1
|
Kazianka L, Staber PB. The Bone's Role in Myeloid Neoplasia. Int J Mol Sci 2020; 21:E4712. [PMID: 32630305 PMCID: PMC7369750 DOI: 10.3390/ijms21134712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
The interaction of hematopoietic stem and progenitor cells with their direct neighboring cells in the bone marrow (the so called hematopoietic niche) evolves as a key principle for understanding physiological and malignant hematopoiesis. Significant progress in this matter has recently been achieved making use of emerging high-throughput techniques that allow characterization of the bone marrow microenvironment at single cell resolution. This review aims to discuss these single cell findings in the light of other conventional niche studies that together define the current notion of the niche's implication in i) normal hematopoiesis, ii) myeloid neoplasms and iii) disease-driving pathways that can be exploited to establish novel therapeutic strategies in the future.
Collapse
|
2
|
Huang CH. Mixture regression models for the gap time distributions and illness-death processes. LIFETIME DATA ANALYSIS 2019; 25:168-188. [PMID: 29374789 DOI: 10.1007/s10985-018-9418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The aim of this study is to provide an analysis of gap event times under the illness-death model, where some subjects experience "illness" before "death" and others experience only "death." Which event is more likely to occur first and how the duration of the "illness" influences the "death" event are of interest. Because the occurrence of the second event is subject to dependent censoring, it can lead to bias in the estimation of model parameters. In this work, we generalize the semiparametric mixture models for competing risks data to accommodate the subsequent event and use a copula function to model the dependent structure between the successive events. Under the proposed method, the survival function of the censoring time does not need to be estimated when developing the inference procedure. We incorporate the cause-specific hazard functions with the counting process approach and derive a consistent estimation using the nonparametric maximum likelihood method. Simulations are conducted to demonstrate the performance of the proposed analysis, and its application in a clinical study on chronic myeloid leukemia is reported to illustrate its utility.
Collapse
|
3
|
Zhang H, Paliga A, Hobbs E, Moore S, Olson S, Long N, Dao KHT, Tyner JW. Two myeloid leukemia cases with rare FLT3 fusions. Cold Spring Harb Mol Case Stud 2018; 4:a003079. [PMID: 30559310 PMCID: PMC6318770 DOI: 10.1101/mcs.a003079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Genetic rearrangements involving FLT3 are rare and only recently have been detected in myeloid/lymphoid neoplasms associated with eosinophilia (MLN-eos) and chronic myeloproliferative disorders. Here we report two cases with FLT3 fusions in patients demonstrating mixed features of myelodysplastic/myeloproliferative neoplasms. In the first case, FLT3 was fused with a new fusion partner MYO18A in a patient with marrow features most consistent with atypical chronic myeloid leukemia; the second case involving ETV6-FLT3 fusion was observed in a case with bone marrow features most consistent with chronic myelomonocytic leukemia. Notably, we observed that samples from both patients demonstrated FLT3 inhibitor (quizartinib and sorafenib) sensitivity in ex vivo drug screening assay.
Collapse
|
4
|
Machado-Neto JA, Fenerich BA, Rodrigues Alves APN, Fernandes JC, Scopim-Ribeiro R, Coelho-Silva JL, Traina F. Insulin Substrate Receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics (Sao Paulo) 2018; 73:e566s. [PMID: 30328953 PMCID: PMC6169455 DOI: 10.6061/clinics/2018/e566s] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
The insulin receptor substrate (IRS) proteins are a family of cytoplasmic proteins that integrate and coordinate the transmission of signals from the extracellular to the intracellular environment via transmembrane receptors, thus regulating cell growth, metabolism, survival and proliferation. The PI3K/AKT/mTOR and MAPK signaling pathways are the best-characterized downstream signaling pathways activated by IRS signaling (canonical pathways). However, novel signaling axes involving IRS proteins (noncanonical pathways) have recently been identified in solid tumor and hematologic neoplasm models. Insulin receptor substrate-1 (IRS1) and insulin receptor substrate-2 (IRS2) are the best-characterized IRS proteins in hematologic-related processes. IRS2 binds to important cellular receptors involved in normal hematopoiesis (EPOR, MPL and IGF1R). Moreover, the identification of IRS1/ABL1 and IRS2/JAK2V617F interactions and their functional consequences has opened a new frontier for investigating the roles of the IRS protein family in malignant hematopoiesis. Insulin receptor substrate-4 (IRS4) is absent in normal hematopoietic tissues but may be expressed under abnormal conditions. Moreover, insulin receptor substrate-5 (DOK4) and insulin receptor substrate-6 (DOK5) are linked to lymphocyte regulation. An improved understanding of the signaling pathways mediated by IRS proteins in hematopoiesis-related processes, along with the increased development of agonists and antagonists of these signaling axes, may generate new therapeutic approaches for hematological diseases. The scope of this review is to recapitulate and review the evidence for the functions of IRS proteins in normal and malignant hematopoiesis.
