1
|
Cao F, Lu S. OSA modified porous starch acts as an efficient carrier for loading and sustainedly releasing naringin. Food Chem 2025; 463:141176. [PMID: 39276539 DOI: 10.1016/j.foodchem.2024.141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
To select an efficient carrier for loading and sustainedly releasing naringin (NAR), complexes of porous starch (PS) and NAR (PS-NAR) as well as those of octenyl succinic anhydride (OSA) esterified PS and NAR (OSAPS-NAR) with different degree of substitution (DS) were prepared by an ultrasonic method with an ethanol solution. The micro-morphological features, structural and thermal properties of complexes and their constituents were characterized, and in vitro release rate and kinetic of NAR from complexes were investigated. The findings revealed that NAR was successfully loaded in PS/OSAPS in an amorphous form, and the NAR's loading efficiency improved as DS increased, reaching 86.85 % at DS 0.0427. NAR cumulative release rate from the complexes in simulated digestion fluids was much higher than that of free (unloaded) NAR, but decreased as DS increased. NAR's in vitro release from complexes mainly depended on the carrier rather than NAR itself, and OSAPS with higher DS had stronger protection and slower release effect on NAR. The results would provide a new means for starch-based carrier construction to develop an efficient delivery and sustainedly releasing system for NAR, thus broadening the application ranges both for modified starch and citrus flavonoids such as NAR.
Collapse
|
2
|
Li Y, Gao Q, Qi L, Nian B. Supramolecular assembly strategy of modified starch chains for achieving recyclable emulsion biocatalysis within a narrow pH range. Carbohydr Polym 2025; 347:122760. [PMID: 39486986 DOI: 10.1016/j.carbpol.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 11/04/2024]
Abstract
Stimuli-responsive Pickering emulsions are promising in biocatalysis for their ease of product separation and emulsifier recovery. However, pH responsiveness, though simple and cost-effective, faces challenges in precise control and narrow transition ranges, limiting its use in enzymatic catalysis. Herein we introduced amorphous octenyl succinic anhydride-modified debranched starch chains (Am-OSA-St) to control emulsion properties within a pH range suitable for enzymatic catalysis. By adjusting the OSA group density and molecular weight, Am-OSA-St allowed emulsions to transition reversibly between pH 7.3 and 5.5 and enabled self-recycling through supramolecular self-assembly. Employing molecular dynamics simulations and physicochemical characterization, we elucidated the control mechanism of oil-water interfaces via the microstructure transformation of Am-OSA-St. The findings revealed that protonation of carboxylate groups disrupted the charge balance and polarity of starch chains, leading to strong electrostatic and van der Waals interactions that drove self-assembly. This entanglement caused starch chains in the aqueous phase to "drag" those at the oil-water interface, moving them into the aqueous phase and forming micelles. These micelles, with a hydrophobic interior and hydrophilic exterior, prevented re-adsorption. Testing with Candida antarctica Lipase B (CALB) and N-acetylneuraminic lyase showed that the pH-regulated emulsion system maintained excellent efficiency and cycling stability in mild conditions.
Collapse
|
3
|
Long S, Yu MJ, Feng R, Tao H, Zhang B. Novel self-assembled micelles of dual-modified dextrin with pH responsiveness via grafted octenyl succinic anhydride and cysteamine for curcumin delivery. Food Chem 2024; 460:140748. [PMID: 39142209 DOI: 10.1016/j.foodchem.2024.140748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
In this study, a novel dextrin-based micelle (OSAD-SH), dual-modified with octenyl succinic anhydride (OSA) and cysteamine, was developed to address the acid instability issues of micelle modified only by OSA and designed for curcumin delivery. Three amphiphilic OSAD-SH polymers with different free sulfhydryl content were first synthesized. The study demonstrated that OSAD-SH micelles exhibited strong self-assembly properties, appearing as spheres with diameters ranging from 92.41 to 194.20 nm. Blank micelles showed good dilution resistance, as well as stability against acid, thermal, and ionic strength. The curcumin encapsulated by the micelles was in an amorphous state. In vitro release experiment demonstrated that curcumin released from OSAD-SH micelles exhibited pH responsiveness. The Ritger-Peppas model effectively predicted the release behavior of curcumin, which followed a super case-II transport. The OSAD-SH micelle will be a promising nanocarrier for improving the physicochemical properties of curcumin in food fields.
