1
|
Zhou J, Zheng X, Xi C, Tang X, Jiang Y, Xie M, Fu X. Cr(VI) induced hepatocyte apoptosis through the CTH/H 2S/Drp1 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175332. [PMID: 39117219 DOI: 10.1016/j.scitotenv.2024.175332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Hexavalent chromium [Cr(VI)] is a highly hazardous heavy metal with multiple toxic effects. Occupational studies indicate that its accumulation in humans can lead to liver damage. However, the exact mechanism underlying Cr(VI)-induced hepatotoxicity remains unknown. In this study, we explored the role of CTH/H2S/Drp1 pathway in Cr(VI)-induced oxidative stress, mitochondrial dysfunction, apoptosis, and liver injury. Our data showed that Cr(VI) triggered apoptosis, accompanied by H2S reduction, reactive oxygen species (ROS) accumulation, and mitochondrial dysfunction in both AML12 cells and mouse livers. Moreover, Cr(VI) reduced cystathionine γ-lyase (CTH) and dynamin related protein 1 (Drp1) S-sulfhydration levels, and elevated Drp1 phosphorylation levels at Serine 616, which promoted Drp1 mitochondrial translocation and Drp1-voltage-dependent anion channel 1 (VDAC1) interactions, ultimately leading to mitochondria-dependent apoptosis. Elevated hydrogen sulfide (H2S) levels eliminated Drp1 phosphorylation at Serine 616 by increasing Drp1 S-sulfhydration, thereby preventing Cr(VI)-induced Drp1-VDAC1 interaction and hepatotoxicity. These findings indicated that Cr(VI) induced mitochondrial apoptosis and hepatotoxicity by inhibiting CTH/H2S/Drp1 pathway and that targeting either CTH/H2S pathway or Drp1 S-sulfhydration could serve as a potential therapy for Cr(VI)-induced liver injury.
Collapse
|
2
|
Ara-Díaz JB, Bergstedt JH, Albaladejo-Riad N, Malik MS, Andersen Ø, Lazado CC. Mucosal organs exhibit distinct response signatures to hydrogen sulphide in Atlantic salmon (Salmo salar). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116617. [PMID: 38905940 DOI: 10.1016/j.ecoenv.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Hydrogen sulphide (H2S) is considered an immunotoxicant, and its presence in the water can influence the mucosal barrier functions of fish. However, there is a significant knowledge gap on how fish mucosa responds to low environmental H2S levels. The present study investigated the consequences of prolonged exposure to sub-lethal levels of H2S on the mucosal defences of Atlantic salmon (Salmo salar). Fish were continuously exposed to two levels of H2S (low: 0.05 µM; and high: 0.12 µM) for 12 days. Unexposed fish served as control. Molecular and histological profiling focused on the changes in the skin, gills and olfactory rosette. In addition, metabolomics and proteomics were performed on the skin and gill mucus. The gene expression profile indicated that the gills and olfactory rosette were more sensitive to H2S than the skin. The olfactory rosette showed a dose-dependent response, but not the gills. Genes related to stress responses were triggered at mucosal sites by H2S. Moreover, H2S elicited strong inflammatory responses, particularly in the gills. All mucosal organs demonstrated the key molecular repertoire for sulphide detoxification, but their temporal and spatial expression was not substantially affected by sub-lethal H2S levels. Mucosal barrier integrity was not considerably affected by H2S. Mucus metabolomes of the skin and gills were unaffected, but a matrix-dependent response was identified. Comparing the high-concentration group's skin and gills mucus metabolomes identified altered amino acid biosynthesis and metabolism pathways. The skin and gill mucus exhibited distinct proteomic profiles. Enrichment analysis revealed that proteins related to immunity and metabolism were affected in both mucus matrices. The present study expands our knowledge of the defence mechanisms against H2S at mucosal sites in Atlantic salmon. The findings offer insights into the health and welfare consequences of sub-lethal H2S, which can be incorporated into the risk assessment protocols in salmon land-based farms.
Collapse
|
3
|
Resiere D, Florentin J, Nevière R. [Sargassum seaweed assaults the French West Indies]. LA REVUE DU PRATICIEN 2024; 74:677-682. [PMID: 39011708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
SARGASSUM SEAWEED AS SAULTS THE FRENCH WEST INDIES. Since 2011, Martinique and the islands of Guadeloupe have been affected by repeated groundings, culminating in an exceptional wave in 2018. While the sargassum ( Sargassum natans and S. fluitans ) involved in these phenomena are neither toxic nor urticating, indirect toxicity linked to the presence of microorganisms and heavy metals (arsenic, mercury, etc.) in sargassum clusters has been described. Similarly, after a 24 to 48 hours stay on the shore, sargassum algae enter a putrefaction cycle responsible to produce hydrogen sulfide (H2S) and ammonia (NH3). The acute toxicity of these gases is well known. However, very few data are available on the clinical effects of prolonged exposure to low doses of H2S and NH3. Our team has recently described the syndromic features of chronic exposure, supposing for deleterious effects on the cardiovascular, respiratory and neurological systems.
