. J Neurophysiol 2018; 119:1767-1781. [PMID: 29384453 PMCID: PMC6008092 DOI: 10.1152/jn.00850.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/22/2022] Open
Abstract
C-type allatostatins (AST-Cs) are pleiotropic neuropeptides that are broadly conserved within arthropods; the presence of three AST-C isoforms, encoded by paralog genes, is common. However, these peptides are hypothesized to act through a single receptor, thereby exerting similar bioactivities within each species. We investigated this hypothesis in the American lobster, Homarus americanus, mapping the distributions of AST-C isoforms within relevant regions of the nervous system and digestive tract, and comparing their modulatory influences on the cardiac neuromuscular system. Immunohistochemistry showed that in the pericardial organ, a neuroendocrine release site, AST-C I and/or III and AST-C II are contained within distinct populations of release terminals. Moreover, AST-C I/III-like immunoreactivity was seen in midgut epithelial endocrine cells and the cardiac ganglion (CG), whereas AST-C II-like immunoreactivity was not seen in these tissues. These data suggest that AST-C I and/or III can modulate the CG both locally and hormonally; AST-C II likely acts on the CG solely as a hormonal modulator. Physiological studies demonstrated that all three AST-C isoforms can exert differential effects, including both increases and decreases, on contraction amplitude and frequency when perfused through the heart. However, in contrast to many state-dependent modulatory changes, the changes in contraction amplitude and frequency elicited by the AST-Cs were not functions of the baseline parameters. The responses to AST-C I and III, neither of which is COOH-terminally amidated, are more similar to one another than they are to the responses elicited by AST-C II, which is COOH-terminally amidated. These results suggest that the three AST-C isoforms are differentially distributed in the lobster nervous system/midgut and can elicit distinct behaviors from the cardiac neuromuscular system, with particular structural features, e.g., COOH-terminal amidation, likely important in determining the effects of the peptides. NEW & NOTEWORTHY Multiple isoforms of many peptides exert similar effects on neural circuits. In this study we show that each of the three isoforms of C-type allatostatin (AST-C) can exert differential effects, including both increases and decreases in contraction amplitude and frequency, on the lobster cardiac neuromuscular system. The distribution of effects elicited by the nonamidated isoforms AST-C I and III are more similar to one another than to the effects of the amidated AST-C II.
Collapse
|
13
|
Christie AE, Miller A, Fernandez R, Dickinson ES, Jordan A, Kohn J, Youn MC, Dickinson PS. Non-amidated and amidated members of the C-type allatostatin (AST-C) family are differentially distributed in the stomatogastric nervous system of the American lobster, Homarus americanus. INVERTEBRATE NEUROSCIENCE : IN 2018; 18:2. [PMID: 29332202 PMCID: PMC5791145 DOI: 10.1007/s10158-018-0206-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/02/2018] [Indexed: 11/27/2022]
Abstract
The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known. Two of these, pQIRYHQCYFNPISCF (AST-C I) and GNGDGRLYWRCYFNAVSCF (AST-C III), have non-amidated C-termini, while the third, SYWKQCAFNAVSCFamide (AST-C II), is C-terminally amidated. Here, antibodies were generated against one of the non-amidated peptides (AST-C I) and against the amidated isoform (AST-C II). Specificity tests show that the AST-C I antibody cross-reacts with both AST-C I and AST-C III, but not AST-C II; the AST-C II antibody does not cross-react with either non-amidated peptide. Wholemount immunohistochemistry shows that both subclasses (non-amidated and amidated) of AST-C are distributed throughout the lobster STNS. Specifically, the antibody that cross-reacts with the two non-amidated peptides labels neuropil in the CoGs and the stomatogastric ganglion (STG), axons in the superior esophageal (son) and stomatogastric (stn) nerves, and ~ 14 somata in each commissural ganglion (CoG). The AST-C II-specific antibody labels neuropil in the CoGs, STG and at the junction of the sons and stn, axons in the sons and stn, ~ 42 somata in each CoG, and two somata in the STG. Double immunolabeling shows that, except for one soma in each CoG, the non-amidated and amidated peptides are present in distinct sets of neuronal profiles. The differential distributions of the two AST-C subclasses suggest that the two peptide groups are likely to serve different modulatory roles in the lobster STNS.