Collapse
|
4
|
Li Y, Li R, Chen S, Wang X, Jiang Y, Fang Y, Lin Q, Ding Y. Understanding regulating effects of protein-anionic octenyl succinic anhydride-modified starch interactions on the structural, rheological, digestibility and release properties of starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8580-8592. [PMID: 38925572 DOI: 10.1002/jsfa.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Proteins and anionic octenyl succinic anhydride (OSA)-modified starch (OSA-starch) are common ingredients in food systems. The interactions between OSA-starch and protein are found to alter the structural and functional properties of the protein-OSA-starch complexes. In this regard, the close understanding of the relationship among the molecular interactions between whey protein isolate (WPI) and OSA-high amylose corn starch (HAS), structure changes and rheological, digestibility and release properties of WPI-OSA-HAS was investigated. RESULTS The molecular interactions of WPI-OSA-HAS were significant for increasing the surface rough, solubility, storage modulus and loss modulus, but decreasing the R1047/1022 values. For the nutritional evaluation, the anti-digestibility of WPI-OSA-HAS was enhanced with increased resistant starch + slowly digestible starch contents and decreased equilibrium hydrolysis percentage and kinetic constant. During the digestion, part of the starch granule, OSA groups and WPI were lost, but the loss was lower than for OSA-HAS. Furthermore, the results of curcumin-loaded WPI-OSA-HAS in simulated gastrointestinal fluids demonstrated that curcumin could be gradually released to simulate colonic fluid. Notably, the interaction between WPI and OSA-HAS depended on the WPI concentration with the stronger molecular interactions obtained at 35% concentration. CONCLUSION These results provided important information concerning how to adjust the rheological, anti-digestibility and release properties of WPI-OSA-HAS through altering the electrostatic interactions and hydrophobic interactions of WPI-OSA-HAS. © 2024 Society of Chemical Industry.
Collapse
|
5
|
Duan W, Dong Y, Qiao X, Gao W, Yuan C, Liu P, Wu Z, Cui B. Octenylsuccinylation strategy to construct high-amylose maize starch-myristic acid complexes with high thermal stability, complexation efficiency and anti-retrogradation ability. Carbohydr Polym 2024; 343:122450. [PMID: 39174127 DOI: 10.1016/j.carbpol.2024.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
Gelatinizing high-amylose maize starch (HAMSt) requires high temperatures to allow complexation with lipids, making it a challenging process. An octenylsuccinylation method was examined as a part of a strategy to decrease the gelatinization temperature of HAMSt, thereby promoting the complexation between HAMSt and myristic acid (MAc). Octenyl succinic anhydride (OSA) modification of HAMSt reduces the onset gelatinization temperature of HAMSt from 71.63 °C to 66.97 °C. Moreover, as the OSA concentration increased from 2 % to 11 %, the degree of substitution and molecular weights of the esterified HAMSt gradually increased from 0.0069 to 0.0184 and from 0.97 × 106 to 1.17 × 106 g/mol, respectively. Fourier transform infrared analysis indicated that the octenyl-succinate groups were grafted onto the HAMSt chains. The formation of HAMSt-MAc complexes improved the thermal stability of OSA-treated HAMSt (peak temperature increased by 0.11 °C-13.95 °C). Moreover, the diffraction intensity of the V-type peak of the 11 % sample was greater than that of other samples. Finally, the anti-retrogradation ability was in the order of OSA-HAMSt-MAc complexes > HAMSt-MAc complexes > HAMSt. Overall, our results indicate that octenylsuccinylation can be an effective strategy to promote the formation of OSA-HAMSt-MAc complexes and delay starch retrogradation.
Collapse
|
6
|
Xu Y, Sun L, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. Influence of gelatinized octenyl succinic anhydride-modified waxy adlay seed starch on the properties of astaxanthin-loaded emulsions: Emulsion properties, stability and in vitro digestion properties. Food Chem 2024; 457:140105. [PMID: 38905828 DOI: 10.1016/j.foodchem.2024.140105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Octenyl succinic anhydride (OSA)-modified starch is a commonly used food emulsifier and its emulsifying properties are positively correlated with the degree of substitution (DS). However, the maximum concentration of OSA in starch approved by the FDA and the China National Food Safety Standards is 3%. This study aims to enhance the emulsifying properties of OSA-modified waxy adlay seed starch by gelatinization under a limited DS and investigate its use in preparing delivery systems. The gelatinized OSA starch exhibited a more flexible macromolecular structure and better emulsifying activity (20.19 m2/g). The gelatinized OSA starch-stabilized astaxanthin-loaded emulsions showed high retention of astaxanthin (>50%) and long-term stability (56 days). In vitro digestion, the emulsion system showed a protective effect on astaxanthin, and the bioaccessibility of astaxanthin was increased to 16.32%. This study indicated that gelatinization could enhance the emulsifying properties of OSA starch, and this starch-stabilized emulsion was an effective system for astaxanthin.
