1
|
Bane V, Lehane M, Dikshit M, O'Riordan A, Furey A. Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins (Basel) 2014; 6:693-755. [PMID: 24566728 PMCID: PMC3942760 DOI: 10.3390/toxins6020693] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 11/16/2022] Open
Abstract
Tetrodotoxin (TTX) is a naturally occurring toxin that has been responsible for human intoxications and fatalities. Its usual route of toxicity is via the ingestion of contaminated puffer fish which are a culinary delicacy, especially in Japan. TTX was believed to be confined to regions of South East Asia, but recent studies have demonstrated that the toxin has spread to regions in the Pacific and the Mediterranean. There is no known antidote to TTX which is a powerful sodium channel inhibitor. This review aims to collect pertinent information available to date on TTX and its analogues with a special emphasis on the structure, aetiology, distribution, effects and the analytical methods employed for its detection.
Collapse
|
Review |
11 |
214 |
2
|
Lipkind GM, Fozzard HA. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J 1994; 66:1-13. [PMID: 8130328 PMCID: PMC1275657 DOI: 10.1016/s0006-3495(94)80746-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Biophysical evidence has placed the binding site for the naturally occurring marine toxins tetrodotoxin (TTX) and saxitoxin (STX) in the external mouth of the Na+ channel ion permeation pathway. We developed a molecular model of the binding pocket for TTX and STX, composed of antiparallel beta-hairpins formed from peptide segments of the four S5-S6 loops of the voltage-gated Na+ channel. For TTX the guanidinium moiety formed salt bridges with three carboxyls, while two toxin hydroxyls (C9-OH and C10-OH) interacted with a fourth carboxyl on repeats I and II. This alignment also resulted in a hydrophobic interaction with an aromatic ring of phenylalanine or tyrosine residues for the brainII and skeletal Na+ channel isoforms, but not with the cysteine found in the cardiac isoform. In comparison to TTX, there was an additional interaction site for STX through its second guanidinium group with a carboxyl on repeat IV. This model satisfactorily reproduced the effects of mutations in the S5-S6 regions and the differences in affinity by various toxin analogs. However, this model differed in important ways from previously published models for the outer vestibule and the selectivity region of the Na+ channel pore. Removal of the toxins from the pocket formed by the four beta-hairpins revealed a structure resembling a funnel that terminated in a narrowed region suitable as a candidate for the selectivity filter of the channel. This region contained two carboxyls (Asp384 and Glu942) that substituted for molecules of water from the hydrated Na+ ion. Simulation of mutations in this region that have produced Ca2+ permeation of the Na+ channel created a site with three carboxyls (Asp384, Glu942, and Glu1714) in proximity.
Collapse
|
research-article |
31 |
210 |
3
|
Chau R, Kalaitzis JA, Neilan BA. On the origins and biosynthesis of tetrodotoxin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 104:61-72. [PMID: 21543051 DOI: 10.1016/j.aquatox.2011.04.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
The potent neurotoxin tetrodotoxin (TTX) has been identified from taxonomically diverse marine organisms. TTX possesses a unique cage-like structure, however, its biosynthesis has yet to be elucidated. Biosynthetic studies in the TTX-producing newt Taricha torosa, and in bacterial genera, including Vibrio, have proven inconclusive. Indeed, very few studies have been performed that address the cellular production of TTX. Here we review the sources of TTX described to date and provide evidence for the biosynthesis of TTX by symbiotic microorganisms in higher taxa. Chemical and genetic based biosynthesis studies of TTX undertaken thus far are discussed and we outline approaches which may be useful for expanding upon the current body of knowledge. The complex biosynthesis of structurally similar toxins, that reveal clues into the biosynthetic pathway of TTX, is also presented.