Collapse
|
4
|
Li K, Wang J, Fang L, Lou Y, Li J, Li Q, Luo Q, Zheng X, Fang J. Chronic inhalation of H 2S in low concentration induces immunotoxicity and inflammatory effects in lung tissue of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116279. [PMID: 38581906 DOI: 10.1016/j.ecoenv.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Hydrogen sulfide (H2S) is a typical odour compound mainly causing respiratory and central nervous system symptoms. However, the immunotoxicity of inhaled H2S and the underlying mechanisms remain largely unknown. In this study, a low-dose inhalation exposure to H2S was arranged to observe inflammatory response and immunotoxicity in lung tissue of rats. Low concentrations of H2S exposure affected the immune level of pulmonary tissue and peripheral blood. Significant pathological changes in lung tissue in the exposure group were observed. At low concentration, H2S not only induced the upregulation of AQP-4 and MMP-9 expression but also stimulated immune responses, initiating various anti-inflammatory and inflammatory factors, altering tissue homeostatic environments. The TNF and chemokine signaling pathway played an important role which can promote the deterioration of pulmonary inflammatory processes and lead to lung injury and fibrosis. Excessive immune response causes an inflammatory effect and blood-gas barrier damage. These data will be of value in evaluating future occupational health risks and providing technical support for the further development of reliable, sensitive, and easy-to-use screening indicators of exposure injury.
Collapse
|
5
|
Banydeen R, Lacavalerie MR, Florentin J, Boullanger C, Medhaoui H, Resiere D, Neviere R. Central sleep apnea and exposure to ambient hydrogen sulfide emissions from massive strandings of decomposing sargassum in the Caribbean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168886. [PMID: 38016560 DOI: 10.1016/j.scitotenv.2023.168886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Sargassum invasion of Caribbean and American shorelines is a recurring environmental hazard. Potential health effects of long-term chronic exposure to sargassum gaseous emissions, notably hydrogen sulfide (H2S), are overlooked. H2S plays an important role in neurotransmission and is involved in generating and transmitting respiratory rhythm. Central sleep apnea (CSA) has been attributed to the depression of respiratory centers. OBJECTIVE Evaluate the effects of exposure to sargassum-H2S on CSA. METHODS This study, set in the Caribbean, describes the clinical and polysomnographic characteristics of individuals living and/or working in areas impacted by sargassum strandings, in comparison with non-exposed subjects. Environmental exposure was estimated by the closest ground H2S sensor. Multivariate linear regression was applied to analyze CSA changes according to cumulative H2S exposure over time. Effects of air pollution and other sargassum toxic compounds (NH3) on CSA were also controlled. RESULTS Among the 685 study patients, 27 % were living and/or working in sargassum impacted areas. Compared with non-exposed patients, exposed ones had similar sleep apnea syndrome risk factors, but had increased levels of CSA events (expressed as absolute number or % of total sleep apnea). Multivariate regression retained only male gender and mean H2S concentration over a 6-month exposure period as independent predictors of an increase in CSA events. A minimal exposure length of 1 month generated a significant rise in CSA events, with the latter increasing proportionally with a cumulative increase in H2S concentration over time. CONCLUSION This pioneer work highlights a potential effect of sargassum-H2S on the central nervous system, notably on the modulation of the activity of the brain's respiratory control center. These observations, jointly with previous studies from our group, constitute a body of evidence strongly supporting a deleterious effect of sargassum-H2S on the health of individuals chronically exposed to low to moderate concentration levels over time.
Collapse
|
6
|
Quist AJL, Johnston JE. Respiratory and nervous system effects of a hydrogen sulfide crisis in Carson, California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167480. [PMID: 37778548 PMCID: PMC10851923 DOI: 10.1016/j.scitotenv.2023.167480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND In October 2021, many residents in Carson, California experienced malodors, headaches, and respiratory symptoms. Hydrogen sulfide (H2S), a toxic odorous gas, was measured in Carson at concentrations up to 7000 parts per billion (ppb) and remained above California's acute air quality standard of 30 ppb for about a month. Research on how low- and medium-level H2S exposure affects the respiratory and nervous systems has yielded conflicting results, and few studies have examined the effects of subacute H2S exposure. METHODS We calculated daily rates of emergency department (ED) visits with various respiratory and nervous systems diagnosis codes in Carson area ZIP codes (≤6 km from event's epicenter) and in Los Angeles County ZIP codes >15 km from event's epicenter (control area). Using controlled interrupted time series, we compared ED visit rates during the month of the H2S crisis in Carson to the predicted rates had the incident not occurred, based on 2018-2021 ED trends, and controlling for ED visit rate changes in the control area. RESULTS We observed a 24 % increase in ED visit rate for all respiratory system diseases (rate ratio = 1.24, 95 % CI: 1.16, 1.32), a 38 % increase for asthma (RR = 1.38, 95 % CI: 1.26, 1.50), a 26 % increase for acute upper respiratory infections (RR = 1.26, 95 % CI: 1.13, 1.38), a 21 % increase for dizziness (RR = 1.21, 95 % CI: 1.04, 1.38), and a 25 % increase for migraines and headaches (RR = 1.25, 95 % CI: 1.13, 1.36) in the Carson area during the first month of the H2S event compared to the expected rates. CONCLUSIONS This H2S crisis was associated with increased ED visit rates for multiple respiratory and nervous system outcomes. Reducing H2S exposure and improving to response during H2S episodes may improve public health.