Collapse
|
7
|
Liu M, Wang X, Li Y, Jin D, Jiang Y, Fang Y, Lin Q, Ding Y. Effects of OSA-starch-fatty acid interactions on the structural, digestibility and release characteristics of high amylose corn starch. Food Chem 2024; 454:139742. [PMID: 38795623 DOI: 10.1016/j.foodchem.2024.139742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
This study investigated the effects of octenyl succinic anhydride (OSA)-starch-fatty acid (FA) interactions on the structural, digestibility and release characteristics of high amylose corn starch (HAS). FTIR and XRD analysis showed that the hydrophobic interaction between HAS and FA promoted the covalent binding between OSA and HAS. With the increasing of the FA chain length, the complex index, degree of substitution, R1047/1022 and relative crystallinity of OSA-HAS-FA increased first and then decreased, whereas the first-order rate coefficient and percentage of digested in infinite time showed an opposite trend. Structural changes and the molecular interactions of OSA-HAS-FA with 12‑carbon FA resulted in highest resistant starch content (45.43%) and encapsulation efficiency of curcumin (Cur) (47.98%). In vitro release test revealed that Cur could be gradually released from OSA-HAS-FA in simulated gastric, intestinal and colonic fluids. Results provided novel insights into HAS-FA complex grafted with OSA as carrier for colon-specific of functional materials.
Collapse
|
8
|
Huang C, Jiang Y, Gong H, Zhou J, Qin L, Li Y. Spatially selective catalysis of OSA starch for preparation of Pickering emulsions with high emulsification properties. Food Chem 2024; 453:139571. [PMID: 38761741 DOI: 10.1016/j.foodchem.2024.139571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
The traditional strategies of chemical catalysis and biocatalysis for producing octenyl succinic anhydride modified starch can only randomly graft hydrophobic groups on the surface of starch, resulting in unsatisfactory emulsification performance. In this work, a lipase-inorganic hybrid catalytic system with multi-scale flower like structure is designed and applied to spatially selective catalytic preparation of ocenyl succinic anhydride modified starch. With the appropriate floral morphology and petal density, lipases distributed in the "flower center" can selectively catalyze the grafting of hydrophobic groups in a spatial manner, the hydrophobic groups are concentrated on one side of starch particles. The obtaining OSA starch exhibits excellent emulsifying property, and the pickering emulsion has good protective effect on the embedded curcumin. This work provides a direction for the development of high-performance starch-based emulsifiers for the food and pharmaceutical industries, which is of great significance for improving the preparation and emulsification theory research of modified starch.
Collapse
|
9
|
Wu X, Zhang J, Wu X, Yan X, Zhang Q, Zhang B. Octenyl succinic anhydride tigernut starch: Structure, physicochemical properties and stability of curcumin-loaded Pickering emulsion. Int J Biol Macromol 2024; 275:133475. [PMID: 38945344 DOI: 10.1016/j.ijbiomac.2024.133475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In recent years, there has been increasing attention to starch particle-stabilized Pickering emulsions. In this study, the tigernut starch (TNS) was isolated from the tigernut meal, and further octenyl succinic anhydride tigernut starch (OSATNS) was prepared by a semi-dry method. The structure of OSATNS was analyzed and characterized by degrees of substitution (DS), contact angle, SEM, and FTIR. OSATNS was then used to stabilize the curcumin-loaded Pickering emulsion to improve the water solubility and stability of the curcumin. The results showed that OSATNS with 3 %-9 % OSA exhibited a DS range of 0.012 to 0.029, and its contact angle increased from 69.23° to 84.76°. SEM revealed that TNS consisted of small starch particles averaging 7.71 μm, and esterification did not significantly alter their morphology or size. FTIR analysis confirmed successful OSA incorporation by revealing two new peaks at 1732 cm-1 and 1558 cm-1. After 7 days of storage, Pickering emulsions stabilized with OSATNS-9 % exhibited superior stability and curcumin retention compared to Tween 80 emulsions, maintaining retention rates above 80 % even after different heat treatments. In conclusion, this study shows the potential application of OSATNS in stabilizing Pickering emulsions and demonstrates its good thermal stability and protection against curcumin during storage.