Collapse
|
Review |
14 |
123 |
4
|
Peng K, Shu Q, Liu Z, Liang S. Function and solution structure of huwentoxin-IV, a potent neuronal tetrodotoxin (TTX)-sensitive sodium channel antagonist from Chinese bird spider Selenocosmia huwena. J Biol Chem 2002; 277:47564-71. [PMID: 12228241 DOI: 10.1074/jbc.m204063200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a highly potent neurotoxin from the venom of the Chinese bird spider, Selenocosmia huwena. This 4.1-kDa toxin, which has been named huwentoxin-IV, contains 35 residues with three disulfide bridges: Cys-2-Cys-17, Cys-9-Cys-24, and Cys-16-Cys-31, assigned by a chemical strategy including partial reduction of the toxin and sequence analysis of the modified intermediates. It specifically inhibits the neuronal tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channel with the IC(50) value of 30 nm in adult rat dorsal root ganglion neurons, while having no significant effect on the tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel. This toxin seems to be a site I toxin affecting the sodium channel through a mechanism quite similar to that of TTX: it suppresses the peak sodium current without altering the activation or inactivation kinetics. The three-dimensional structure of huwentoxin-IV has been determined by two-dimensional (1)H NMR combined with distant geometry and simulated annealing calculation by using 527 nuclear Overhauser effect constraints and 14 dihedral constraints. The resulting structure is composed of a double-stranded antiparallel beta-sheet (Leu-22-Ser-25 and Trp-30-Tyr-33) and four turns (Glu-4-Lys-7, Pro-11-Asp-14, Lys-18-Lys-21 and Arg-26-Arg-29) and belongs to the inhibitor cystine knot structural family. After comparison with other toxins purified from the same species, we are convinced that the positively charged residues of loop IV (residues 25-29), especially residue Arg-26, must be crucial to its binding to the neuronal tetrodotoxin-sensitive voltage-gated sodium channel.
Collapse
|
|
23 |
120 |
5
|
Tikhonov DB, Zhorov BS. Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands. Biophys J 2004; 88:184-97. [PMID: 15475578 PMCID: PMC1304997 DOI: 10.1529/biophysj.104.048173] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large body of experimental data on Na+ channels is available, but the interpretation of these data in structural terms is difficult in the absence of a high-resolution structure. Essentially different electrophysiological and pharmacological properties of Na+ and K+ channels and poor identity of their sequences obstruct homology modeling of Na+ channels. In this work, we built the P-loops model of the Na+ channel, in which the pore helices are arranged exactly as in the MthK bacterial K+ channel. The conformation of the selectivity-filter region, which includes residues in positions -2 through +4 from the DEKA locus, was shaped around rigid molecules of saxitoxin and tetrodotoxin that are known to form multiple contacts with this region. Intensive Monte Carlo minimization that started from the MthK-like conformation produced practically identical saxitoxin- and tetrodotoxin-based models. The latter was tested to explain a wide range of experimental data that were not used at the model building stage. The docking of tetrodotoxin analogs unambiguously predicted their optimal orientation and the interaction energy that correlates with the experimental activity. The docking of mu-conotoxin produced a binding model consistent with experimentally known toxin-channel contacts. Monte Carlo-minimized energy profiles of tetramethylammonium pulled through the selectivity-filter region explain the paradoxical experimental data that this organic cation permeates via the DEAA but not the AAAA mutant of the DEKA locus. The model is also consistent with earlier proposed concepts on the Na+ channel selectivity as well as Ca2+ selectivity of the EEEE mutant of the DEKA locus. Thus, the model integrates available experimental data on the Na+ channel P-loops domain, and suggests that it is more similar to K+ channels than was believed before.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
115 |
6
|
Hanifin CT. The chemical and evolutionary ecology of tetrodotoxin (TTX) toxicity in terrestrial vertebrates. Mar Drugs 2010; 8:577-93. [PMID: 20411116 PMCID: PMC2857372 DOI: 10.3390/md8030577] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/03/2010] [Accepted: 03/08/2010] [Indexed: 01/05/2023] Open
Abstract
Tetrodotoxin (TTX) is widely distributed in marine taxa, however in terrestrial taxa it is limited to a single class of vertebrates (Amphibia). Tetrodotoxin present in the skin and eggs of TTX-bearing amphibians primarily serves as an antipredator defense and these taxa have provided excellent models for the study of the evolution and chemical ecology of TTX toxicity. The origin of TTX present in terrestrial vertebrates is controversial. In marine organisms the accepted hypothesis is that the TTX present in metazoans results from either dietary uptake of bacterially produced TTX or symbiosis with TTX producing bacteria, but this hypothesis may not be applicable to TTX-bearing amphibians. Here I review the taxonomic distribution and evolutionary ecology of TTX in amphibians with some attention to the origin of TTX present in these taxa.