Collapse
|
7
|
Ryan K, Greenway R, Landers J, Arias-Rodriguez L, Tobler M, Kelley JL. Selection on standing genetic variation mediates convergent evolution in extremophile fish. Mol Ecol 2023; 32:5042-5054. [PMID: 37548336 DOI: 10.1111/mec.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including energy production in the mitochondria, yet fish in the Poecilia mexicana species complex have independently evolved sulfide tolerance several times. Despite clear evidence for convergence at the phenotypic level in these fishes, it is unclear if the repeated evolution of hydrogen sulfide tolerance is the result of similar genomic changes. To address this gap, we used a targeted capture approach to sequence genes associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic populations in the species complex. By comparing sequence variation in candidate genes to a reference set, we identified similar population structure and differentiation, suggesting that patterns of variation in most genes associated with sulfide processes and toxicity are due to demographic history and not selection. But the presence of tree discordance for a subset of genes suggests that several loci are evolving divergently between ecotypes. We identified two differentiation outlier genes that are associated with sulfide detoxification in the mitochondria that have signatures of selection in all five sulfidic populations. Further investigation into these regions identified long, shared haplotypes among sulfidic populations. Together, these results reveal that selection on standing genetic variation in putatively adaptive genes may be driving phenotypic convergence in this species complex.
Collapse
|
8
|
Sun H, Xu Q, Xu C, Zhang Y, Ai J, Ren M, Wang S, Kong F. A highly sensitive and low toxicity cellulose-based fluorescent polymer for H 2S detection in cells, zebrafish and food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3156-3160. [PMID: 37345553 DOI: 10.1039/d3ay00580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
A cellulose based polymer probe (HC-HS) was prepared for the detection of H2S. HC-HS can be applied to fluorescence imaging of H2S in living cells and zebrafish, and HC-HS was made into test strips to detect H2S produced in the process of food corruption.
Collapse
|
9
|
Batterman S, Grant-Alfieri A, Seo SH. Low level exposure to hydrogen sulfide: a review of emissions, community exposure, health effects, and exposure guidelines. Crit Rev Toxicol 2023; 53:244-295. [PMID: 37431804 PMCID: PMC10395451 DOI: 10.1080/10408444.2023.2229925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas that is well-known for its acute health risks in occupational settings, but less is known about effects of chronic and low-level exposures. This critical review investigates toxicological and experimental studies, exposure sources, standards, and epidemiological studies pertaining to chronic exposure to H2S from both natural and anthropogenic sources. H2S releases, while poorly documented, appear to have increased in recent years from oil and gas and possibly other facilities. Chronic exposures below 10 ppm have long been associated with odor aversion, ocular, nasal, respiratory and neurological effects. However, exposure to much lower levels, below 0.03 ppm (30 ppb), has been associated with increased prevalence of neurological effects, and increments below 0.001 ppm (1 ppb) in H2S concentrations have been associated with ocular, nasal, and respiratory effects. Many of the studies in the epidemiological literature are limited by exposure measurement error, co-pollutant exposures and potential confounding, small sample size, and concerns of representativeness, and studies have yet to consider vulnerable populations. Long-term community-based studies are needed to confirm the low concentration findings and to refine exposure guidelines. Revised guidelines that incorporate both short- and long-term limits are needed to protect communities, especially sensitive populations living near H2S sources.
Collapse
|
10
|
Santana Maldonado CM, Kim DS, Purnell B, Li R, Buchanan GF, Smith J, Thedens DR, Gauger P, Rumbeiha WK. Acute hydrogen sulfide-induced neurochemical and morphological changes in the brainstem. Toxicology 2023; 485:153424. [PMID: 36610655 DOI: 10.1016/j.tox.2023.153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is a toxin affecting the cardiovascular, respiratory, and central nervous systems. Acute H2S exposure is associated with a high rate of mortality and morbidity. The precise pathophysiology of H2S-induced death is a controversial topic; however, inhibition of the respiratory center in the brainstem is commonly cited as a cause of death. There is a knowledge gap on toxicity and toxic mechanisms of acute H2S poisoning on the brainstem, a brain region responsible for regulating many reflective and vital functions. Serotonin (5-HT), dopamine (DA), and γ-aminobutyric acid (GABA) play a role in maintaining a normal stable respiratory rhythmicity. We hypothesized that the inhibitory respiratory effects of H2S poisoning are mediated by 5-HT in the respiratory center of the brainstem. Male C57BL/6 mice were exposed once to an LCt50 concentration of H2S (1000 ppm). Batches of surviving mice were euthanized at 5 min, 2 h, 12 h, 24 h, 72 h, and on day 7 post-exposure. Pulmonary function, vigilance state, and mortality were monitored during exposure. The brainstem was analyzed for DA, 3,4-dehydroxyphenyl acetic acid (DOPAC), 5-HT, 5-hydroxyindoleatic acid (5-HIAA), norepinephrine (NE), GABA, glutamate, and glycine using HPLC. Enzymatic activities of monoamine oxidases (MAO) were also measured in the brainstem using commercial kits. Neurodegeneration was assessed using immunohistochemistry and magnetic resonance imaging. Results showed that DA and DOPAC were significantly increased at 5 min post H2S exposure. However, by 2 h DA returned to normal. Activities of MAO were significantly increased at 5 min and 2 h post-exposure. In contrast, NE was significantly decreased at 5 min and 2 h post-exposure. Glutamate was overly sensitive to H2S-induced toxicity manifesting a time-dependent concentration reduction throughout the 7 day duration of the study. Remarkably, there were no changes in 5-HT, 5-HIAA, glycine, or GABA concentrations. Cytochrome c oxidase activity was inhibited but recovered by 24 h. Neurodegeneration was observed starting at 72 h post H2S exposure in select brainstem regions. We conclude that acute H2S exposure causes differential effects on brainstem neurotransmitters. H2S also induces neurodegeneration and biochemical changes in the brainstem. Additional work is needed to fully understand the implications of both the short- and long-term effects of acute H2S poisoning on vital functions regulated by the brainstem.