Collapse
|
14
|
Perez L, Patel U, Rivota M, Calin-Jageman IE, Calin-Jageman RJ. Savings memory is accompanied by transcriptional changes that persist beyond the decay of recall. Learn Mem 2018; 25:45-48. [PMID: 29246980 PMCID: PMC5733468 DOI: 10.1101/lm.046250.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022]
Abstract
Most long-term memories are forgotten. What happens, then, to the changes in neuronal gene expression that were initially required to encode and maintain the memory? Here we show that the decay of recall for long-term sensitization memory in Aplysia is accompanied both by a form of savings memory (easier relearning) and by persistent transcriptional regulation. A behavioral experiment (N = 14) shows that sensitization training produces a robust long-term sensitization memory, but that recall fades completely within 1 wk. This apparent forgetting, though, is belied by persistent savings memory, as we found that a weak reminder protocol reinstates a long-term sensitization memory only on the previously trained side of the body. Using microarray (N = 8 biological replicates), we found that transcriptional regulation largely decays along with recall. Of the transcripts known to be regulated 1 d after training, 98% (1172/1198) are no longer significantly regulated 7 d after training. Still, there is a small set of transcripts which remain strongly regulated even when recall is absent. Using qPCR (N = 11 additional biological replicates) we confirmed that these include the peptide transmitter FMRFamide, a transcript encoding a putative homolog of spectrin beta chain (Genbank: EB255259) , a transcript encoding a protein with a predicted EF-hand calcium-binding domain (Genbank: EB257711), and eight uncharacterized transcripts. To our knowledge, this is the first work to show that transcriptional changes evoked by learning can outlast recall. The small set of transcriptional changes that persist could mediate the rapid relearning of the memory (savings), or the decay of recall, or both, or neither.
Collapse
|
15
|
Bose U, Suwansa-Ard S, Maikaeo L, Motti CA, Hall MR, Cummins SF. Neuropeptides encoded within a neural transcriptome of the giant triton snail Charonia tritonis, a Crown-of-Thorns Starfish predator. Peptides 2017; 98:3-14. [PMID: 28082215 DOI: 10.1016/j.peptides.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 11/22/2022]
Abstract
Neuropeptides represent a diverse class of signaling molecules originating from neural tissues. These chemical modulators orchestrate complex physiological events including those associated with growth and reproduction. De novo transcriptome sequencing of a cerebral ganglion library of the endangered giant triton snail (Charonia tritonis) was undertaken in an effort to identify key neuropeptides that control or influence its physiology. The giant triton snail is considered a primary predator of the corallivore Acanthaster planci (Crown-of-Thorns Starfish) that is responsible for a significant loss in coral cover on reefs in the Indo-Pacific. The transcriptome library was assembled into contigs, and then bioinformatic analysis was used to identify a repertoire of 38 giant triton snail neuropeptide precursor genes, and various isoforms, that encode conserved molluscan neuropeptides. C. tritonis neuropeptides show overall precursor organisation consistent with those of other molluscs. These include those neuropeptides associated with mollusc reproduction such as the APGWamide, buccalin, conopressin, gonadotropin-releasing hormone (GnRH), NKY and egg-laying hormone. These data provide a foundation for further studies targeted towards the functional characterisation of neuropeptides to further understand aspects of the biology of the giant triton snail, such as elucidating its reproductive neuroendocrine pathway to allow the development of knowledge based captive breeding programs.
Collapse
|
16
|
Conte C, Herdegen S, Kamal S, Patel J, Patel U, Perez L, Rivota M, Calin-Jageman RJ, Calin-Jageman IE. Transcriptional correlates of memory maintenance following long-term sensitization of Aplysia californica. Learn Mem 2017; 24:502-515. [PMID: 28916625 PMCID: PMC5602346 DOI: 10.1101/lm.045450.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
We characterized the transcriptional response accompanying maintenance of long-term sensitization (LTS) memory in the pleural ganglia of Aplysia californica using microarray (N = 8) and qPCR (N = 11 additional samples). We found that 24 h after memory induction there is strong regulation of 1198 transcripts (748 up and 450 down) in a pattern that is almost completely distinct from what is observed during memory encoding (1 h after training). There is widespread up-regulation of transcripts related to all levels of protein production, from transcription (e.g., subunits of transcription initiation factors) to translation (e.g., subunits of eIF1, eIF2, eIF3, eIF4, eIF5, and eIF2B) to activation of components of the unfolded protein response (e.g., CREB3/Luman, BiP, AATF). In addition, there are widespread changes in transcripts related to cytoskeleton function, synaptic targeting, synaptic function, neurotransmitter regulation, and neuronal signaling. Many of the transcripts identified have previously been linked to memory and plasticity (e.g., Egr, menin, TOB1, IGF2 mRNA binding protein 1/ZBP-1), though the majority are novel and/or uncharacterized. Interestingly, there is regulation that could contribute to metaplasticity potentially opposing or even eroding LTS memory (down-regulation of adenylate cyclase and a putative serotonin receptor, up-regulation of FMRFa and a FMRFa receptor). This study reveals that maintenance of a "simple" nonassociative memory is accompanied by an astonishingly complex transcriptional response.