Collapse
|
Review |
15 |
115 |
7
|
Penzotti JL, Fozzard HA, Lipkind GM, Dudley SC. Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na+ channel outer vestibule. Biophys J 1998; 75:2647-57. [PMID: 9826589 PMCID: PMC1299940 DOI: 10.1016/s0006-3495(98)77710-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The marine guanidinium toxins, saxitoxin (STX) and tetrodotoxin (TTX), have played crucial roles in the study of voltage-gated Na+ channels. Because they have similar actions, sizes, and functional groups, they have been thought to associate with the channel in the same manner, and early mutational studies supported this idea. Recent experiments by. Biophys. J. 67:2305-2315) have suggested that the toxins bind differently to the isoform-specific domain I Phe/Tyr/Cys location. In the adult skeletal muscle Na+ channel isoform (microliter), we compared the effects on both TTX and STX affinities of mutations in eight positions known to influence toxin binding. The results permitted the assignment of energies contributed by each amino acid to the binding reaction. For neutralizing mutations of Asp400, Glu755, and Lys1237, all thought to be part of the selectivity filter of the channel, the loss of binding energy was identical for the two toxins. However, the loss of binding energy was quite different for vestibule residues considered to be more superficial. Specifically, STX affinity was reduced much more by neutralizations of Glu758 and Asp1532. On the other hand, mutation of Tyr401 to Cys reduced TTX binding energy twice as much as it reduced STX binding energy. Kinetic analysis suggested that all outer vestibule residues tested interacted with both toxins early in the binding reaction (consistent with larger changes in the binding than unbinding rates) before the transition state and formation of the final bound complex. We propose a revised model of TTX and STX binding in the Na+ channel outer vestibule in which the toxins have similar interactions at the selectivity filter, TTX has a stronger interaction with Tyr401, and STX interacts more strongly with the more extracellular residues.
Collapse
|
research-article |
27 |
108 |
8
|
Shoji Y, Yotsu-Yamashita M, Miyazawa T, Yasumoto T. Electrospray ionization mass spectrometry of tetrodotoxin and its analogs: liquid chromatography/mass spectrometry, tandem mass spectrometry, and liquid chromatography/tandem mass spectrometry. Anal Biochem 2001; 290:10-7. [PMID: 11180932 DOI: 10.1006/abio.2000.4953] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrodotoxin (TTX), a powerful sodium channel blocker, usually exists as a mixture of its analogs (TTXs) in natural sources. Due to the structural variation, some analogs are difficult to detect using the postcolumn liquid chromatography-fluorescent detection (LC-FLD) system. Liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) analysis of TTXs can be achieved by a combination of chromatography on a reversed-phase column with long carbon chains (C30) and the mobile phase containing an ion pair reagent (ammonium heptafluorobutyrate). The relationship between the amount of applied standard TTX and its peak area on the mass chromatogram (m/z 320) showed good linearity over a range of 50-1000 pmol. The detection limit for TTX in the selected ion monitoring (SIM) mode was estimated to be 0.7 pmol (signal to noise ratio: 2). The tandem mass spectrometry (MS/MS) scan for the fragment ions of eight TTXs arising from the molecular ions provided characteristic spectra, and the structures of the origins of the prominent fragment ions were proposed. The intense fragment ions of TTX and 11-deoxyTTX were applicable to LC/MS/MS operated in the selected reaction monitoring mode. This method might be useful for further identification of TTXs.
Collapse
|
|
24 |
102 |
9
|
Bulaj G, West PJ, Garrett JE, Watkins M, Marsh M, Zhang MM, Norton RS, Smith BJ, Yoshikami D, Olivera BM. Novel Conotoxins from Conus striatus and Conus kinoshitai Selectively Block TTX-Resistant Sodium Channels. Biochemistry 2005; 44:7259-65. [PMID: 15882064 DOI: 10.1021/bi0473408] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peptides isolated from venoms of predatory marine Conus snails ("conotoxins") are well-known to be highly potent and selective pharmacological agents for voltage-gated ion channels and receptors. We report the discovery of two novel TTX-resistant sodium channel blockers, mu-conotoxins SIIIA and KIIIA, from two species of cone snails. The two toxins were identified and characterized by combining molecular techniques and chemical synthesis. Both peptides inhibit TTX-resistant sodium currents in neurons of frog sympathetic and dorsal root ganglia but poorly block action potentials in frog skeletal muscle, which are mediated by TTX-sensitive sodium channels. The amino acid sequences in the C-terminal region of the two peptides and of the previously characterized mu-conotoxin SmIIIA (which also blocks TTX-resistant channels) are similar, but the three peptides differ in the length of their first N-terminal loop. We used molecular dynamics simulations to analyze how altering the number of residues in the first loop affects the overall structure of mu-conotoxins. Our results suggest that the naturally occurring truncations do not affect the conformation of the C-terminal loops. Taken together, structural and functional differences among mu-conotoxins SmIIIA, SIIIA, and KIIIA offer a unique insight into the "evolutionary engineering" of conotoxin activity.