Collapse
|
11
|
Switzer CH, Kasamatsu S, Ihara H, Eaton P. SOD1 is an essential H 2S detoxifying enzyme. Proc Natl Acad Sci U S A 2023; 120:e2205044120. [PMID: 36630448 PMCID: PMC9934061 DOI: 10.1073/pnas.2205044120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
Although hydrogen sulfide (H2S) is an endogenous signaling molecule with antioxidant properties, it is also cytotoxic by potently inhibiting cytochrome c oxidase and mitochondrial respiration. Paradoxically, the primary route of H2S detoxification is thought to occur inside the mitochondrial matrix via a series of relatively slow enzymatic reactions that are unlikely to compete with its rapid inhibition of cytochrome c oxidase. Therefore, alternative or complementary cellular mechanisms of H2S detoxification are predicted to exist. Here, superoxide dismutase [Cu-Zn] (SOD1) is shown to be an efficient H2S oxidase that has an essential role in limiting cytotoxicity from endogenous and exogenous sulfide. Decreased SOD1 expression resulted in increased sensitivity to H2S toxicity in yeast and human cells, while increased SOD1 expression enhanced tolerance to H2S. SOD1 rapidly converted H2S to sulfate under conditions of limiting sulfide; however, when sulfide was in molar excess, SOD1 catalyzed the formation of per- and polysulfides, which induce cellular thiol oxidation. Furthermore, in SOD1-deficient cells, elevated levels of reactive oxygen species catalyzed sulfide oxidation to per- and polysulfides. These data reveal that a fundamental function of SOD1 is to regulate H2S and related reactive sulfur species.
Collapse
|
12
|
Kaya C, Ugurlar F, Ashraf M, El-Sheikh MA, Bajguz A, Ahmad P. The participation of nitric oxide in hydrogen sulphide-mediated chromium tolerance in pepper (Capsicum annuum L) plants by modulating subcellular distribution of chromium and the ascorbate-glutathione cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120229. [PMID: 36152705 DOI: 10.1016/j.envpol.2022.120229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The promising response of chromium-stressed (Cr(VI)-S) plants to hydrogen sulphide (H2S) has been observed, but the participation of nitric oxide (NO) synthesis in H2S-induced Cr(VI)-S tolerance in plants remains to be elucidated. It was aimed to assess the participation of NO in H2S-mediated Cr(VI)-S tolerance by modulating subcellular distribution of Cr and the ascorbate-glutathione (AsA-GSH) cycle in the pepper seedlings. Two weeks following germination, plants were exposed to control (no Cr) or Cr(VI)-S (50 μM K2Cr2O7) for further two weeks. The Cr(VI)-S-plants grown in nutrient solution were supplied with 200 μM sodium hydrosulphide (NaHS, donor of H2S), or NaHS plus 100 μM sodium nitroprusside (SNP, a donor of NO). Chromium stress suppressed plant growth and leaf water status, while elevated proline content, oxidative stress, and the activities of AsA-GSH related enzymes, as well as endogenous H2S and NO contents. The supplementation of NaHS increased Cr accumulation at root cell walls and vacuoles of leaves as soluble fraction to reduce its toxicity. Furthermore it limited oxidative stress, improved plant growth, modulated leaf water status, and the AsA-GSH cycle-associated enzymes' activities, as well as it further improved H2S and NO contents. The positive effect of NaHS was found to be augmented on those parameters in the CrS-plants by the SNP supplementation. However, 0.1 mM cPTIO, the scavenger of NO, inverted the prominent effect of NaHS by decreasing NO content. The supplementation of SNP along with NaHS + cPTIO reinstalled the positive effect of NaHS by restoring NO content, which suggested that NO might have a potential role in H2S-induced tolerance to Cr(VI)-S in pepper plants by stepping up the AsA-GSH cycle.