Collapse
|
5
|
Zylbersztejn F, Flores-Violante M, Voeltzel T, Nicolini FE, Lefort S, Maguer-Satta V. The BMP pathway: A unique tool to decode the origin and progression of leukemia. Exp Hematol 2018; 61:36-44. [PMID: 29477370 DOI: 10.1016/j.exphem.2018.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
The microenvironment (niche) governs the fate of stem cells (SCs) by balancing self-renewal and differentiation. Increasing evidence indicates that the tumor niche plays an active role in cancer, but its important properties for tumor initiation progression and resistance remain to be identified. Clinical data show that leukemic stem cell (LSC) survival is responsible for disease persistence and drug resistance, probably due to their sustained interactions with the tumor niche. Bone morphogenetic protein (BMP) signaling is a key pathway controlling stem cells and their niche. BMP2 and BMP4 are important in both the normal and the cancer context. Several studies have revealed profound alterations of the BMP signaling in cancer SCs, with major deregulations of the BMP receptors and their downstream signaling elements. This was illustrated in the hematopoietic system by pioneer studies in chronic myelogenous leukemia that may now be expanded to acute myeloid leukemia and lymphoid leukemia, as reviewed here. At diagnosis, cells from the leukemic microenvironment are the major providers of soluble BMPs. Conversely, LSCs display altered receptors and downstream BMP signaling elements accompanied by altered functional responses to BMPs. These studies reveal the role of BMPs in tumor initiation, in addition to their known effects in later stages of transformation and progression. They also reveal the importance of BMPs in fueling cell transformation and expansion by overamplifying a natural SC response. This mechanism may explain the survival of LSCs independently of the initial oncogenic event and therefore may be involved in resistance processes.
Collapse
|
6
|
Zimdahl B, Ito T, Blevins A, Bajaj J, Konuma T, Weeks J, Koechlein CS, Kwon HY, Arami O, Rizzieri D, Broome HE, Chuah C, Oehler VG, Sasik R, Hardiman G, Reya T. Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nat Genet 2014; 46:245-52. [PMID: 24487275 PMCID: PMC4267534 DOI: 10.1038/ng.2889] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/09/2014] [Indexed: 01/08/2023]
Abstract
Cell fate can be controlled through asymmetric division and segregation of protein determinants, but the regulation of this process in the hematopoietic system is poorly understood. Here we show that the dynein-binding protein Lis1 is critically required for hematopoietic stem cell function and leukemogenesis. Conditional deletion of Lis1 (also known as Pafah1b1) in the hematopoietic system led to a severe bloodless phenotype, depletion of the stem cell pool and embryonic lethality. Further, real-time imaging revealed that loss of Lis1 caused defects in spindle positioning and inheritance of cell fate determinants, triggering accelerated differentiation. Finally, deletion of Lis1 blocked the propagation of myeloid leukemia and led to a marked improvement in survival, suggesting that Lis1 is also required for oncogenic growth. These data identify a key role for Lis1 in hematopoietic stem cells and mark its directed control of asymmetric division as a critical regulator of normal and malignant hematopoietic development.
Collapse
|
7
|
Oraki Kohshour M, Najafi L, Heidari M, Ghaffari Sharaf M. Antiproliferative effect of H2O2 against human acute myelogenous leukemia KG1 cell line. J Acupunct Meridian Stud 2013; 6:134-41. [PMID: 23787282 DOI: 10.1016/j.jams.2012.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/26/2012] [Accepted: 05/03/2012] [Indexed: 01/24/2023] Open
Abstract
It has clearly been established that oxidative stress leads to perturbation of various cellular processes resulting in either inhibition of cell proliferation or cell death. In addition, there is a growing body of evidence indicating that reactive oxygen species (ROS) are required as signal molecules that regulate different physiological processes including survival or death. Free radicals, particularly ROS, have been proposed as general mediators for apoptosis and recent studies have established that the mode of cell death depends on the severity of the oxidative damage. In this study, we determined the effect of oxidative stress on cell proliferation and characterization of cell death in human KG1 cells treated with H2O2. Our results indicated that oxidative stress leads to a significant decrease in cell proliferation and induction of apoptosis. Moreover, our study suggests that antiproliferative and apoptotic cell death effects of H2O2 took place via activation of caspase-3, affecting the expression of Bcl-2 and Bax (an antiapoptotic and a proapoptotic factor, respectively), and through deactivation of catalase enzyme, leading to accumulation of intracellular ROS and depletion of intracellular ATP level.