Collapse
|
|
20 |
98 |
10
|
Jang J, Yotsu-Yamashita M. Distribution of tetrodotoxin, saxitoxin, and their analogs among tissues of the puffer fish Fugu pardalis. Toxicon 2006; 48:980-7. [PMID: 16997342 DOI: 10.1016/j.toxicon.2006.07.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/20/2006] [Accepted: 07/25/2006] [Indexed: 11/15/2022]
Abstract
The anatomical distribution of tetrodotoxin (TTX), saxitoxin (STX) and their analogs (TTXs, STXs) in three female and three male specimens of the marine puffer fish Fugu pardalis from Miyagi Prefecture, 2005, Japan, were studied. 5-DeoxyTTX, 11-deoxyTTX, and 5,6,11-trideoxyTTX were quantified by liquid chromatography/mass spectrometry (LC/MS) for the first time, and other TTXs and STXs were determined by liquid chromatography-fluorescent detection (LC-FLD). As a result, 5,6,11-trideoxyTTX was found to be the major TTX analog in all tissues tested, whereas 5-deoxyTTX and 11-deoxyTTX were minor components. Especially, in female (n=3), the ratios of 5,6,11-trideoxyTTX to total of all TTX analogs (mole/mole) in ovaries (mean+/-SD, 0.42+/-0.055) were significantly larger than those in livers (0.17+/-0.025) (P<0.05). In contrary, the ratios of 4,9-anhydroTTX to total of all TTX analogs in livers (0.27+/-0.047) were significantly larger than those in ovaries (0.073+/-0.040) (P<0.01). The ratios of TTX to total of all TTX analogs were not significantly different between ovaries (0.47+/-0.078) and livers (0.55+/-0.067). In male (n=3), all these ratios were not significantly different between livers and testis. 4-S-CysteinylTTX was detected in liver, spleen, gall, and intestine in 1-6mole% of total of all TTX analogs, supporting our previous hypothesis that 4-S-cysteinylTTX is a metabolite of TTX.
Collapse
|
|
19 |
87 |
11
|
Yotsu-Yamashita M, Abe Y, Kudo Y, Ritson-Williams R, Paul VJ, Konoki K, Cho Y, Adachi M, Imazu T, Nishikawa T, Isobe M. First identification of 5,11-dideoxytetrodotoxin in marine animals, and characterization of major fragment ions of tetrodotoxin and its analogs by high resolution ESI-MS/MS. Mar Drugs 2013; 11:2799-813. [PMID: 23924959 PMCID: PMC3766866 DOI: 10.3390/md11082799] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022] Open
Abstract
Even though tetrodotoxin (TTX) is a widespread toxin in marine and terrestrial organisms, very little is known about the biosynthetic pathway used to produce it. By describing chemical structures of natural analogs of TTX, we can start to identify some of the precursors that might be important for TTX biosynthesis. In the present study, an analog of TTX, 5,11-dideoxyTTX, was identified for the first time in natural sources, the ovary of the pufferfish and the pharynx of a flatworm (planocerid sp. 1), by comparison with totally synthesized (-)-5,11-dideoxyTTX, using high resolution ESI-LC-MS. Based on the presence of 5,11-dideoxyTTX together with a series of known deoxy analogs, 5,6, 11-trideoxyTTX, 6,11-dideoxyTTX, 11-deoxyTTX, and 5-deoxyTTX, in these animals, we predicted two routes of stepwise oxidation pathways in the late stages of biosynthesis of TTX. Furthermore, high resolution masses of the major fragment ions of TTX, 6,11-dideoxyTTX, and 5,6,11-trideoxyTTX were also measured, and their molecular formulas and structures were predicted to compare them with each other. Although both TTX and 5,6,11-trideoxyTTX give major fragment ions that are very close, m/z 162.0660 and 162.1020, respectively, they are distinguishable and predicted to be different molecular formulas. These data will be useful for identification of TTXs using high resolution LC-MS/MS.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
83 |
12
|
Lee MJ, Jeong DY, Kim WS, Kim HD, Kim CH, Park WW, Park YH, Kim KS, Kim HM, Kim DS. A tetrodotoxin-producing Vibrio strain, LM-1, from the puffer fish Fugu vermicularis radiatus. Appl Environ Microbiol 2000; 66:1698-701. [PMID: 10742263 PMCID: PMC92044 DOI: 10.1128/aem.66.4.1698-1701.2000] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of tetrodotoxin (TTX) and its derivatives produced from a Vibrio strain in the intestine of the puffer fish Fugu vermicularis radiatus was performed by thin-layer chromatography, electrophoresis, high-performance liquid chromatography, and gas chromatography-mass spectrometry, together with a mouse bioassay for toxicity. It was demonstrated that the isolated bacterium produced TTX, 4-epi-TTX, and anhTTX during cultivation, suggesting that Vibrio strains are responsible for the toxification of the puffer fish.