Collapse
|
13
|
Haouzi P, MacCann M, Brenner M, Mahon S, Bebarta VS, Chan A, Judenherc-Haouzi A, Tubbs N, Boss GR. Treatment of life-threatening H2S intoxication: Lessons from the trapping agent tetranitrocobinamide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103998. [PMID: 36228991 DOI: 10.1016/j.etap.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
We sought to evaluate the efficacy of trapping free hydrogen sulfide (H2S) following severe H2S intoxication. Sodium hydrosulfide solution (NaHS, 20 mg/kg) was administered intraperitoneally in 69 freely moving rats. In a first group (protocol 1), 40 rats were randomly assigned to receive saline (n = 20) or the cobalt compound tetranitrocobinamide (TNCbi) (n = 20, 75 mg/kg iv), one minute into coma, when free H2S was still present in the blood. A second group of 27 rats received TNCbi or saline, following epinephrine, 5 min into coma, when the concentration of free H2S has drastically decreased in the blood. In protocol 1, TNCbi significantly increased immediate survival (65 vs 20 %, p < 0.01) while in protocol 2, administration of TNCbi led to the same outcome as untreated animals. We hypothesize that the decreased efficacy of TNCbi with time likely reflects the rapid spontaneous disappearance of the pool of free H2S in the blood following H2S exposure.
Collapse
|
14
|
Singh SK, Suhel M, Husain T, Prasad SM, Singh VP. Hydrogen sulfide manages hexavalent chromium toxicity in wheat and rice seedlings: The role of sulfur assimilation and ascorbate-glutathione cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119509. [PMID: 35609844 DOI: 10.1016/j.envpol.2022.119509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 05/21/2023]
Abstract
The role of hydrogen sulfide (H2S) is well known in the regulation of abiotic stress such as toxic heavy metal. However, mechanism(s) lying behind this amelioration are still poorly known. Consequently, the present study was focused on the regulation/mitigation of hexavalent chromium (Cr(VI) toxicity by the application of H2S in wheat and rice seedlings. Cr(VI) induced accumulation of reactive oxygen species and caused protein oxidation which negatively affect the plant growth in both the cereal crops. We noticed that Cr(VI) toxicity reduced length of wheat and rice seedlings by 21% and 19%, respectively. These reductions in length of both the cereal crops were positively related with the down-regulation in the ascorbate-glutathione cycle, and were recovered by the application NaHS (a donor of H2S). Though exposure of Cr(VI) slightly stimulated sulfur assimilation but addition of H2S further caused enhancement in sulfur assimilation, suggesting its role in the H2S-mediated Cr(VI) stress tolerance in studied cereal crops. Overall, the results revealed that H2S renders Cr(VI) stress tolerance in wheat and rice seedlings by stimulating sulfur assimilation and ascorbate-glutathione which collectively reduce protein oxidation and thus, improved growth was observed.
Collapse
|
15
|
Liu Z, Chen L, Gao X, Zou R, Meng Q, Fu Q, Xie Y, Miao Q, Chen L, Tang X, Zhang S, Zhang H, Schroyen M. Quantitative proteomics reveals tissue-specific toxic mechanisms for acute hydrogen sulfide-induced injury of diverse organs in pig. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150365. [PMID: 34555611 DOI: 10.1016/j.scitotenv.2021.150365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is a highly toxic gas in many environmental and occupational places. It can induce multiple organ injuries particularly in lung, trachea and liver, but the relevant mechanisms remain poorly understood. In this study, we used a TMT-based discovery proteomics to identify key proteins and correlated molecular pathways involved in the pathogenesis of acute H2S-induced toxicity in porcine lung, trachea and liver tissues. Pigs were subjected to acute inhalation exposure of up to 250 ppm of H2S for 5 h for the first time. Changes in hematology and biochemical indexes, serum inflammatory cytokines and histopathology demonstrated that acute H2S exposure induced organs inflammatory injury and dysfunction in the porcine lung, trachea and liver. The proteomic data showed 51, 99 and 84 proteins that were significantly altered in lung, trachea and liver, respectively. Gene ontology (GO) annotation, KEGG pathway and protein-protein interaction (PPI) network analysis revealed that acute H2S exposure affected the three organs via different mechanisms that were relatively similar between lung and trachea. Further analysis showed that acute H2S exposure caused inflammatory damages in the porcine lung and trachea through activating complement and coagulation cascades, and regulating the hyaluronan metabolic process. Whereas antigen presentation was found in the lung but oxidative stress and cell apoptosis was observed exclusively in the trachea. In the liver, an induced dysfunction was associated with protein processing in the endoplasmic reticulum and lipid metabolism. Further validation of some H2S responsive proteins using western blotting indicated that our proteomics data were highly reliable. Collectively, these findings provide insight into toxic molecular mechanisms that could potentially be targeted for therapeutic intervention for acute H2S intoxication.