Collapse
|
10
|
Cheng X, Li W, Peng R, Chen Y, Mu S, Cui L, Liu Z, Wang H, Xu J, Jiang L. Insight into the Stabilization Mechanism of Succinylation Modification on Black Bean Protein Gels: Molecular Conformation, Microstructure, and Gel Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15920-15932. [PMID: 38973096 DOI: 10.1021/acs.jafc.4c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The objective of this work was to investigate the effect of succinylation treatment on the physicochemical properties of black bean proteins (BBPI), and the relationship mechanism between BBPI structure and gel properties was further analyzed. The results demonstrated that the covalent formation of higher-molecular-weight complexes with BBPI could be achieved by succinic anhydride (SA). With the addition of SA at 10% (v/v), the acylation of proteins amounted to 92.53 ± 1.10%, at which point there was a minimized particle size of the system (300.90 ± 9.57 nm). Meanwhile, the protein structure was stretched with an irregular curl content of 34.30% and the greatest processable flexibility (0.381 ± 0.004). The dense three-dimensional mesh structure of the hydrogel as revealed by scanning electron microscopy was the fundamental prerequisite for the ability to resist external extrusion. The thermally induced hydrogels of acylated proteins with 10% (v/v) addition of SA showed excellent gel elastic behavior (1.44 ± 0.002 nm) and support capacity. Correlation analysis showed that the hydrogel strength and stability of hydrogels were closely related to the changes in protein conformation. This study provides theoretical guidance for the discovery of flexible proteins and their application in hydrogels.
Collapse
|
11
|
Wang L, Lu S, Liu Y, Lu H, Zheng M, Zhou Z, Cao F, Yang Y, Fang Z. Differential impacts of porous starch versus its octenyl succinic anhydride-modified counterpart on naringin encapsulation, solubilization, and in vitro release. Int J Biol Macromol 2024; 273:132746. [PMID: 38821310 DOI: 10.1016/j.ijbiomac.2024.132746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The aim of this work was to evaluate the potentials of porous starch (PS) and its octenyl succinic anhydride modified product (OSAPS) as efficient carriers for loading naringin (NA), focusing on encapsulation efficiency (EE, the percentage of adsorbed naringin relative to its initial amount), drug loading (DL, the percentage of naringin in the complex), structural alterations, solubilization and in vitro release of NA using unmodified starch (UMS) and NA as controls. Both the pore diameter and SBET value of PS decreased after esterification with OSA, and a thinner strip-shaped NA (∼145 nm) was observed in the OSAPS-NA complex and (∼150 nm) in the PS-NA complex. OSAPS exhibited reduced short-range ordered structure, as indicated by a lower R1047/1022 (0.73) compared to PS (0.77). Meanwhile, lowest crystallinity (12.81 %) of NA was found in OSAPS-NA. OSAPS-NA exhibited higher EE and DL for NA than PS-NA and a significant increase in NA saturated solubility in deionized water (by 11.63-fold) and simulated digestive fluids (by 24.95-fold) compared to raw NA. OSAPS contained higher proportions of slowly digestible starch and exhibited a lower digestion rate compared to PS, resulting in a longer time for NA release from its complex during the digestion.
Collapse
|
12
|
Wang X, Wang N, Wu D, Wang L, Zhang N, Yu D. Effect of ultrasonic power on delivery of quercetin in emulsions stabilized using octenyl succinic anhydride (OSA) modified broken japonica rice starch. Int J Biol Macromol 2024; 267:131557. [PMID: 38614171 DOI: 10.1016/j.ijbiomac.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
In this study, emulsions stabilized by octenyl succinic anhydride-modified broken japonica rice starch (OSA-BJRS) were prepared at different ultrasonic power intensities for the delivery, controlled release, and improved bioavailability of quercetin. The OSA-BJRS emulsions ultrasonicated at 400 W exhibited the highest encapsulation efficiency (89.37 %) and loading efficiency (58.34 %) of quercetin, the smallest volume-average droplet diameter (0.51 μm) and polydispersity index (0.19), the highest absolute value of the ζ-potential (26.73 mV), and the highest apparent viscosity and viscoelasticity. The oxidation stability, storage stability, thermal stability, and salt ion stability of the emulsions were also notably improved by the ultrasonication treatment. In addition, the results of the simulated in vitro digestion demonstrated that the ultrasonicated OSA-BJRS emulsions had an enhanced quercetin delivery performance and could stably transport quercetin to the small intestine for digestion. The OSA-BJRS emulsion ultrasonicated at 400 W exhibited the highest cumulative release rate (95.91 %) and the highest bioavailability (30.48 %) of quercetin. This suggests that OSA-BJRS emulsions prepared by ultrasonication can be considered effective delivery systems for hydrophobic functional components.