Collapse
|
8
|
Zyrina GV, Vorob'ev SA. [Clinical and functional symptoms of funicular myelosis and chronic gastritis in patients with B12-deficiency anemia]. KLINICHESKAIA MEDITSINA 2013; 91:53-55. [PMID: 24159789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this work was to study clinical and functional symptoms of funicular myelosis (FM) and chronic gastritis (CG) in patients with B12-deficiency anemia. A total of 77 patients with diagnosis verified by finding megaloblasts in bone marrow biopsies were examined. Clinical symptoms of FM were found in 57% of the patients. The most characteristic subjective ones were paresthesia (83.3%) and limb weakness (60%) while objective symptoms included impaired limb sensitivity (100%). All patients suffered CG with lesions in both antrum and fundus.
Collapse
|
9
|
Rumi E, Harutyunyan A, Elena C, Pietra D, Klampfl T, Bagienski K, Berg T, Casetti I, Pascutto C, Passamonti F, Kralovics R, Cazzola M. Identification of genomic aberrations associated with disease transformation by means of high-resolution SNP array analysis in patients with myeloproliferative neoplasm. Am J Hematol 2011; 86:974-9. [PMID: 21953568 DOI: 10.1002/ajh.22166] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 01/21/2023]
Abstract
Myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These disorders may undergo phenotypic shifts, and may specifically evolve into secondary myelofibrosis (MF) or acute myeloid leukemia (AML). We studied genomic changes associated with these transformations in 29 patients who had serial samples collected in different phases of disease. Genomic DNA from granulocytes, i.e., the myeloproliferative genome, was processed and hybridized to genome-wide human SNP 6.0 arrays. Most patients in chronic phase had chromosomal regions with uniparental disomy (UPD) and/or copy number changes. Disease progression to secondary MF or AML was associated with the acquisition of additional chromosomal aberrations in granulocytes (P = 0.002). A close relationship was observed between aberrations of chromosome 9p (UPD and/or gain) and progression from PV to post-PV MF (P = 0.002). The acquisition of one or more aberrations involving chromosome 5, 7, or 17p was specifically associated with progression to AML (OR 5.9, 95% CI 1.2-27.7, P = 0.006), and significantly affected overall survival (HR 18, 95% CI 1.9-164, P = 0.01). These observations indicate that disease progression from chronic-phase MPN to secondary MF or AML is associated with specific chromosomal aberrations that can be detected by means of high-resolution SNP array analysis of granulocyte DNA.
Collapse
MESH Headings
- Blast Crisis/etiology
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Cell Transformation, Neoplastic/genetics
- Chromosome Aberrations
- DNA/chemistry
- DNA/metabolism
- Disease Progression
- Female
- Genome-Wide Association Study
- Granulocytes/metabolism
- Humans
- Italy
- Janus Kinase 2/genetics
- Janus Kinase 2/metabolism
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/physiopathology
- Male
- Mutation
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/metabolism
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/physiopathology
- Oligonucleotide Array Sequence Analysis
- Polycythemia Vera/etiology
- Polycythemia Vera/genetics
- Polycythemia Vera/metabolism
- Polymorphism, Single Nucleotide
- Primary Myelofibrosis/etiology
- Primary Myelofibrosis/genetics
- Primary Myelofibrosis/metabolism
- Receptors, Thrombopoietin/genetics
- Receptors, Thrombopoietin/metabolism
- Survival Analysis
- Thrombocythemia, Essential/etiology
- Thrombocythemia, Essential/genetics
- Thrombocythemia, Essential/metabolism
Collapse
|
10
|
Wu YL, Zhou HC, Chen GQ. Molecular mechanisms of leukemia-associated protein degradation. ACTA ACUST UNITED AC 2010; 4:363-70. [PMID: 21104160 DOI: 10.1007/s11684-010-0210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
Chemical biology, using small molecules as probes to study the cellular signaling network, has developed rapidly in recent years. The interaction between chemistry and biology not only provides new insight into the understanding of cellular activities, but also generates new lead compounds for the treatment of diseases. Transcription factors and kinases such as retinoic acid receptor-alpha (RARα), acute myeloid leukemia 1 (AML1), CAAT/enhancer-binding protein α (C/EBPα), c-myc, and c-abl play important roles in the differentiation of hematopoietic stem/progenitor cells. Abnormalities in these proteins may cause the dysregulation of hematopoiesis and even the occurrence of leukemia. Ubiquitin-mediated protein degradation represents a critical mechanism in regulating the cellular levels and functions of these proteins. Thus, targeting protein degradation has been emerging as an important strategy to conquer malignant diseases. In this review, we will summarize the recent advances in the understanding of the roles of protein degradation in leukemia, with an emphasis on the mechanisms revealed by small molecules.