Collapse
|
16
|
Mao Z, Huang Y, Li B, Tomoya K, Shinmori H, Zeng X, Gu Z, Yao J. Hydrogen sulfide as a potent scavenger of toxicant acrolein. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113111. [PMID: 34952378 DOI: 10.1016/j.ecoenv.2021.113111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Acrolein (ACR) is a metabolic byproduct in vivo and a ubiquitous environmental toxicant. It is implicated in the initiation and development of many diseases through multiple mechanisms, including the induction of oxidative stress. Currently, our understanding of the body defense mechanism against ACR toxicity is still limited. Given that hydrogen sulfide (H2S) has strong antioxidative actions and it shares several properties of ACR scavenger glutathione (GSH), we, therefore, tested whether H2S could be involved in ACR detoxification. Taking advantage of two cell lines that produced different levels of endogenous H2S, we found that the severity of ACR toxicity was reversely correlated with H2S-producing ability. In further support of the role of H2S, supplementing cells with exogenous H2S increased cell resistance to ACR, whereas inhibition of endogenous H2S sensitized cells to ACR. In vivo experiments showed that inhibition of endogenous H2S with CSE inhibitor markedly increased mouse susceptibility to the toxicity of cyclophosphamide and ACR, as evidenced by the increased mortality and worsened organ injury. Further analysis revealed that H2S directly reacted with ACR. It promoted ACR clearance and prevented ACR-initiated protein carbonylation. Collectively, this study characterized H2S as a presently unrecognized endogenous scavenger of ACR and suggested that H2S can be exploited to prevent and treat ACR-associated diseases.
Collapse
|
17
|
Mishra V, Singh VP. Implication of nitric oxide and hydrogen sulfide signalling in alleviating arsenate stress in rice seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:117958. [PMID: 34547656 DOI: 10.1016/j.envpol.2021.117958] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) since their discovery have proven to be game changing molecules in alleviating abiotic stress. They individually play role in plant stress management while the pathways of stress regulation through their crosstalk remain elusive. The current study focuses on investigating the interplay of NO and H2S signalling in the amelioration of arsenate As(V) toxicity in rice seedlings and managing its growth, photosynthesis, sucrose and proline metabolism. Results show that As(V) exposure declined fresh weight (biomass) due to induced cell death in root tips. Moreover, a diminished RuBisCO activity, decline in starch content with high proline dehydrogenase activity and increased total soluble sugars content was observed which further intensified in the presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, an inhibitor of nitric oxide synthase-like activity), and DL-propargylglycine (PAG, an inhibitor of cysteine desulfhydrase activity). These results correlate with lower endogenous level of NO and H2S. Addition of L-NAME increased As(V) toxicity. Interestingly, addition of SNP reverses effect of L-NAME suggesting that endogenous NO has a role in mitigating As(V) toxicity. Similarly, exogenous H2S also significantly alleviated As(V) stress, while PAG further stimulated As(V) toxicity. Furthermore, application of H2S in the presence of L - NAME and NO in the presence of PAG could still mitigate As(V) toxicity, suggesting that endogenous NO and H2S could independently mitigate As(V) stress.
Collapse
|
18
|
Chi Q, Hu X, Liu Z, Han Y, Tao D, Xu S, Li S. H 2S exposure induces cell death in the broiler thymus via the ROS-initiated JNK/MST1/FOXO1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112488. [PMID: 34246945 DOI: 10.1016/j.ecoenv.2021.112488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is a common toxic gas in chicken houses that endangers the health of poultry. Harbin has a cold climate in winter, and the conflict between heat preservation and ventilation in poultry houses is obvious. In this study, we investigated the H2S content in chicken houses during winter in Harbin and found that the H2S concentration exceeded the national standard in individual chicken houses. Then, a model of H2S exposure was established in an environmental simulation chamber. We also developed a NaHS exposure model of chicken peripheral blood lymphocytes in vitro. Proteomics analysis was used to reveal the toxicology of thymus injury in broilers, the FOXO signaling pathway was determined to be significantly enriched, ROS bursts and JNK/MST1/FOXO1 pathway activation induced by H2S exposure were detected, and ROS played an important switch role in the JNK/MST1/FOXO1 pathway. In addition, H2S exposure-induced thymus cell death involved immune dysregulation. Overall, the present study adds data for H2S contents in chicken houses, provides new findings for the mechanism of H2S poisoning and reveals a new regulatory pathway in immune injury.
Collapse
|
19
|
Song N, Li X, Cui Y, Zhang T, Xu S, Li S. Hydrogen sulfide exposure induces pyroptosis in the trachea of broilers via the regulatory effect of circRNA-17828/miR-6631-5p/DUSP6 crosstalk on ROS production. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126172. [PMID: 34098264 DOI: 10.1016/j.jhazmat.2021.126172] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant to cause tracheal injury. Pyroptosis is responsible for tissue injury through reactive oxygen species (ROS) production. Competitive endogenous RNAs (ceRNAs) chelate microRNAs and reduce their inhibitory effect on other transcripts, thus affecting ROS levels and pyroptosis. However, it is not clear how H2S regulates pyroptosis via the ceRNA axis. Therefore, we established a broilers model of H2S exposure for 42 days to assess pyroptosis and obtain a ceRNA network by immunohistochemistry and RNA sequencing. We detected pyroptosis induced by H2S and verified circRNA-IGLL1-17828/miR-6631-5p/DUSP6 axis by a double luciferase reporter assay. We also measured ROS levels and the expression of pyroptotic indicators such as (Caspase1) Casp-1, Interleukin 1β (IL-1β) and Interleukin 1β (IL-18). miR-6631-5p knockdown decreased pyroptotic indicators induced by H2S. Overexpression of miR-6631-5p or DUSP6 knockdown stimulated ROS generation and upregulated pyroptotic indicators. N-acetyl-L-cysteine (NAC) decreased pyroptotic indicators and ROS levels both induced by miR-6631-5p. Moreover, circRNA-IGLL1-17828, participated in intermolecular competition as a ceRNA of DUSP6. In conclusion, circRNA-IGLL1-17828/miR-6631-5p/DUSP6 crosstalk regulated H2S-induced pyroptosis in broilers trachea via ROS generation. This is the first study to reveal regulation mechanism of circRNA-related CeRNAs on pyroptosis induced by H2S, providing important reference for environmental toxicology.