Collapse
|
research-article |
25 |
79 |
13
|
Zhan C, Wang W, McAlvin JB, Guo S, Timko BP, Santamaria C, Kohane DS. Phototriggered Local Anesthesia. NANO LETTERS 2016; 16:177-81. [PMID: 26654461 DOI: 10.1021/acs.nanolett.5b03440] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report a phototriggerable formulation enabling in vivo repeated and on-demand anesthesia with minimal toxicity. Gold nanorods (GNRs) that can convert near-infrared (NIR) light into heat were attached to liposomes (Lip-GNRs), enabling light-triggered phase transition of their lipid bilayers with a consequent release of payload. Lip-GNRs containing the site 1 sodium channel blocker tetrodotoxin and the α2-adrenergic agonist dexmedetomidine (Lip-GNR-TD) were injected subcutaneously in the rat footpad. Irradiation with an 808 nm continuous wave NIR laser produced on-demand and repeated infiltration anesthesia in the rat footpad in proportion to the irradiance, with minimal toxicity. The ability to achieve on-demand and repeated local anesthesia could be very beneficial in the management of pain.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
74 |
14
|
Hanifin CT, Brodie ED, Brodie ED. Tetrodotoxin levels of the rough-skin newt, Taricha granulosa, increase in long-term captivity. Toxicon 2002; 40:1149-153. [PMID: 12165318 DOI: 10.1016/s0041-0101(02)00115-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the persistence of the neurotoxin tetrodotoxin (TTX) in individual captive newts (Taricha granulosa) from the Willamette Valley of Oregon using a non-lethal sampling technique. We found that the TTX levels of newts held in the laboratory for 1 yr increased. TTX stereoisomer-analog profiles were not affected by captive husbandry. Levels of TTX were high in newts from our study population and we observed substantial within population variation in quantitative levels of TTX. Females possessed more TTX than males, but the response of TTX levels to captivity did not differ between females and males. The stability of TTX toxicity in newts is consistent with other amphibian species where TTX is present and may indicate that exogenous factors play a less important role in TTX toxicity of newts than previously thought.
Collapse
|
|
23 |
74 |
15
|
Brodie ED, Feldman CR, Hanifin CT, Motychak JE, Mulcahy DG, Williams BL, Brodie ED. Parallel arms races between garter snakes and newts involving tetrodotoxin as the phenotypic interface of coevolution. J Chem Ecol 2005; 31:343-56. [PMID: 15856788 DOI: 10.1007/s10886-005-1345-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Parallel "arms races" involving the same or similar phenotypic interfaces allow inference about selective forces driving coevolution, as well as the importance of phylogenetic and phenotypic constraints in coevolution. Here, we report the existence of apparent parallel arms races between species pairs of garter snakes and their toxic newt prey that indicate independent evolutionary origins of a key phenotype in the interface. In at least one area of sympatry, the aquatic garter snake, Thamnophis couchii, has evolved elevated resistance to the neurotoxin tetrodotoxin (TTX), present in the newt Taricha torosa. Previous studies have shown that a distantly related garter snake, Thamnophis sirtalis, has coevolved with another newt species that possesses TTX, Taricha granulosa. Patterns of within population variation and phenotypic tradeoffs between TTX resistance and sprint speed suggest that the mechanism of resistance is similar in both species of snake, yet phylogenetic evidence indicates the independent origins of elevated resistance to TTX.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
72 |
16
|
Tsuruda K, Arakawa O, Kawatsu K, Hamano Y, Takatani T, Noguchi T. Secretory glands of tetrodotoxin in the skin of the Japanese newt Cynops pyrrhogaster. Toxicon 2002; 40:131-6. [PMID: 11689234 DOI: 10.1016/s0041-0101(01)00198-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intra-tissue distribution of tetrodotoxin (TTX) in the skin of larva, juvenile, and adult Japanese newt Cynops pyrrhogaster was investigated by means of a monoclonal antibody-based immunoenzymatic technique. In the investigation, TTX was localized at immature glands in juvenile, and at the granular cells composing of granular and mixed glands in adult specimens under a light microscope. No specific stain was recognized in larval section. A duct like structure extending from the granular gland towards super epithelial layer was visualized in the toluidine blue treated skin section of adult newt. When stimuli by wiping with gauze ('handling stimulus') were given, C. pyrrhogaster was found to secrete an applicable amount of TTX and 6-epiTTX from the skin, suggesting that the newt has a granular gland of TTX to secrete it towards the body surface possibly as a biological defensive agent.