Collapse
|
17
|
Uno T, Furutani M, Sakamoto K, Uno Y, Kanamaru K, Mizoguchi A, Hiragaki S, Takeda M. Localization and functional analysis of the insect-specific RabX4 in the brain of Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21404. [PMID: 28707374 DOI: 10.1002/arch.21404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori.
Collapse
|
18
|
Yu J, Zhang L, Li Y, Li R, Zhang M, Li W, Xie X, Wang S, Hu X, Bao Z. Genome-wide identification and expression profiling of the SOX gene family in a bivalve mollusc Patinopecten yessoensis. Gene 2017; 627:530-537. [PMID: 28694209 DOI: 10.1016/j.gene.2017.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/13/2017] [Accepted: 07/06/2017] [Indexed: 11/19/2022]
Abstract
SOX family is composed of transcription factors that play vital roles in various developmental processes. Comprehensive understanding on evolution of the SOX family requires full characterization of SOX genes in different phyla. Mollusca is the second largest metazoan phylum, but till now, systematic investigation on the SOX family is still lacking in this phylum. In this study, we conducted genome-wide identification of the SOX family in Yesso scallop Patinopecten yessoensis and profiled their tissue distribution and temporal expression patterns in the ovaries and testes during gametogenesis. Seven SOX genes were identified, including SOXB1, B2, C, D, E, F and H, representing the first record in protostomes with SOX members identical to that proposed to exist in the last common ancestor of chordates. Genomic structure analysis identified relatively conserved exon-intron structures, accompanied by intron insertion. Quantitative real-time PCR analysis revealed possible involvement of scallop SOX in various functions, including neuro-sensory cell differentiation, hematopoiesis, myogenesis and gametogenesis. This study represents the first systematic characterization of SOX gene family in Mollusca. It will assist in a better understanding of the evolution and function of SOX family in metazoans.
Collapse
|
19
|
Hoelters L, O'Grady JF, Webster SG, Wilcockson DC. Characterization, localization and temporal expression of crustacean hyperglycemic hormone (CHH) in the behaviorally rhythmic peracarid crustaceans, Eurydice pulchra (Leach) and Talitrus saltator (Montagu). Gen Comp Endocrinol 2016; 237:43-52. [PMID: 27468954 DOI: 10.1016/j.ygcen.2016.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 11/15/2022]
Abstract
Crustacean hyperglycemic hormone (CHH) has been extensively studied in decapod crustaceans where it is known to exert pleiotropic effects, including regulation of blood glucose levels. Hyperglycemia in decapods seems to be temporally gated to coincide with periods of activity, under circadian clock control. Here, we used gene cloning, in situ hybridization and immunohistochemistry to describe the characterization and localization of CHH in two peracarid crustaceans, Eurydice pulchra and Talitrus saltator. We also exploited the robust behavioral rhythmicity of these species to test the hypothesis that CHH mRNA expression would resonate with their circatidal (12.4h) and circadian (24h) behavioral phenotypes. We show that both species express a single CHH transcript in the cerebral ganglia, encoding peptides featuring all expected, conserved characteristics of other CHHs. E. pulchra preproCHH is an amidated 73 amino acid peptide N-terminally flanked by a short, 18 amino acid precursor related peptide (CPRP) whilst the T. saltator prohormone is also amidated but 72 amino acids in length and has a 56 residue CPRP. The localization of both was mapped by immunohistochemistry to the protocerebrum with axon tracts leading to the sinus gland and into the tritocerebrum, with striking similarities to terrestrial isopod species. We substantiated the cellular position of CHH immunoreactive cells by in situ hybridization. Although both species showed robust activity rhythms, neither exhibited rhythmic transcriptional activity indicating that CHH transcription is not likely to be under clock control. These data make a contribution to the inventory of CHHs that is currently lacking for non-decapod species.