Collapse
|
13
|
Chen R, Ma Y, Chen Z, Wang Z, Chen J, Wang Y, Zhang S. Fabrication and characterization of dual-functional porous starch with both emulsification and antioxidant properties. Int J Biol Macromol 2024; 264:130570. [PMID: 38462096 DOI: 10.1016/j.ijbiomac.2024.130570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Starchy materials with good antioxidant, emulsification and adsorption properties have potential applications in industry. To improve these properties, a Dual-functional porous starch was prepared through one-pot synthesis. In this case, octenyl succinic anhydride (OSA) and syringic acid (SA) were selected to modify the porous starch (PS) by esterification, with subsequent signals recorded by 1H NMR at 1.2 ppm and FT-IR at 1743 cm-1, indicating the formation of Dual-functional porous starch grafted by OSA and SA. N2 adsorption analysis further proved that the porous structure (2.9 m2g-1) was still maintained after modification. This was followed by measurements of droplet size distribution (34.18 ± 3.80 μm), zeta potential (-39.62 ± 1.89 mV) and emulsion index (85.10 ± 1.76 %), all of which indicated good emulsifying capacity. Meanwhile, results of radical scavenging assay proved that the Dual-functional porous starch had considerable antioxidant properties due to the introduction of SA groups. Besides, the Dual-functional porous starch also showed good resistance to digestion. These findings not only provide a novel strategy for constructing multi-functionalized starchy materials, but also open up potential applications of starch in the food and pharmaceutical industries.
Collapse
|
14
|
Chen H, Li H, Wu Y, Kan J. Functionality differences between esterified and pregelatinized esterified starches simultaneously prepared by octenyl succinic anhydride modification and its application in dough. Int J Biol Macromol 2024; 260:129594. [PMID: 38253147 DOI: 10.1016/j.ijbiomac.2024.129594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Octenyl succinic anhydride (OSA)-modified starches have gained widespread interest, but the modification can produce two starches with different states ignored. Herein, the two types of starches, esterified starch (ES) and pregelatinized esterified starch (PES), prepared by OSA modification were separated, and their structural and functional characteristics were comprehensively explored. Results showed that compared with native starch (NS), ES and PES exhibited high water-holding capacity, solubility, and swelling power and significantly decreased pasting temperature and thermal stability. Dynamic rheological tests illustrated that OSA modification changed the rheological behavior of starches. Fourier transform infrared spectroscopy confirmed that PES with higher degree of substitution showed more obvious ester carbonyl and carboxylate groups than ES. Laser confocal micro-Raman spectroscopy revealed that the short-range molecular order of ES, especially PES, decreased after modification. X-ray diffraction indicated that OSA modification disrupted the crystalline structure of starch, and that more amylose-lipid complex was formed in PES. Scanning electron microscopy showed that OSA modification eroded starchs surface and reduced its smoothness, and significantly disrupted PES integrity. ES and PES could be developed as food additives for retrogradation inhibition of dough. These results provide new insights into OSA modification and expand its functional application in foods.
Collapse
|
15
|
Wang X, Hao Z, Liu N, Jin Y, Wang B, Bian Y, Yu Y, Wang T, Xiao Y, Yu Z, Zhou Y. Influence of the structure and physicochemical properties of OSA modified highland barley starch based on ball milling assisted treatment. Int J Biol Macromol 2024; 259:129243. [PMID: 38199535 DOI: 10.1016/j.ijbiomac.2024.129243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
This study aimed to investigate the influence of ball milling assisted treatment on the degree of substitution of octenyl succinic anhydride (OSA) modified highland barley starch (HBS) and on the physicochemical properties and structure of HBS. Scanning electron microscopy (SEM) findings showed that with the increasing of ball milling time, the surface morphology of OSA modified HBS became rougher and rougher and the particle morphology and crystal structure were damaged. When the pretreatment time of ball milling was 40 min, the degree of substitution of OSA modified HBS was 1.32 times higher than that of the conventional modification method. In addition, the longer the ball milling assistant, the longer the short-range ordering of the OSA modified HBS significantly decreased, and the relative crystallinity decreased (from 16.68 % to 7.93 %), leading to a decrease in thermal stability too. However, it greatly enhanced the aging resistance and flowability. In terms of emulsification properties, the emulsification properties of OSA modified HBS increased from 60.67 % to 75.67 %. Therefore, the HBS with better freeze-thaw stability and higher degree of substitution can be prepared by ball milling pretreatment and OSA modification, which provides technical support for further development of starch resources.
