1
|
Wang N, Zuo Z, Meng T, Liu Y, Zheng X, Ma Y. Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathway. J Orthop Surg Res 2024; 19:531. [PMID: 39218922 PMCID: PMC11367893 DOI: 10.1186/s13018-024-05030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Bone loss caused by microgravity exposure presents a serious threat to the health of astronauts, but existing treatment strategies have specific restrictions. This research aimed to investigate whether salidroside (SAL) can mitigate microgravity-induced bone loss and its underlying mechanism. METHODS In this research, we used hindlimb unloading (HLU) and the Rotary Cell Culture System (RCCS) to imitate microgravity in vivo and in vitro. RESULTS The results showed that salidroside primarily enhances bone density, microstructure, and biomechanical properties by stimulating bone formation and suppressing bone resorption, thereby preserving bone mass in HLU rats. In MC3T3-E1 cells cultured under simulated microgravity in rotary wall vessel bioreactors, the expression of osteogenic genes significantly increased after salidroside administration, indicating that salidroside can promote osteoblast differentiation under microgravity conditions. Furthermore, the Nrf2 inhibitor ML385 diminished the therapeutic impact of salidroside on microgravity-induced bone loss. Overall, this research provides the first evidence that salidroside can mitigate bone loss induced by microgravity exposure through stimulating the Nrf2/HO-1 pathway. CONCLUSION These findings indicate that salidroside has great potential for treating space-related bone loss in astronauts and suggest that Nrf2/HO-1 is a viable target for counteracting microgravity-induced bone damage.
Collapse
|
2
|
Zong B, Wang J, Wang K, Hao J, Han JY, Jin R, Ge Q. Effects of Ginsenoside Rb1 on the Crosstalk between Intestinal Stem Cells and Microbiota in a Simulated Weightlessness Mouse Model. Int J Mol Sci 2024; 25:8769. [PMID: 39201456 PMCID: PMC11354315 DOI: 10.3390/ijms25168769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Exposure to the space microenvironment has been found to disrupt the homeostasis of intestinal epithelial cells and alter the composition of the microbiota. To investigate this in more detail and to examine the impact of ginsenoside Rb1, we utilized a mouse model of hindlimb unloading (HU) for four weeks to simulate the effects of microgravity. Our findings revealed that HU mice had ileum epithelial injury with a decrease in the number of intestinal stem cells (ISCs) and the level of cell proliferation. The niche functions for ISCs were also impaired in HU mice, including a reduction in Paneth cells and Wnt signaling, along with an increase in oxidative stress. The administration of Rb1 during the entire duration of HU alleviated the observed intestinal defects, suggesting its beneficial influence on epithelial cell homeostasis. Hindlimb unloading also resulted in gut dysbiosis. The supplementation of Rb1 in the HU mice or the addition of Rb1 derivative compound K in bacterial culture in vitro promoted the growth of beneficial probiotic species such as Akkermansia. The co-housing experiment further showed that Rb1 treatment in ground control mice alone could alleviate the defects in HU mice that were co-housed with Rb1-treated ground mice. Together, these results underscore a close relationship between dysbiosis and impaired ISC functions in the HU mouse model. It also highlights the beneficial effects of Rb1 in mitigating HU-induced epithelial injury by promoting the expansion of intestinal probiotics. These animal-based insights provide valuable knowledge for the development of improved approaches to maintaining ISC homeostasis in astronauts.