Collapse
|
20
|
Zhang YW, Yan L, Huang L, Huang HQ. Cerebral ganglion ultrastructure and differential proteins revealed using proteomics in the aplysiid (Notarcus leachii cirrosus Stimpson) under cadmium and lead stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:17-26. [PMID: 27414742 DOI: 10.1016/j.etap.2016.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/30/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) and lead (Pb) are both highly toxic metals in environments. However the toxicological mechanism is not clear. In this study, the aplysiid, Notarcus leachii cirrosus Stimpson (NLCS) was subjected to Cd (NLCS-Cd) or Pb (NLCS-Pb). The cerebral ganglion of NLCS was investigated with a transmission electron microscope. Next the differential proteins were separated and identified using proteomic approaches. Eighteen protein spots in NLCS-Cd and seventeen protein spots in NLCS-Pb were observed to be significantly changed. These protein spots were further excised in gels and identified. A hypothetical pathway was drawn to show the correlation between the partially identified proteins. The results indicated that damage to the cerebral ganglion was follows: cell apoptosis, lysosomes proliferation, cytoskeleton disruption, and oxidative stress. These phenomena and data indicated potential biomarkers for evaluating the contamination levels of Cd and Pb. This study provided positive insights into the mechanisms of Cd and Pb toxicity.
Collapse
MESH Headings
- Animals
- Aplysia/drug effects
- Aplysia/metabolism
- Biomarkers/analysis
- Biomarkers/metabolism
- Cadmium/pharmacokinetics
- Cadmium/toxicity
- Ecotoxicology/methods
- Electrophoresis, Gel, Two-Dimensional
- Ganglia, Invertebrate/drug effects
- Ganglia, Invertebrate/metabolism
- Ganglia, Invertebrate/ultrastructure
- Lead/pharmacokinetics
- Lead/toxicity
- Microscopy, Electron, Transmission
- Proteins/analysis
- Proteins/metabolism
- Proteomics/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Water Pollutants, Chemical/pharmacokinetics
- Water Pollutants, Chemical/toxicity
Collapse
|
21
|
Lee JE, Kim Y, Kim KH, Lee DY, Lee Y. Contribution of Drosophila TRPA1 to Metabolism. PLoS One 2016; 11:e0152935. [PMID: 27055172 PMCID: PMC4824436 DOI: 10.1371/journal.pone.0152935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/20/2016] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential (TRP) cation channels are highly conserved in humans and insects. Some of these channels are expressed in internal organs and their functions remain incompletely understood. By direct knock-in of the GAL4 gene into the trpA1 locus in Drosophila, we identified the expression of this gene in the subesophageal ganglion (SOGs) region. In addition, the neurites present in the dorsal posterior region as well as the drosophila insulin-like peptide 2 (dILP2)-positive neurons send signals to the SOGs. The signal is sent to the crop, which is an enlarged organ of the esophagus and functions as a storage place for food in the digestive system. To systematically investigate the role of TRPA1 in metabolism, we applied non-targeted metabolite profiling analysis together with gas-chromatography/time-of-flight mass spectrometry, with an aim to identify a wide range of primary metabolites. We effectively captured distinctive metabolomic phenotypes and identified specific metabolic dysregulation triggered by TRPA1 mutation based on reconstructed metabolic network analysis. Primarily, the network analysis pinpointed the simultaneous down-regulation of intermediates in the methionine salvation pathway, in contrast to the synchronized up-regulation of a range of free fatty acids. The gene dosage-dependent dynamics of metabolite levels among wild-type, hetero- and homozygous mutants, and their coordinated metabolic modulation under multiple gene settings across five different genotypes confirmed the direct linkages of TRPA1 to metabolism.
Collapse
|
22
|
Venkatachalam V, Ji N, Wang X, Clark C, Mitchell JK, Klein M, Tabone CJ, Florman J, Ji H, Greenwood J, Chisholm AD, Srinivasan J, Alkema M, Zhen M, Samuel ADT. Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc Natl Acad Sci U S A 2016; 113:E1082-8. [PMID: 26711989 PMCID: PMC4776525 DOI: 10.1073/pnas.1507109113] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We present an imaging system for pan-neuronal recording in crawling Caenorhabditis elegans. A spinning disk confocal microscope, modified for automated tracking of the C. elegans head ganglia, simultaneously records the activity and position of ∼80 neurons that coexpress cytoplasmic calcium indicator GCaMP6s and nuclear localized red fluorescent protein at 10 volumes per second. We developed a behavioral analysis algorithm that maps the movements of the head ganglia to the animal's posture and locomotion. Image registration and analysis software automatically assigns an index to each nucleus and calculates the corresponding calcium signal. Neurons with highly stereotyped positions can be associated with unique indexes and subsequently identified using an atlas of the worm nervous system. To test our system, we analyzed the brainwide activity patterns of moving worms subjected to thermosensory inputs. We demonstrate that our setup is able to uncover representations of sensory input and motor output of individual neurons from brainwide dynamics. Our imaging setup and analysis pipeline should facilitate mapping circuits for sensory to motor transformation in transparent behaving animals such as C. elegans and Drosophila larva.