Collapse
MESH Headings
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/physiopathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RUNX1 Translocation Partner 1 Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ubiquitin/genetics
- Ubiquitin/metabolism
Collapse
|
11
|
Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ, Hickey C, Yu J, Becker H, Maharry K, Radmacher MD, Li C, Whitman SP, Mishra A, Stauffer N, Eiring AM, Briesewitz R, Baiocchi RA, Chan KK, Paschka P, Caligiuri MA, Byrd JC, Croce CM, Bloomfield CD, Perrotti D, Garzon R, Marcucci G. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 2010; 17:333-47. [PMID: 20385359 PMCID: PMC2917066 DOI: 10.1016/j.ccr.2010.03.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 11/29/2009] [Accepted: 03/17/2010] [Indexed: 12/29/2022]
Abstract
The biologic and clinical significance of KIT overexpression that associates with KIT gain-of-function mutations occurring in subsets of acute myeloid leukemia (AML) (i.e., core binding factor AML) is unknown. Here, we show that KIT mutations lead to MYC-dependent miR-29b repression and increased levels of the miR-29b target Sp1 in KIT-driven leukemia. Sp1 enhances its own expression by participating in a NFkappaB/HDAC complex that further represses miR-29b transcription. Upregulated Sp1 then binds NFkappaB and transactivates KIT. Therefore, activated KIT ultimately induces its own transcription. Our results provide evidence that the mechanisms of Sp1/NFkappaB/HDAC/miR-29b-dependent KIT overexpression contribute to leukemia growth and can be successfully targeted by pharmacological disruption of the Sp1/NFkappaB/HDAC complex or synthetic miR-29b treatment in KIT-driven AML.
Collapse
|
12
|
Baccarani M, Killmann SA. Cytokinetic studies in chronic myeloid leukaemia: evidence for early presence of abnormal myeloblasts. SCANDINAVIAN JOURNAL OF HAEMATOLOGY 2009; 9:283-92. [PMID: 4506293 DOI: 10.1111/j.1600-0609.1972.tb00941.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Jensen PO, Mortensen BT, Hodgkiss RJ, Iversen PO, Christensen IJ, Helledie N, Larsen JK. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif 2008; 33:381-95. [PMID: 11101010 PMCID: PMC6496496 DOI: 10.1046/j.1365-2184.2000.00183.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microenvironmental changes in the bone marrow, spleen and liver during progression of the transplantable promyelocytic leukaemia in the Brown Norwegian rat (BNML) have been studied. We used flow cytometry to estimate cellular hypoxia and proliferation based on in vivo pulse-labelling with a mixture of 2-nitroimidazole linked to theophylline (NITP) and bromodeoxyuridine (BrdUrd). The leukaemic cells were identified with the RM124 antibody. In rats inoculated with leukaemic cells the fraction of RM124+ cells was significantly increased from day 20 onwards in the spleen and from day 27 in the bone marrow and liver, reaching a level of 65-87% in these organs at day 32. At day 32, the NITP+ fraction of RM124+ cells had increased significantly in the bone marrow and spleen to 88% and 90%, respectively. The corresponding fractions of NITP+ normal cells reached 63% and 65%, respectively. From day 13 to day 32, the DNA-synthesizing (BrdUrd+) fraction of RM124+ cells in the bone marrow decreased significantly from 52% to 25%, and of normal cells from about 20% to 6%. In the bone marrow and spleen at day 27 and 32, the S-phase and G2/M-phase fractions according to DNA content were higher for the NITP+ than for the NITP- cells. This could partly be explained by an impaired cell cycle progression due to hypoxia. Nevertheless, we found indications of leukaemic cells that were simultaneously labelled with NITP and BrdUrd, in the bone marrow and spleen. These latter findings suggest that in contrast to normal cells some of the leukaemic cells can proliferate even during hypoxia, and this subpopulation may consequently renew and expand the leukaemic cell load.