Collapse
|
|
23 |
69 |
17
|
Ritson-Williams R, Yotsu-Yamashita M, Paul VJ. Ecological functions of tetrodotoxin in a deadly polyclad flatworm. Proc Natl Acad Sci U S A 2006; 103:3176-9. [PMID: 16492790 PMCID: PMC1413867 DOI: 10.1073/pnas.0506093103] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deadly neurotoxin tetrodotoxin (TTX) is found in a variety of animal phyla and, because of its toxicity, is most often assumed to deter predation. On the tropical Pacific island of Guam, we found an undescribed flatworm (planocerid sp. 1) that contains high levels of TTX and its analogs. Through ecological experiments, we show that TTXs do not protect these flatworms from some predators but instead are used to capture mobile prey. TTX is known to have multiple ecological functions, which has probably led to its widespread presence among prokaryotes and at least 10 metazoan phyla.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
66 |
18
|
Choudhary G, Yotsu-Yamashita M, Shang L, Yasumoto T, Dudley SC. Interactions of the C-11 hydroxyl of tetrodotoxin with the sodium channel outer vestibule. Biophys J 2003; 84:287-94. [PMID: 12524282 PMCID: PMC1302610 DOI: 10.1016/s0006-3495(03)74849-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The highly selective sodium channel blocker, tetrodotoxin (TTX) has been instrumental in characterization of voltage-gated sodium channels. TTX occludes the ion-permeation pathway at the outer vestibule of the channel. In addition to a critical guanidinium group, TTX possesses six hydroxyl groups, which appear to be important for toxin block. The nature of their interactions with the outer vestibule remains debatable, however. The C-11 hydroxyl (C-11 OH) has been proposed to interact with the channel through a hydrogen bond to a carboxyl group, possibly from domain IV. On the other hand, previous experiments suggest that TTX interacts most strongly with pore loops of domains I and II. Energetic localization of the C-11 OH was undertaken by thermodynamic mutant cycle analysis assessing the dependence of the effects of mutations of the adult rat skeletal muscle Na(+) channel (rNa(v)1.4) and the presence of C-11 OH on toxin IC(50). Xenopus oocytes were injected with the mutant or native Na(+) channel mRNA, and currents were measured by two-electrode voltage clamp. Toxin blocking efficacy was determined by recording the reduction in current upon toxin exposure. Mutant cycle analysis revealed that the maximum interaction of the C-11 OH was with domain IV residue D1532 (DeltaDeltaG: 1.0 kcal/mol). Furthermore, C-11 OH had significantly less interaction with several domain I, II, and III residues. The pattern of interactions suggested that C-11 was closest to domain IV, probably involved in a hydrogen bond with the domain IV carboxyl group. Incorporating this data, a new molecular model of TTX binding is proposed.
Collapse
|
research-article |
22 |
64 |
19
|
Xiao Y, Tang J, Hu W, Xie J, Maertens C, Tytgat J, Liang S. Jingzhaotoxin-I, a Novel Spider Neurotoxin Preferentially Inhibiting Cardiac Sodium Channel Inactivation. J Biol Chem 2005; 280:12069-76. [PMID: 15548530 DOI: 10.1074/jbc.m411651200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Jingzhaotoxin-I (JZTX-I), a 33-residue polypeptide, is derived from the Chinese tarantula Chilobrachys jing-zhao venom based on its ability to evidently increase the strength and the rate of vertebrate heartbeats. The toxin has three disulfide bonds with the linkage of I-IV, II-V, and III-VI that is a typical pattern found in inhibitor cystine knot molecules. Its cDNA determined by rapid amplification of 3'- and 5'-cDNA ends encoded a 62-residue precursor with a small proregion of eight residues. Whole-cell configuration indicated that JZTX-I was a novel neurotoxin preferentially inhibiting cardiac sodium channel inactivation by binding to receptor site 3. Although JZTX-I also exhibits the interaction with channel isoforms expressing in mammalian and insect sensory neurons, its affinity for tetrodotoxin-resistant subtype in mammalian cardiac myocytes (IC50 = 31.6 nm) is approximately 30-fold higher than that for tetrodotoxin-sensitive subtypes in latter tissues. Not affecting outward delay-rectified potassium channels expressed in Xenopus laevis oocytes and tetrodotoxin-resistant sodium channels in mammal sensory neurons, JZTX-I hopefully represents a potent ligand to discriminate cardiac sodium channels from neuronal tetrodotoxin-resistant isoforms. Furthermore, different from any reported spider toxins, the toxin neither modifies the current-voltage relationships nor shifts the steady-state inactivation of sodium channels. Therefore, JZTX-I defines a new subclass of spider sodium channel toxins. JZTX-I is an alpha-like toxin first reported from spider venoms. The result provides an important witness for a convergent functional evolution between spider and other animal venoms.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/metabolism
- Disulfides/chemistry