Collapse
|
3
|
Siew K, Nestler KA, Nelson C, D'Ambrosio V, Zhong C, Li Z, Grillo A, Wan ER, Patel V, Overbey E, Kim J, Yun S, Vaughan MB, Cheshire C, Cubitt L, Broni-Tabi J, Al-Jaber MY, Boyko V, Meydan C, Barker P, Arif S, Afsari F, Allen N, Al-Maadheed M, Altinok S, Bah N, Border S, Brown AL, Burling K, Cheng-Campbell M, Colón LM, Degoricija L, Figg N, Finch R, Foox J, Faridi P, French A, Gebre S, Gordon P, Houerbi N, Valipour Kahrood H, Kiffer FC, Klosinska AS, Kubik A, Lee HC, Li Y, Lucarelli N, Marullo AL, Matei I, McCann CM, Mimar S, Naglah A, Nicod J, O'Shaughnessy KM, Oliveira LCD, Oswalt L, Patras LI, Lai Polo SH, Rodríguez-Lopez M, Roufosse C, Sadeghi-Alavijeh O, Sanchez-Hodge R, Paul AS, Schittenhelm RB, Schweickart A, Scott RT, Choy Lim Kam Sian TC, da Silveira WA, Slawinski H, Snell D, Sosa J, Saravia-Butler AM, Tabetah M, Tanuwidjaya E, Walker-Samuel S, Yang X, Yasmin, Zhang H, Godovac-Zimmermann J, Sarder P, Sanders LM, Costes SV, Campbell RAA, Karouia F, Mohamed-Alis V, Rodriques S, Lynham S, Steele JR, Baranzini S, Fazelinia H, Dai Z, Uruno A, Shiba D, Yamamoto M, A C Almeida E, Blaber E, Schisler JC, Eisch AJ, Muratani M, Zwart SR, Smith SM, Galazka JM, Mason CE, Beheshti A, Walsh SB. Cosmic kidney disease: an integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction. Nat Commun 2024; 15:4923. [PMID: 38862484 PMCID: PMC11167060 DOI: 10.1038/s41467-024-49212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.
Collapse
|
4
|
Laurie SS, Greenwald SH, Marshall‐Goebel K, Pardon LP, Gupta A, Lee SMC, Stern C, Sangi‐Haghpeykar H, Macias BR, Bershad EM. Optic disc edema and chorioretinal folds develop during strict 6° head-down tilt bed rest with or without artificial gravity. Physiol Rep 2021; 9:e14977. [PMID: 34355874 PMCID: PMC8343460 DOI: 10.14814/phy2.14977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Spaceflight associated neuro-ocular syndrome (SANS) is hypothesized to develop as a consequence of the chronic headward fluid shift that occurs in sustained weightlessness. We exposed healthy subjects (n = 24) to strict 6° head-down tilt bed rest (HDTBR), an analog of weightlessness that generates a sustained headward fluid shift, and we monitored for ocular changes similar to findings that develop in SANS. Two-thirds of the subjects received a daily 30-min exposure to artificial gravity (AG, 1 g at center of mass, ~0.3 g at eye level) during HDTBR by either continuous (cAG, n = 8) or intermittent (iAG, n = 8) short-arm centrifugation to investigate whether this intervention would attenuate headward fluid shift-induced ocular changes. Optical coherence tomography images were acquired to quantify changes in peripapillary total retinal thickness (TRT), retinal nerve fiber layer thickness, and choroidal thickness, and to detect chorioretinal folds. Intraocular pressure (IOP), optical biometry, and standard automated perimetry data were collected. TRT increased by 35.9 µm (95% CI, 19.9-51.9 µm, p < 0.0001), 36.5 µm (95% CI, 4.7-68.2 µm, p = 0.01), and 27.6 µm (95% CI, 8.8-46.3 µm, p = 0.0005) at HDTBR day 58 in the control, cAG, and iAG groups, respectively. Chorioretinal folds developed in six subjects across the groups, despite small increases in IOP. Visual function outcomes did not change. These findings validate strict HDTBR without elevated ambient CO2 as a model for investigating SANS and suggest that a fluid shift reversal of longer duration and/or greater magnitude at the eye may be required to prevent or mitigate SANS.