Collapse
|
14
|
Fan JJ, Chai YH, He HL. [Clinical analysis of 201 cases of childhood acute myelocytic leukemia]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2007; 45:873-874. [PMID: 18282430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
15
|
Alibhai SMH, Leach M, Kermalli H, Gupta V, Kowgier ME, Tomlinson GA, Brandwein J, Buckstein R, Minden MD. The impact of acute myeloid leukemia and its treatment on quality of life and functional status in older adults. Crit Rev Oncol Hematol 2007; 64:19-30. [PMID: 17765568 DOI: 10.1016/j.critrevonc.2007.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/28/2007] [Accepted: 07/04/2007] [Indexed: 11/15/2022] Open
Abstract
Although intensive chemotherapy (IC) may modestly improve survival compared to supportive care in older people with acute myeloid leukemia (AML), treatment may worsen quality of life (QOL) and functional status. We assessed QOL and functional status at baseline, 1 month, 4 months, and 6 months in 65 consecutive, English-speaking, patients age 60 or older with newly diagnosed AML. At baseline, functional status was high but QOL was negatively affected in global health and most QOL domains. Over time, QOL remained stable or improved in most patients and was generally similar between IC and non-IC groups. Basic activities of daily living (ADL) scores did not change over time, whereas instrumental ADL scores declined slightly regardless of treatment. Receiving IC does not appear to lead to worse QOL or functional status than more palliative approaches. This information may aid treatment discussions in older patients with AML.
Collapse
|
16
|
Schaefer C, Krause M, Fuhrhop I, Schroeder M, Algenstaedt P, Fiedler W, Rüther W, Hansen-Algenstaedt N. Time-course-dependent microvascular alterations in a model of myeloid leukemia in vivo. Leukemia 2007; 22:59-65. [PMID: 17898789 DOI: 10.1038/sj.leu.2404947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional and morphological properties of tumor microcirculation play a pivotal role in tumor progression, metastasis and inefficiency of tumor therapies. Despite enormous insights into tumor angiogenesis in solid tumors, little is known about the time-course-dependent properties of tumor vascularization in hematologic malignancies. The aim of this study was to establish a model of myeloid leukemia, which allows long-term monitoring of tumor progression and associated microcirculation. Red fluorescent protein-transduced human leukemic cell lines (M-07e) were implanted into cranial windows of severe combined immunodeficient mice. Intravital microscopy was performed over 55 days to measure functional (microvascular permeability, tissue perfusion rate and leukocyte-endothelium interactions) and morphological vascular parameters (vessel density, distribution and diameter). Tumor progression was associated with elevated microvascular permeability and an initial angiogenic wave followed by decreased vessel density combined with reduced tissue perfusion due to loss in small vessels and development of heterogenous tumor vascularization. Following altered geometric resistance of microcirculation, leukocyte-endothelium interactions were more frequent without increased leukocyte extravasation. It was concluded that time-dependent alterations of leukemic tumor vascularization exhibit strong similarities to those found in solid tumors. The potential contribution to the development of barriers to drug delivery in leukemic tumors is discussed.