Collapse
|
20
|
Xueyuan H, Qianru C, Zhaoyi L, Dayong T, Yu W, Yimei C, Shu L. Transcriptome analysis reveals that hydrogen sulfide exposure suppresses cell proliferation and induces apoptosis through ciR-PTPN23/miR-15a/E2F3 signaling in broiler thymus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117466. [PMID: 34062439 DOI: 10.1016/j.envpol.2021.117466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The immune organs, like thymus, are one of the targets of hydrogen sulfide (H2S). Previously we reported that H2S induced the differential expression of mRNAs that implicating apoptosis in thymus, however, the roles of noncoding RNAs (ncRNAs) in H2S-induced thymus injury are still unknown. Pollution gases could alter the expression of ncRNAs, which have been shown to play important roles in many physiological and pathophysiological processes, including immune activity. This study revealed that H2S exposure induced 9 differentially expressed circRNAs and 15 differentially expressed miRNAs in chicken thymus. Furthermore, the circRNA - miRNA - mRNA network was constructed. We discovered that circR-PTPN23 - miR-15a - E2F3 was involved in the cell cycle and apoptosis. Further, an in vitro H2S exposure model was established using HD11 cell line and demonstrated that H2S suppressed cell proliferation and induced apoptosis. Moreover, ciR-PTPN23 and E2F3 were downregulated, but miR-15a was upregulated in both the thymus and HD11 cell line after H2S exposure. Bioinformatics analysis revealed that ciR-PTPN23 directly bound to miR-15a and that E2F3 was the target gene of miR-15a. Knocking down ciR-PTPN23 suppressed HD11 proliferation and caused G1 arrest and apoptosis, however, this phenomenon could be partially reversed by ciR-PTPN23 overexpression or miR-15a silencing. In summary, the ciR-PTPN23 - miR-15a - E2F3 axis was involved in H2S-induced cell proliferation suppression and apoptosis.
Collapse
|
21
|
Rai P, Singh VP, Peralta-Videa J, Tripathi DK, Sharma S, Corpas FJ. Hydrogen sulfide (H 2S) underpins the beneficial silicon effects against the copper oxide nanoparticles (CuO NPs) phytotoxicity in Oryza sativa seedlings. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:124907. [PMID: 34088169 DOI: 10.1016/j.jhazmat.2020.124907] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/14/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Nanoparticle-pollution has associated severe negative effects on crop productivity. Hence, methods are needed to alleviate nano-toxicity in crop plants. The present study aims to evaluate if the exogenous hydrogen sulfide (H2S) application in combination with silicon (Si) could palliate the harmful effects of copper oxide nanoparticles (CuO NPs). Fifteen day-old rice (Oryza sativa L.) seedlings were used as a model plant. The results indicate that simultaneous exogenous addition of 10 μM Si and 100 μM NaHS (as an H2S donor) provided tolerance and enhanced defence mechanism of the rice seedlings against 100 μM CuO NPs. Thus, it was observed in terms of their growth, photosynthetic pigments, antioxidant enzyme activities, the content of non-enzymatic components, chlorophyll fluorescence and up-regulation of antioxidant genes. Si and NaHS stimulated gene expression of silicon (Lsi1 and Lsi2) and auxin (PIN5 and PIN10) transporters. Taken together, data indicate that H2S underpins the beneficial Si effects in rice seedlings against the oxidative stress triggers by CuO NPs, and stimulation of enzymatic components of the ascorbate-glutathione cycle being the main factor for the beneficial effects triggered by the couple of Si and H2S. Therefore, it could be concluded that the simultaneous application of Si and H2S promote the resilience of the rice seedlings against the oxidative stress induced by CuO NPs.
Collapse
|
22
|
Song N, Wang W, Wang Y, Guan Y, Xu S, Guo MY. Hydrogen sulfide of air induces macrophage extracellular traps to aggravate inflammatory injury via the regulation of miR-15b-5p on MAPK and insulin signals in trachea of chickens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145407. [PMID: 33548704 DOI: 10.1016/j.scitotenv.2021.145407] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) is an environmental contaminant to cause the airway damage. The release of macrophage extracellular traps (METs) is the mechanism of immune protection to harmful stimulation via microRNAs, but excessive METs cause the injury. However, few studies have attempted to interpret the mechanism of an organism injury due to H2S via METs in chickens. Here, we investigated the transcriptome profiles, pathological morphologic changes and METs release from chicken trachea after H2S exposure. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 10 differentially expressed genes were related to the METs release, the MAPK and insulin signaling pathways. Morphological and immunofluorescence analysis showed that H2S caused airway injury and MET release. H2S activated the targeting effect of miRNA-15b-5p on activating transcription factor 2 (ATF2). Western blotting and real time quantitative PCR results showed that H2S down-regulated the levels of dual specificity protein phosophatase1 (DUSP1) but up-regulated p38 MAP Kinase (p38) in the MAPK signal pathway. And the expression of phosphoinositide-dependent protein kinase 1 (PDK1), serine/threonine kinase (Akt), and protein kinase ζ subtypes (PKCζ) in the insulin signal pathway were increased after H2S exposure. These promoted the release of myeloperoxidase (MPO) and degradation histone 4 (H4) to induce the release of METs. Taken together, miR-15b-5p targeted ATF2 to mediate METs release, which triggered trachea inflammatory injury via MAPK and insulin signals after H2S exposure. These results will provide new insights into the toxicological mechanisms of H2S and environmental ecotoxicology.