Collapse
|
5
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
|
6
|
Li Y, Liu S, Liu H, Cui Y, Deng Y. Dragon's Blood Regulates Rac1-WAVE2-Arp2/3 Signaling Pathway to Protect Rat Intestinal Epithelial Barrier Dysfunction Induced by Simulated Microgravity. Int J Mol Sci 2021; 22:ijms22052722. [PMID: 33800361 PMCID: PMC7962842 DOI: 10.3390/ijms22052722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Dragon’s Blood is a red resin from Dracaena cochinchinensis (Lour.) S.C. Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has shown protective effects on intestinal disorders. Microgravity could alter intestinal homeostasis. However, the potential herbal drugs for preventing intestine epithelial barrier (IEB) dysfunction under microgravity are not available. This study aimed to investigate the effects of Dragon’s Blood (DB) on microgravity-induced IEB injury and explore its underlying mechanism. A rat tail-suspension model was used to simulate microgravity (SMG). Histomorphology, ultrastructure, permeability, and expression of junction proteins in jejunum, ileum, and colon of SMG rats were determined. Proteomic analysis was used to identify differentially expressed proteins (DEPs) in rat ileum mucosa altered by DB. The potential mechanism of DB to protect IEB dysfunction was validated by western blotting. The effects of several components in DB were evaluated in SMG-treated Caco-2 cells. DB protected against IEB disruption by repairing microvilli and crypts, inhibiting inflammatory factors, lowering the permeability and upregulating the expression of tight and adherens junction proteins in the ileum of SMG rats. Proteomic analysis showed that DB regulated 1080 DEPs in rat ileum mucosa. DEPs were significantly annotated in cell–cell adhesion, focal adhesion, and cytoskeleton regulation. DB increased the expression of Rac1-WAVE2-Arp2/3 pathway proteins and F-actin to G-actin ratio, which promoted the formation of focal adhesions. Loureirin C in DB showed a protective effect on epithelial barrier injury in SMG-treated Caco-2 cells. DB could protect against IEB dysfunction induced by SMG, and its mechanism is associated with the formation of focal adhesions mediated by the Rac1-WAVE2-Arp2/3 pathway, which benefits intestinal epithelial cell migration and barrier repair.
Collapse
|
7
|
Sadhukhan R, Majumdar D, Garg S, Landes RD, McHargue V, Pawar SA, Chowdhury P, Griffin RJ, Narayanasamy G, Boerma M, Dobretsov M, Hauer-Jensen M, Pathak R. Simultaneous exposure to chronic irradiation and simulated microgravity differentially alters immune cell phenotype in mouse thymus and spleen. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:66-73. [PMID: 33612181 PMCID: PMC7900614 DOI: 10.1016/j.lssr.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 05/25/2023]
Abstract
Deep-space missions may alter immune cell phenotype in the primary (e.g., thymus) and secondary (e.g., spleen) lymphoid organs contributing to the progression of a variety of diseases. In deep space missions, astronauts will be exposed to chronic low doses of HZE radiation while being in microgravity. Ground-based models of long-term uninterrupted exposures to HZE radiation are not yet available. To obtain insight in the effects of concurrent exposure to microgravity and chronic irradiation (CIR), mice received a cumulative dose of chronic 0.5 Gy gamma rays over one month ± simulated microgravity (SMG). To obtain insight in a dose rate effect, additional mice were exposed to single acute irradiation (AIR) at 0.5 Gy gamma rays. We measured proportions of immune cells relative to total number of live cells in the thymus and spleen, stress level markers in plasma, and change in body weight, food consumption, and water intake. CIR affected thymic CD3+/CD335+ natural killer T (NK-T) cells, CD25+ regulatory T (Treg) cells, CD27+/CD335- natural killer (NK1) cells and CD11c+/CD11b- dendritic cells (DCs) differently in mice subjected to SMG than in mice with normal loading. No such effects of CIR on SMG as compared to normal loading were observed in cell types from the spleen. Differences between CIR and AIR groups (both under normal loading) were found in thymic Treg and DCs. Food consumption, water intake, and body weight were less after coexposure than singular or no exposure. Compared to sham, all treatment groups exhibited elevated plasma levels of the stress marker catecholamines. These data suggest that microgravity and chronic irradiation may interact with each other to alter immune cell phenotypes in an organ-specific manner and appropriate strategies are required to reduce the health risk of crewmembers.