Collapse
|
16
|
Li Y, Liu H, Wu Y, Li P, Du B, Xie XA, Li L. Differences in the structural properties of three OSA starches and their effects on the performance of high internal phase Pickering emulsions. Int J Biol Macromol 2024; 258:128992. [PMID: 38151085 DOI: 10.1016/j.ijbiomac.2023.128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
The emulsifying properties of emulsions are significantly influenced by the structural properties of octenyl succinic anhydride (OSA) starch. The purpose of this work was to elucidate the effect of the structure of OSA starch on its performance as an emulsifier to stabilize Pickering high-internal-phase emulsions (HIPEs). The degrees of substitution (DS) of the three OSA starches were 0.0137, 0.0177 and 0.0236, and their degrees of branching (DB) were 13.96 %, 14.20 % and 14.32 % measured by 1H NMR, which were sequentially labeled as OSA1, OSA2, and OSA3. The OSA3 starch with higher DS and DB had a lower critical micelle concentration (CMC) (0.11 mg/mL). Its emulsification activity (EAI) and emulsion stability (ES) were 61.8 m2/g and 72.5 min, respectively, which were higher than OSA1 and OSA2 starches. The contact angle of the three OSA starches increased from 45.35° to 80.03° with increasing DS and DB. Therefore, it is hypothesized that OSA3 starches have better emulsification properties. The results of physical stability of HIPEs confirmed the above results. These results indicated that DS and DB have a synergistic effect on emulsion properties, and OSA starch with higher DS and DB values were more conducive to the construction of stable HIPEs systems.
Collapse
|
17
|
Silva PM, Neto MD, Cerqueira MA, Rodriguez I, Bourbon AI, Azevedo AG, Pastrana LM, Coimbra MA, Vicente AA, Gonçalves C. Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion. Int J Biol Macromol 2024; 259:129288. [PMID: 38211926 DOI: 10.1016/j.ijbiomac.2024.129288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.
Collapse
|
18
|
Nikkhou S, Labbafi M, Mousavi ME, Askari G. Properties of OSA-esterified insoluble fraction of Persian gum and its application in dairy cream. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:892-904. [PMID: 37707173 DOI: 10.1002/jsfa.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/05/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In the present study, the insoluble fraction of Persian gum (IFPG) was modified with octenyl succinic anhydride (OSA) and its various properties were assessed. In addition, the effect of OSA-IFPG on the rheological and textural properties of dairy cream was investigated. RESULTS Suitable conditions for achieving a degree of substitution (DS) of 0.023 were found at pH 9, IFPG concentration 4 wt%, OSA concentration 10 wt% and a temperature of 40 °C, within 120 min. The carbonyl group attachment in OSA-IFPG was also confirmed via Fourier transform infrared and H-nuclear magnetic resonance spectroscopy (1 H-NMR). While the X-ray diffraction test indicated no significant changes in the structure of the IFPG after modification with OSA, esterification increased the negative charge density, decreased thermal decomposition temperature and increased the emulsifying capacity to 100%, which was obtained for the first time. The use of OSA-modified IFPG in creams augmented the complex viscosity, loss and storage modulus, while also demonstrating the creation of a pseudo-gel network. The hardness and adhesiveness of the texture increased, which can be explained by the formation of a compact structure and reduced particle size. CONCLUSION Overall, OSA-IFPG with hydrophilic and hydrophobic sections may function as an emulsifier and be recommended as a safe source of hydrocolloids for emulsion stability. It can also provide a positive physical structure when added to dairy cream, even if the fat concentration is lower than usual. © 2023 Society of Chemical Industry.
Collapse
|
19
|
Du M, Chen L, Din ZU, Zhan F, Chen X, Wang Y, Zhuang K, Wang G, Cai J, Ding W. Structure and surface properties of ozone-conjugated octenyl succinic anhydride modified waxy rice starch: Towards high-stable Pickering emulsion. Int J Biol Macromol 2023; 253:126895. [PMID: 37709233 DOI: 10.1016/j.ijbiomac.2023.126895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
In the present work, a dual-modified waxy rice starch (OOWRS) fabricated with OSA and ozone was successfully used to stabilize the O/W Pickering emulsion. The molecular structure, surface properties, and underlying stabilizing mechanism were systematically investigated. The results showed that oxidation occurring on the surface of OSA-modified waxy rice starch (OSAWRS) resulted in the presence of indentations and cracks. The relative crystallinity of starch was generally decreased with increasing degree of oxidation. Due to the introduction of carbonyl and the variation in surface structure, the hydrophobicity and acidity of OSAWRS were significantly enhanced after the ozone treatment. Remarkably, OOWRS stabilized Pickering emulsion exhibited a feature of typical O/W emulsion, and the 0.5 h and 1 h OOWRS emulsion exhibited a more uniform droplet size as well as a higher surface potential. We also noted that a weak-gel network was formed within the OOWRS emulsion system as the hydrophilic starch chains played a bridging role. Two reasons for the improved stability of the emulsion were the special gel structure and the enhanced electrical repulsion among the droplets. This research provides that ozone-conjugated OSA modification is a promising strategy for improving the emulsion ability of starch-based Pickering emulsions.