- Dose-Response Relationship, Drug
- Evolution, Molecular
- Female
- Inhibitory Concentration 50
- Insecta
- Ligands
- Male
- Membrane Potentials
- Molecular Sequence Data
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurotoxins/chemistry
- Oocytes/drug effects
- Oocytes/metabolism
- Peptides/chemistry
- Peptides/pharmacology
- Phylogeny
- Potassium Channels/chemistry
- Protein Isoforms
- Rats
- Rats, Sprague-Dawley
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium Channel Blockers/pharmacology
- Sodium Channels/chemistry
- Sodium Channels/metabolism
- Spider Venoms/chemistry
- Spider Venoms/pharmacology
- Spiders
- Tetrodotoxin/chemistry
- Time Factors
- Xenopus laevis
Collapse
|
|
20 |
61 |
20
|
Bruhova I, Tikhonov DB, Zhorov BS. Access and binding of local anesthetics in the closed sodium channel. Mol Pharmacol 2008; 74:1033-45. [PMID: 18653802 DOI: 10.1124/mol.108.049759] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Local anesthetics (LAs) are known to bind Na+ channels in the closed, open, and inactivated states and reach their binding sites via extracellular and intracellular access pathways. Despite intensive studies, no atomic-scale theory is available to explain the diverse experimental data on the LA actions. Here we attempt to contribute to this theory by simulating access and binding of LAs in the KcsA-based homology model of the closed Na+ channel. We used Monte Carlo minimizations to model the channel with representative local anesthetics N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium (QX-314), cocaine, and tetracaine. We found the nucleophilic central cavity to be a common binding region for the ammonium group of LAs, whose aromatic group can extend either along the pore axis (vertical binding mode) or to the III/IV domain interface (horizontal binding mode). The vertical mode was earlier predicted for the open channel, but only the horizontal mode is consistent with mutational data on the closed-channel block. To explore hypothetical access pathways of the permanently charged QX-314, we pulled the ligand via the selectivity filter, the closed activation gate, and the III/IV domain interface. Only the last pathway, which leads to the horizontal binding mode, did not impose steric obstacles. The LA ammonium group mobility within the central cavity was more restricted in the vertical mode than in the horizontal mode. Therefore, occupation of the selectivity-filter DEKA locus by a Na+ ion destabilizes the vertical mode, thus favoring the horizontal mode. LA binding in the closed channel requires the resident Na+ ion to leave the nucleophilic central cavity through the selectivity filter, whereas the LA egress should be coupled with reoccupation of the cavity by Na+. This hypothesis on the coupled movement of Na+ and LA in the closed channel explains seemingly contradictory data on how the outer-pore mutations as well as tetrodotoxin and micro-conotoxin binding affect the ingress and egress of LAs.
Collapse
|
|
17 |
55 |
21
|
Durán-Riveroll LM, Cembella AD. Guanidinium Toxins and Their Interactions with Voltage-Gated Sodium Ion Channels. Mar Drugs 2017; 15:E303. [PMID: 29027912 PMCID: PMC5666411 DOI: 10.3390/md15100303] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/14/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022] Open
Abstract
Guanidinium toxins, such as saxitoxin (STX), tetrodotoxin (TTX) and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (NaV). Members of the STX group, known collectively as paralytic shellfish toxins (PSTs), are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria. In contrast, toxins of the TTX group occur mainly in macrozoa, particularly among puffer fish, several species of marine invertebrates and a few terrestrial amphibians. In the case of TTX and analogs, most evidence suggests that symbiotic bacteria are the origin of the toxins, although endogenous biosynthesis independent from bacteria has not been excluded. The evolutionary origin of the biosynthetic genes for STX and analogs in dinoflagellates and cyanobacteria remains elusive. These highly potent molecules have been the subject of intensive research since the latter half of the past century; first to study the mode of action of their toxigenicity, and later as tools to characterize the role and structure of NaV channels, and finally as therapeutics. Their pharmacological activities have provided encouragement for their use as therapeutants for ion channel-related pathologies, such as pain control. The functional role in aquatic and terrestrial ecosystems for both groups of toxins is unproven, although plausible mechanisms of ion channel regulation and chemical defense are often invoked. Molecular approaches and the development of improved detection methods will yield deeper understanding of their physiological and ecological roles. This knowledge will facilitate their further biotechnological exploitation and point the way towards development of pharmaceuticals and therapeutic applications.