Collapse
|
23
|
Nagasawa K, Osugi T, Suzuki I, Itoh N, Takahashi KG, Satake H, Osada M. Characterization of GnRH-like peptides from the nerve ganglia of Yesso scallop, Patinopecten yessoensis. Peptides 2015; 71:202-10. [PMID: 26238596 DOI: 10.1016/j.peptides.2015.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 11/23/2022]
Abstract
There is yet no firm experimental evidence that the evolutionary ancient gonadotropin-releasing hormone GnRH (i.e., GnRH1) also acts in invertebrate gametogenesis. The objective of this paper is to characterize candidate invGnRH peptides of Yesso scallop Patinopecten yessoensis (i.e., peptide identification, immunohistochemical localization, and immunoquantification) in order to reveal their bioactive form in bivalves. Using mass spectrometry (MS), we identified two invGnRH (py-GnRH) peptides from the scallop nerve ganglia: a precursor form of py-GnRH peptide (a non-amidated dodecapeptide; py-GnRH12aa-OH) and a mature py-GnRH peptide (an amidated undecapeptide; py-GnRH11aa-NH2). Immunohistochemical staining allowed the localization of both py-GnRH peptides in the neuronal cell bodies and fibers of the cerebral and pedal ganglia (CPG) and the visceral ganglion (VG). We found that the peptides showed a dimorphic distribution pattern. Notably, the broad distribution of mature py-GnRH in neuronal fibers elongating to peripheral organs suggests that it is multi-functional. Time-resolved fluorescent immunoassays (TR-FIA) enabled the quantification of each py-GnRH form in the single CPG or VG tissue obtained from one individual. In addition, we observed greater abundance of mature py-GnRH in VG compared with its level in CPG, suggesting that VG is the main producing organ of mature py-GnRH peptide and that py-GnRH may play a central regulatory role in neurons of scallops. Our study provides evidence, for the first time, for the presence of precursor and mature forms of invGnRH peptides in the nerve ganglia of an invertebrate.
Collapse
|
24
|
Zaitseva V, Shumeev AN, Korshunova TA, Martynov AV. [Heterochronies in the Formation of the Nervous and Digestive Systems in Early Postlarval Development of Opistobranch Mollusks: Organization of Basic Functional Systems of the Arctic Dorid Cadlina laevis]. IZVESTIIA AKADEMII NAUK. SERIIA BIOLOGICHESKAIA 2015:237-247. [PMID: 26349228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
For the first time using laser confocal microscopy and histochemical and immunocytochemical methods (detection of F-actine, catecholamines, acetylcholintransferase, substances of P and FM RFamide) in combination with classical histological methods and electron microscopy of total preparations, the general structure and regularities of formation of the main organs and the nervous, muscular, and digestive systems in early postlarval development (2 to 4 months) in the opistobranch mollusk Cadlina laevis were studied. Heterochronies manifested in positive allometry of the sensory organs, ganglia of the central nervous system, and the pharyngeal region of the digestive system in relation to general body sizes in juvenile individuals compared to adult animals were detected.
Collapse
|
25
|
Shruti S, Schulz DJ, Lett KM, Marder E. Electrical coupling and innexin expression in the stomatogastric ganglion of the crab Cancer borealis. J Neurophysiol 2014; 112:2946-58. [PMID: 25210156 PMCID: PMC4254872 DOI: 10.1152/jn.00536.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/06/2014] [Indexed: 02/07/2023] Open
Abstract
Gap junctions are intercellular channels that allow for the movement of small molecules and ions between the cytoplasm of adjacent cells and form electrical synapses between neurons. In invertebrates, the gap junction proteins are coded for by the innexin family of genes. The stomatogastric ganglion (STG) in the crab Cancer borealis contains a small number of identified and electrically coupled neurons. We identified Innexin 1 (Inx1), Innexin 2 (Inx2), Innexin 3 (Inx3), Innexin 4 (Inx4), Innexin 5 (Inx5), and Innexin 6 (Inx6) members of the C. borealis innexin family. We also identified six members of the innexin family from the lobster Homarus americanus transcriptome. These innexins show significant sequence similarity to other arthropod innexins. Using in situ hybridization and reverse transcriptase-quantitative PCR (RT-qPCR), we determined that all the cells in the crab STG express multiple innexin genes. Electrophysiological recordings of coupling coefficients between identified pairs of pyloric dilator (PD) cells and PD-lateral posterior gastric (LPG) neurons show that the PD-PD electrical synapse is nonrectifying while the PD-LPG synapse is apparently strongly rectifying.
Collapse
|