Collapse
|
20
|
Cao F, Lu S, Quek SY. Preparation, characterization and in vitro digestion of octenyl succinic anhydride-modified porous starch with different degrees of substitution. Int J Biol Macromol 2023; 253:126579. [PMID: 37648131 DOI: 10.1016/j.ijbiomac.2023.126579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Octenyl succinic anhydride modified porous starch (OSA-PS) with degrees of substitution (DS) from 0.0123 to 0.0427 were prepared by aqueous phase method. From SEM, PS had a porous structure which showed a rough and corrosive surface after esterification with OSA. FT-IR revealed the characteristic peaks of OSA-PS at 1725 cm-1 and 1570 cm-1. From 1H NMR spectra, OSA-PS displayed extra chemical signal peaks at 0.85 ppm, 1.25 ppm and 1.96 ppm. These results fully demonstrated that OSA groups were successfully grafted onto PS. Furthermore, as DS increased, the specific surface area (5.6464 m2/g), pore volume (0.9959 × 10-2 cm3/g) and methylene blue adsorption capacity (24.3962 mg/g) of OSA-PS reached the maximum, while its relative crystallinity (26.8112 %) and maximum thermal decomposition temperature (291.96 °C) were the minimum. In vitro digestion studies showed that with the increase of DS, OSA-PS' contents of rapidly digestible starch and slowly digestible starch decreased from 9.06 % to 6.27 % and 28.38 % to 14.61 %, respectively. In contrast, its resistant starch had an increase in content from 62.56 % to 79.12%. The results provided an effective method for obtaining a double-modified starch with high specific surface area and anti-digestibility, thus broadening the industrial application of starch.
Collapse
|
21
|
Kou Y, Guo R, Li X, Sun X, Song H, Song L, Guo Y, Song Z, Yuan C, Wu Y. Synthesis, physicochemical and emulsifying properties of OSA-modified tamarind seed polysaccharides with different degrees of substitution. Int J Biol Macromol 2023; 253:127102. [PMID: 37769765 DOI: 10.1016/j.ijbiomac.2023.127102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Octenyl succinic anhydride modified tamarind seed polysaccharides (OTSPs) with various degrees of substitution were first synthesized and characterized in this work. The structural, solid-state, solution and emulsifying properties of the OTSPs and the effect of the degree of substitution (DS) were investigated. The structural characterization confirmed the successful grafting of the OSA moiety into TSP and the chain extension of the OTSPs. The hydrophobicity of the modified polysaccharide molecules increased, the absolute value of the zeta potential increased, and the thermal stability decreased, which were positively or negatively correlated with the changes in DS. In contrast, the hydrolysis of polysaccharides in alkaline aqueous solution led to a decrease in molar mass and the rigidity of the molecules, which were not significantly related to DS. Particle size analysis showed that OTSPs tended to aggregate into relatively small agglomerates, which was confirmed by the results of morphological analysis. Most importantly, the instability indices of emulsions stabilized by TSP, arabic gum and OSA-starch were 0.521, 0.715, and 0.804, respectively, while for OTSPs this parameter was between 0.04 and 0.19 under the same conditions, indicating better physical stability of the OTSP-stabilized emulsions, especially for OTSP-30. Overall, OTSP has great potential as an emulsifier for oil-in-water emulsions, especially for emulsification and stabilization in food processing.
Collapse
|
22
|
Li G, Chen J, Zhu F. Comparative study of rheological properties and Pickering emulsion stabilizing capacity of nonenyl succinic anhydride and octenyl succinic anhydride modified amaranth starches. Int J Biol Macromol 2023; 253:126606. [PMID: 37652318 DOI: 10.1016/j.ijbiomac.2023.126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Functional properties and ability to stabilize Pickering emulsions of amaranth starch with the novel nonenyl succinic anhydride (NSA) modification and the widely used octenyl succinic anhydride (OSA) modification were compared. The NSA modification was more effective in altering the rheological properties of amaranth starches. NSA-modified amaranth starch showed significantly higher peak viscosity (7.13 Pa·s at DS of 0.02209) than the OSA-modified amaranth starch (6.10 Pa·s at DS of 0.03042). The gelatinization temperature, gelatinization enthalpy, and relative crystallinity of amaranth starch were more affected by the OSA than the NSA. The Pickering emulsions stabilized with NSA-modified starches had higher stability than those with the OSA-modified starches as characterized by particle size distribution, morphological, and rheological approaches. A lower degree of substitution by NSA than by OSA is needed to achieve a similar emulsification capacity. Thus, the NSA modification could be an efficient alternative to OSA modification in tailoring physicochemical and rheological functions, as well as stabilizing Pickering emulsions.