Collapse
|
17
|
Torchia EC, Boyd K, Rehg JE, Qu C, Baker SJ. EWS/FLI-1 induces rapid onset of myeloid/erythroid leukemia in mice. Mol Cell Biol 2007; 27:7918-34. [PMID: 17875932 PMCID: PMC2169157 DOI: 10.1128/mcb.00099-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EWS/FLI-1 is a chimeric oncogene generated by chromosomal translocation in Ewing tumors, a family of poorly differentiated pediatric tumors arising predominantly in bone but also in soft tissue. The fusion gene combines sequences encoding a strong transactivating domain from the EWS protein with the DNA binding domain of FLI-1, an ETS transcription factor. A related fusion, TLS/ERG, has been found in myeloid leukemia. To determine EWS/FLI-1 function in vivo, we engineered mice with Cre-inducible expression of EWS/FLI-1 from the ubiquitous Rosa26 locus. When crossed with Mx1-cre mice, Cre-mediated activation of EWS/FLI-1 resulted in the rapid development of myeloid/erythroid leukemia characterized by expansion of primitive mononuclear cells causing hepatomegaly, splenomegaly, severe anemia, and death. The disease could be transplanted serially into naïve recipients. Gene expression profiles of primary and transplanted animals were highly similar, suggesting that activation of EWS/FLI-1 was the primary event leading to disease in this model. The Cre-inducible EWS/FLI-1 mouse provides a novel model system to study the contribution of this oncogene to malignant disease in vivo.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Proliferation
- Chimera
- Chromosome Aberrations
- GATA1 Transcription Factor/metabolism
- Gene Expression Profiling
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Neoplasm Transplantation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- RNA, Untranslated
- RNA-Binding Protein EWS
- Sarcoma, Ewing
- Stem Cells/physiology
Collapse
|
18
|
Clavio M, Vignolo L, Albarello A, Varaldo R, Pierri I, Catania G, Balocco M, Michelis G, Miglino M, Manna A, Balleari E, Carella AM, Sessarego M, Van Lint MT, Bacigalupo A, Gobbi M. Adding low-dose gemtuzumab ozogamicin to fludarabine, Ara-C and idarubicin (MY-FLAI) may improve disease-free and overall survival in elderly patients with non-M3 acute myeloid leukaemia: results of a prospective, pilot, multi-centre trial and comparison with a historical cohort of patients. Br J Haematol 2007; 138:186-95. [PMID: 17593025 DOI: 10.1111/j.1365-2141.2007.06646.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the final results of a prospective multi-centre trial testing the combination of chemotherapy (fludarabine, cytosine arabinoside and idarubicin; FLAI) followed by low-dose gemtuzumab ozogamicin (GO), for induction treatment of patients with CD33+ acute myeloid leukaemia (AML). Forty-six consecutive patients were treated: the median age was 66 (range: 60-80) years; the karyotype was unfavourable in 12 patients (26%), intermediate in 33 (71%) and favourable in one (3%). Eleven major infectious complications were recorded. There was one early death. Of the 45 evaluable patients, 24 achieved a complete response (CR; 52%), 66% and 33% in good-intermediate/poor karyotype patients. Median duration of CR was 7 (3-24) months. The cumulative incidence of relapse was 37% with an actuarial 2-year survival of 54%. These results were compared with 47 patients matched for age and karyotype who received FLAI, without GO. The proportion of patients achieving CR was comparable. However, patients with de novo AML receiving GO (n = 26) had a significantly lower risk of relapse at 2 years when compared with patients not receiving GO (n = 35) (40% vs. 80%, P = 0.01) and significantly better overall 2-year survival (40% vs. 14%P = 0.02). Patients with secondary AML had comparable outcome whether or not they received GO. This GO-based induction chemotherapy has a good toxicity profile. In keeping with a recent prospective randomised trial, the addition of GO seems to prolong disease-free survival.
Collapse
|
19
|
McGrattan P, Humphreys M, Hull D, McMullin MF. Transformation of cytogenetically normal chronic myelomonocytic leukaemia to an acute myeloid leukaemia and the emergence of a novel +13, +15 double trisomy resulting in an adverse outcome. THE ULSTER MEDICAL JOURNAL 2007; 76:131-5. [PMID: 17853637 PMCID: PMC2075573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 58-year-old man was admitted with symptoms of lethargy and easy bruising for four months duration. Peripheral blood (PB) analysis revealed a white blood cell count (WBC) of 15.9 x 10(9)/l with monocytes 5.4 x 10(9)/l. Bone marrow (BM) was hypercellular with 15% blasts, monocytosis and trilineage dysplasia. Conventional cytogenetic analysis (G-banding) detected an apparently normal male karyotype (46,XY). A diagnosis of chronic myelomonocytic leukaemia (CMML) was made. After 3 years, PB analysis revealed a WBC count of 22 x 10(9)/l and a predominance of blasts. BM aspirate analysis also revealed 89% myeloid blasts and G-banding detected the emergence of an abnormal clone harbouring an extra copy of chromosomes 13 and 15. A diagnosis of disease transformation to acute myeloid leukaemia (AML) was made. Post chemotherapy BM aspirate was very hypocellular and the abnormal +13, +15 clone was still present suggesting primary refractory disease. A second course of chemotherapy was only administered for 24 hours due to complications. The abnormal +13, +15 clone was still present and it was decided that no further treatment apart from palliative care could be offered. The patient died 11 weeks later, five months after AML transformation. This is the first description of a cytogenetically normal CMML patient transforming to AML with the emergence of a unique +13, +15 double trisomy resulting in an adverse outcome.