Collapse
|
Review |
8 |
53 |
22
|
Riz M, Braun M, Pedersen MG. Mathematical modeling of heterogeneous electrophysiological responses in human β-cells. PLoS Comput Biol 2014; 10:e1003389. [PMID: 24391482 PMCID: PMC3879095 DOI: 10.1371/journal.pcbi.1003389] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Electrical activity plays a pivotal role in glucose-stimulated insulin secretion from pancreatic β-cells. Recent findings have shown that the electrophysiological characteristics of human β-cells differ from their rodent counterparts. We show that the electrophysiological responses in human β-cells to a range of ion channels antagonists are heterogeneous. In some cells, inhibition of small-conductance potassium currents has no effect on action potential firing, while it increases the firing frequency dramatically in other cells. Sodium channel block can sometimes reduce action potential amplitude, sometimes abolish electrical activity, and in some cells even change spiking electrical activity to rapid bursting. We show that, in contrast to L-type Ca2+-channels, P/Q-type Ca2+-currents are not necessary for action potential generation, and, surprisingly, a P/Q-type Ca2+-channel antagonist even accelerates action potential firing. By including SK-channels and Ca2+ dynamics in a previous mathematical model of electrical activity in human β-cells, we investigate the heterogeneous and nonintuitive electrophysiological responses to ion channel antagonists, and use our findings to obtain insight in previously published insulin secretion measurements. Using our model we also study paracrine signals, and simulate slow oscillations by adding a glycolytic oscillatory component to the electrophysiological model. The heterogenous electrophysiological responses in human β-cells must be taken into account for a deeper understanding of the mechanisms underlying insulin secretion in health and disease, and as shown here, the interdisciplinary combination of experiments and modeling increases our understanding of human β-cell physiology.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
52 |
23
|
Kudo Y, Yasumoto T, Konoki K, Cho Y, Yotsu-Yamashita M. Isolation and structural determination of the first 8-epi-type tetrodotoxin analogs from the newt, Cynops ensicauda popei, and comparison of tetrodotoxin analogs profiles of this newt and the puffer fish, Fugu poecilonotus. Mar Drugs 2012; 10:655-667. [PMID: 22611361 PMCID: PMC3347022 DOI: 10.3390/md10030655] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 11/16/2022] Open
Abstract
Identification of new tetrodotoxin (TTX) analogs from TTX-possessing animals might provide insight into its biosynthesis and metabolism. In this study, four new analogs, 8-epi-5,6,11-trideoxyTTX, 4,9-anhydro-8-epi-5,6,11-trideoxyTTX, 1-hydroxy-8-epi-5,6,11-trideoxyTTX, and 1-hydroxy-4,4a-anhydro-8-epi-5,6,11-trideoxyTTX, were isolated from the newt, Cynops ensicauda popei, and their structures were determined using spectroscopic methods. These are the first 8-epi-type analogs of TTX that have been found in a natural source. Furthermore, we examined the composition of the TTX analogs in this newt and in the ovary of the puffer fish, Fugu poecilonotus, using LC/MS. The results indicate that TTX and 11-deoxyTTX were present in both sources. However, 6-epiTTX and 8-epi-type analogs were detected only in the newt, while 5,6,11-trideoxyTTX was a specific and major analog in the puffer fish. Such considerable differences among analog compositions might reflect differences in the biosynthesis or metabolism of TTX between these animals.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
50 |
24
|
Jang JH, Yotsu-Yamashita M. 6,11-Dideoxytetrodotoxin from the puffer fish, Fugu pardalis. Toxicon 2007; 50:947-51. [PMID: 17826815 DOI: 10.1016/j.toxicon.2007.06.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 06/29/2007] [Accepted: 06/29/2007] [Indexed: 11/21/2022]
Abstract
The presence of an unknown dideoxy analog of tetrodotoxin was suggested on the liquid chromatography/electrospray ionization-mass spectrometry mass chromatogram of the ovaries of the puffer fish, Fugu pardalis, in single ion monitoring mode to detect at m/z 288. We succeeded to isolate this analog (approximately 0.4 mg) from 200 g of the ovaries and the structure was determined as 6,11-dideoxytetrodotoxin by spectroscopic methods (high resolution-fast atom bombardment-MS and NMR spectroscopy). The discovery of the new analog is highly significant with respect to the biosynthesis or metabolism of tetrodotoxin. We also roughly determined the value of IC(50) (mice, intraperitoneal) for 6,11-dideoxytetrodotoxin as 420 microg/kg and thus it is 42 times less toxic than tetrodotoxin.
Collapse
|
|
18 |
49 |
25
|
Nakagawa T, Jang J, Yotsu-Yamashita M. Hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry of tetrodotoxin and its analogs. Anal Biochem 2006; 352:142-4. [PMID: 16574054 DOI: 10.1016/j.ab.2006.02.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/01/2006] [Accepted: 02/07/2006] [Indexed: 10/25/2022]
|
Research Support, Non-U.S. Gov't |
19 |
49 |