Collapse
|
23
|
Wang J, Yu J, Copeland L, Wang S. Revisiting the Formation of Starch-Monoglyceride-Protein Complexes: Effects of Octenyl Succinic Anhydride Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19033-19044. [PMID: 37997356 DOI: 10.1021/acs.jafc.3c07269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Starch-lipid-protein complexes are attracting increasing attention due to their unique structure and low enzymatic digestibility. However, the mechanisms underlying the formation of these ternary complexes, especially those with monoglycerides as the lipid component, remain unclear. In the present study, potato starch or octenyl succinic anhydride (OSA)-modified potato starch (OSAPS), various monoglycerides (MGs), and beta-lactoglobulin (βLG) were used in model systems to characterize the formation, structure, and in vitro digestibility of the respective ternary complexes. Colorimetry and live/dead staining assays demonstrated that the OSAPS had good biocompatibility. Experimental data and molecular dynamics simulations showed that both unmodified potato starch and OSAPS formed starch-lipid-protein complexes with MGs and βLG. Of the two types of starch, OSA formed a greater amount of the more stable type II V-crystallites in complexes, which had greater resistance to in vitro enzymic digestion. This study demonstrated for the first time that starch can interact with MGs and βLG to form ternary complexes and that OSA esterification of starch promoted the formation of more complexes than unmodified starch.
Collapse
|
24
|
Fu Y, Li Y, Everett DW, Weng S, Zhai Y, Wang M, Li T. Octenyl succinic anhydride-modified amyloid protein fibrils demonstrate enhanced ice recrystallization inhibition activity and dispersibility. Int J Biol Macromol 2023; 252:126439. [PMID: 37611688 DOI: 10.1016/j.ijbiomac.2023.126439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Octenyl succinic anhydride (OSA) modification of amyloid proteins fibrils (APFs) was employed to improve dispersibility and ice recrystallization inhibition activity. OSA mainly reacted with the amino groups of APFs without significantly changing morphology. OSA-modified APFs (OAPFs) had lower pI, carried more negative charges, and were more hydrophobic. OSA-modification showed a pH-dependent effect on the dispersibility of fibrils. At pH 7.0, OSA-modification improved dispersibility and inhibited heat-induced gelation of fibrils at weakened electrostatic repulsion. OAPFs were more prone to aggregation with lower dispersity at acidic pH values and demonstrated stronger IRI activity than unmodified fibrils at pH 7.0. Our findings indicate OSA-modification favors the industrial application of APFs as an ice recrystallization inhibitor with enhanced dispersibility.
Collapse
|
25
|
Li S, Hao Y, Gao Q. Development of Emulsion Gels Stabilized by Chitosan and Octenyl Succinic Anhydride-Modified β-Cyclodextrin Complexes for β-Carotene Digestion and 3D Printing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18587-18600. [PMID: 37963094 DOI: 10.1021/acs.jafc.3c05632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
β-cyclodextrin (β-CD)-based emulsion gels encapsulated with nutrition for three-dimensional (3D) printing are promising, while obstacles such as low bioaccessibility of bioactive compounds and the molding process in food manufacturing hinder their application. This study intended to develop stable composite emulsion gels using the complexes of chitosan (CS) and octenyl succinic anhydride (OSA)-modified β-CD (OCD) to conquer these challenges. The esterification of OSA generated more negatively charged OCD and ester groups, which aided in the combination of OCD and CS through enhanced electrostatic and hydrogen bonding interactions. The addition of CS improved the emulsification properties of the complexes and acted as a bridge link in the aqueous phase, thereby increasing the gel strength of the composite emulsion gels. Moreover, the encapsulation of β-carotene destabilized the strength of the emulsion gels by lowering the interfacial tension. The emulsion gel stabilized by OCD3/CS-0.75% at an initial pH not only successfully encapsulated β-carotene and presented the highest bioaccessibility of 41.88 ± 0.87% in the in vitro digestion but also showed excellent 3D printability. These results provided a promising strategy to enhance the viscoelasticity of β-CD-based emulsion gels and accelerate their application in bioactive compound delivery systems and 3D food printing.
Collapse
|