Collapse
MESH Headings
- Acute Disease
- Antineoplastic Agents/therapeutic use
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 15/genetics
- Cytogenetics
- Fatal Outcome
- Humans
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/physiopathology
- Leukemia, Myelomonocytic, Chronic/complications
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/physiopathology
- Male
- Middle Aged
- Treatment Outcome
- Trisomy/genetics
- Trisomy/physiopathology
Collapse
|
20
|
Khalil F, Cualing H, Cogburn J, Miles L. The criteria for bone marrow recovery post-myelosuppressive therapy for acute myelogenous leukemia: a quantitative study. Arch Pathol Lab Med 2007; 131:1281-9. [PMID: 17683190 DOI: 10.5858/2007-131-1281-tcfbmr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2007] [Indexed: 11/06/2022]
Abstract
CONTEXT Although the early post-myelosuppressive chemotherapy pathologic changes of the marrow have been described, the rate and the histologic definition of recovery are not defined. OBJECTIVE To study the rate of recovery of bone marrow in patients given myelosuppressive therapy for acute myelogenous leukemia, establish the histologic criteria of recovered marrow, and correlate the recovery pattern with those patients who received a bone marrow transplant by using histology, peripheral blood, immunophenotyping, and computerized morphometry and mathematical slope equation. DESIGN We studied the post-myelosuppression recovery of the bone marrow to determine patterns and rate of recovery in 135 serial bone marrow biopsies of 51 patients. These patients were divided into 2 groups: 1 group of 28 cases diagnosed with acute myeloid leukemia, the majority treated with cytarabine (Ara-C) infusion for 7 days and daunorubicin intravenously daily for 3 days (7+3 regimen), and the other control group of 23 cases treated with chemotherapy or allogeneic bone marrow transplantation for a variety of hematologic malignancies. All biopsies during the recovery period were obtained before consolidation regimen. We used morphometry to calculate the cellularity and myeloid to erythroid ratio and quantified megakaryocytes CD10 versus time from day 14 onward. The absolute neutrophil and platelet counts for 28 cases were related to histologic recovery. RESULTS From day 14, we noted a differential slope of recovery of these patients with no difference in male and female patients, P = .45, but a difference between younger and older patients (>58.5 years), P = .03. After regenerative hyperplasia, the cellularity plateaus, the myeloid to erythroid ratio, and the megakaryocytes even out with platelet normalization, and the early CD10+ B cells rise from day 40 onward, P = .01. The patterns of recovery after day 60 of postchemotherapy and posttransplantation patients are similar. Complete histologic and peripheral blood recovery is noted at day 38 and thereafter. CONCLUSIONS By linear equation using at least 2 trephine biopsy specimens, the projected rate of cellular recovery may be determined, and 5 histologic features are associated with complete histologic recovery.