Collapse
|
23
|
Ren M, Xu Q, Bai Y, Wang S, Kong F. Construction of a dual-response fluorescent probe for copper (II) ions and hydrogen sulfide (H 2S) detection in cells and its application in exploring the increased copper-dependent cytotoxicity in present of H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119299. [PMID: 33341745 DOI: 10.1016/j.saa.2020.119299] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Multiple types of metal ions and active small molecules (reactive nitrogen species, reactive oxygen species, reactive sulfur species, etc.) exist in living organisms. They have connections to each other and can interact and/or interfere with each other. To investigate the relationship of metal ions and active small molecules in living cells, it is necessary and critical to develop molecular tools that can track two kinds of associated certain metal ions and reactive molecules with multiple fluorescence signals. However, this is a challenging task that requires an ingenious molecular design to achieve this goal. Here, we present a fluorescent probe (D-CN) that can offer fluorescence imaging of H2S and copper (II) ions with different response signals. Recognition of H2S and Cu (II) by the new probe can result in green and red emissions, respectively, providing different signal responses to the two substances in living cells and zebrafish. In addition, we used this probe to visually prove that the cytotoxicity of copper ions in living cells increases in the presence of hydrogen sulfide and could lead to cell apoptosis.
Collapse
|
24
|
Elwood M. The Scientific Basis for Occupational Exposure Limits for Hydrogen Sulphide-A Critical Commentary. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062866. [PMID: 33799676 PMCID: PMC8001002 DOI: 10.3390/ijerph18062866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Occupational exposure limits for hydrogen sulphide (H2S) vary considerably; three expert group reports, published from 2006 to 2010, each recommend different limits. Some jurisdictions are considering substantial reductions. METHODS This review assesses the scientific evidence used in these recommendations and presents a new systematic review of human studies from 2006-20, identifying 33 studies. RESULTS The three major reports all give most weight to two sets of studies: of physiological effects in human volunteers, and of effects in the nasal passages of rats and mice. The human studies were done in one laboratory over 20 years ago and give inconsistent results. The breathing style and nasal anatomy of rats and mice would make them more sensitive than humans to inhaled agents. Each expert group applied different uncertainly factors. From these reports and the further literature review, no clear evidence of detrimental health effects from chronic occupational exposures specific to H2S was found. Detailed studies of individuals in communities with natural sources in New Zealand have shown no detrimental effects. Studies in Iceland and Italy show some associations; these and various other small studies need verification. CONCLUSIONS The scientific justification for lowering occupational exposure limits is very limited. There is no clear evidence, based on currently available studies, that lower limits will protect the health of workers further than will the current exposure limits used in most countries. Further review and assessment of relevant evidence is justified before exposure limits are set.
Collapse
|
25
|
Wang HR, Che YH, Wang ZH, Zhang BN, Huang D, Feng F, Ao H. The multiple effects of hydrogen sulfide on cadmium toxicity in tobacco may be interacted with CaM signal transduction. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123651. [PMID: 32818834 DOI: 10.1016/j.jhazmat.2020.123651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Soilless culture experiments with tobacco were conducted to explore how the signal molecule H2S (0.3, 0.6, 0.9, and 1.2 μM) alleviated the toxicity of Cd2+ (50 mg/L). The results suggested that photosynthesis was enhanced as H2S improved the tobacco ΦPSII, ETR, Photo, Cond, and Tr, and that by increasing the NPQ, it consumed considerable amount of energy to enhance plant resistances during Cd2+ exposure. Furthermore, H2S increased the gene transcription of NtSOD3, NtPOD1, and CAT1, to enhance antioxidant enzyme activity, which reduces the generation of the reactive oxygen protective membrane integrity. Additionally, H2S increased the gene expression of the tobacco PC genes, Pr2 and Pr8 promoted the formation of the Cd2+ complexes and transportation to the vacuole, resulting in improved Cd-ATPase gene expression, away from organelles, to alleviate the Cd2+ poison. Furthermore, H2S regulated the relative absorption of K+ and Ca2+, which antagonized the Cd2+, and reduced its transportation to the aboveground plant material. Finally, the expression level of CaM increased with the application of H2S, and was highly correlated with the fitted results of a variety of resistance indicators, thereby indicating that H2S regulatory resistance mechanisms might be associated with Ca2+ signal transduction.
Collapse
|