Collapse
|
21
|
Drummond MW, Balabanov S, Holyoake TL, Brummendorf TH. Concise review: Telomere biology in normal and leukemic hematopoietic stem cells. Stem Cells 2007; 25:1853-61. [PMID: 17510216 DOI: 10.1634/stemcells.2007-0057] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The measurement of telomere length can give an insight into the replicative history of the cells in question. Much of the observed telomere loss occurs at the stem and progenitor cell level, even though these populations express the enzyme telomerase. Telomerase-transfected hematopoietic stem cells (HSC), although able to maintain telomere length, are still limited in terms of ability to undergo sequential transplantation, and other factors require to be addressed to achieve optimal levels of stem cell expansion. Unchecked telomere loss by HSC, meanwhile, would appear to play a significant role in the pathogenesis of bone marrow failure, as observed in the condition dyskeratosis congenita. This heterogeneous inherited condition appears to exhibit telomerase dysfunction as a common final pathogenic mechanism. Although less well-established for acquired marrow failure syndromes, mutations in key telomerase components have been described. The identification of the leukemic stem cell (LSC), along with the desire to target this population with anti-leukemia therapy, demands that telomerase biology be fully understood in this cell compartment. Future studies using primary selected LSC-rich samples are required. A better understanding of telomerase regulation in this population may allow effective targeting of the telomerase enzyme complex using small molecule inhibitors or additional novel approaches. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Proliferation
- DNA Replication/physiology
- DNA, Neoplasm/physiology
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/enzymology
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/physiology
- Humans
- Leukemia/enzymology
- Leukemia/genetics
- Leukemia/pathology
- Leukemia/physiopathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Leukemia, Myeloid/enzymology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/physiopathology
- Mice
- Mice, Knockout
- Models, Biological
- Neural Tube Defects/enzymology
- Neural Tube Defects/genetics
- Neural Tube Defects/physiopathology
- Telomerase/genetics
- Telomerase/metabolism
- Telomerase/physiology
- Telomere/metabolism
- Telomere/physiology
Collapse
|
22
|
Barabé F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science 2007; 316:600-4. [PMID: 17463288 DOI: 10.1126/science.1139851] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our understanding of leukemia development and progression has been hampered by the lack of in vivo models in which disease is initiated from primary human hematopoietic cells. We showed that upon transplantation into immunodeficient mice, primitive human hematopoietic cells expressing a mixed-lineage leukemia (MLL) fusion gene generated myeloid or lymphoid acute leukemias, with features that recapitulated human diseases. Analysis of serially transplanted mice revealed that the disease is sustained by leukemia-initiating cells (L-ICs) that have evolved over time from a primitive cell type with a germline immunoglobulin heavy chain (IgH) gene configuration to a cell type containing rearranged IgH genes. The L-ICs retained both myeloid and lymphoid lineage potential and remained responsive to microenvironmental cues. The properties of these cells provide a biological basis for several clinical hallmarks of MLL leukemias.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Cell Transformation, Neoplastic
- Disease Models, Animal
- Disease Progression
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, Immunoglobulin
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/metabolism
- Humans
- Immunoglobulin Heavy Chains/genetics
- Leukemia, Lymphoid/pathology
- Leukemia, Lymphoid/physiopathology
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/physiopathology
- Mice
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Transduction, Genetic
- Tumor Cells, Cultured
Collapse
|
23
|
Bolufer P, Collado M, Barragán E, Cervera J, Calasanz MJ, Colomer D, Roman-Gómez J, Sanz MA. The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica 2007; 92:308-14. [PMID: 17339179 DOI: 10.3324/haematol.10752] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVES We examined common polymorphisms in the genes for glutathione S-transferase (GST), cytochrome P450 (CYP), quinone oxoreductase (NQO1), methylene tetrahydrofolate reductase (MTHFR), and thymidylate synthetase (TYMS) and the role of gender associated with the susceptibility to de novo acute leukemia (AL). DESIGN AND METHODS We conducted a case-control study analyzing the prevalence of the polymorphisms CYP1A1*2A, CYP2E1*5B, CYP3A4*1B, del{GSTT1}, del{GSTM1}, NQO1*2, MTHFR C6777, and TYMS 2R/3R in 443 patients with AL [302 with acute myeloblastic leukemia (AML) and 141 with acute lymphoblastic leukemia (ALL)] and 454 control volunteers, using polymerase chain reaction (PCR)-based methods. RESULTS We found a higher incidence of del{GSTT1} in patients with AML than among controls (25.6% vs. 13.7%, OR=2.2, p<0.001) and a higher incidence of NQO1*2 homozygosity (NQO1*2hom.) in males with the M3 FAB subtype than in control males (8.6% vs. 2.2%, OR=4.9, p=0.02). The del{GSTT1} and NQO1*2hom. polymorphisms increased the risk of ALL (OR=2.2 and 3.0, p=0.001 and 0.003, respectively). The higher risk conferred by NQO1*2hom. and del{GSTT1} mainly affected males (OR=6.1 and 2.4; p=0.002 and 0.005, respectively). INTERPRETATION AND CONCLUSIONS Males harboring NQO1*2hom. and del{GSTT1} polymorphisms showed a higher risk than females of developing AL. Thus, gender might influence the risk of AL associated with these genetic polymorphisms.
Collapse
|
24
|
|
25
|
Alibhai SMH, Leach M, Kowgier ME, Tomlinson GA, Brandwein JM, Minden MD. Fatigue in older adults with acute myeloid leukemia: predictors and associations with quality of life and functional status. Leukemia 2007; 21:845-8. [PMID: 17287855 DOI: 10.1038/sj.leu.2404576] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|