Collapse
|
8
|
Fukuda APM, Camandona VDL, Francisco KJM, Rios-Anjos RM, Lucio do Lago C, Ferreira-Junior JR. Simulated microgravity accelerates aging in Saccharomyces cerevisiae. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:32-40. [PMID: 33612178 DOI: 10.1016/j.lssr.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The human body experiences physiological changes under microgravity environment that phenocopy aging on Earth. These changes include early onset osteoporosis, skeletal muscle atrophy, cardiac dysfunction, and immunosenescence, and such adaptations to the space environment may pose some risk to crewed missions to Mars. To investigate the effect of microgravity on aging, many model organisms have been used such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and mice. Herein we report that the budding yeast Saccharomyces cerevisiae show decreased replicative lifespan (RLS) under simulated microgravity in a clinostat. The reduction of yeast lifespan is not a result of decreased tolerance to heat shock or oxidative stress and could be overcome either by deletion of FOB1 or calorie restriction, two known interventions that extend yeast RLS. Deletion of the sirtuin gene SIR2 worsens the simulated microgravity effect on RLS, and together with the fob1Δ mutant phenotype, it suggests that simulated microgravity augments the formation of extrachromosomal rDNA circles, which accumulate in yeast during aging. We also show that the chronological lifespan in minimal medium was not changed when cells were grown in the clinostat. Our data suggest that the reduction in longevity due to simulated microgravity is conserved in yeast, worms, and flies, and these findings may have potential implications for future crewed missions in space, as well as the use of microgravity as a model for human aging.
Collapse
|
9
|
Strube F, Infanger M, Dietz C, Romswinkel A, Kraus A. Short-term effects of simulated microgravity on morphology and gene expression in human breast cancer cells. Physiol Int 2019; 106:311-322. [PMID: 31896265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Microgravity has been shown to impose various effects on breast cancer cells. We exposed human breast cancer cells to simulated microgravity and studied morphology and alterations in gene expression. MATERIALS AND METHODS Human breast cancer cells were exposed to simulated microgravity in a random positioning machine (RPM) for 24 h. Morphology was observed under light microscopy, and gene alteration was studied by qPCR. RESULTS After 24 h, formation of three-dimensional structures (spheroids) occurred. BRCA1 expression was significantly increased (1.9×, p < 0.05) in the adherent cells under simulated microgravity compared to the control. Expression of KRAS was significantly decreased (0.6×, p < 0.05) in the adherent cells compared to the control. VCAM1 was significantly upregulated (6.6×, 2.0×, p < 0.05 each) in the adherent cells under simulated microgravity and in the spheroids. VIM expression was significantly downregulated (0.45×, 0.44×, p < 0.05 each) in the adherent cells under simulated microgravity and in the spheroids. There was no significant alteration in the expression of MAPK1, MMP13, PTEN, and TP53. CONCLUSIONS Simulated microgravity induces spheroid formation in human breast cancer cells within 24 h and alters gene expression toward modified adhesion properties, enhanced cell repair, and phenotype preservation. Further insights into the underlying mechanisms could open up the way toward new therapies.
Collapse
|
10
|
Liu P, Li D, Li W, Wang D. Mitochondrial Unfolded Protein Response to Microgravity Stress in Nematode Caenorhabditis elegans. Sci Rep 2019; 9:16474. [PMID: 31712608 PMCID: PMC6848112 DOI: 10.1038/s41598-019-53004-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 11/29/2022] Open
Abstract
Caenorhabditis elegans is useful for assessing biological effects of spaceflight and simulated microgravity. The molecular response of organisms to simulated microgravity is still largely unclear. Mitochondrial unfolded protein response (mt UPR) mediates a protective response against toxicity from environmental exposure in nematodes. Using HSP-6 and HSP-60 as markers of mt UPR, we observed a significant activation of mt UPR in simulated microgravity exposed nematodes. The increase in HSP-6 and HSP-60 expression mediated a protective response against toxicity of simulated microgravity. In simulated microgravity treated nematodes, mitochondria-localized ATP-binding cassette protein HAF-1 and homeodomain-containing transcriptional factor DVE-1 regulated the mt UPR activation. In the intestine, a signaling cascade of HAF-1/DVE-1-HSP-6/60 was required for control of toxicity of simulated microgravity. Therefore, our data suggested the important role of mt UPR activation against the toxicity of simulated microgravity in organisms.
Collapse
|
11
|
Hada M, Ikeda H, Rhone JR, Beitman AJ, Plante I, Souda H, Yoshida Y, Held KD, Fujiwara K, Saganti PB, Takahashi A. Increased Chromosome Aberrations in Cells Exposed Simultaneously to Simulated Microgravity and Radiation. Int J Mol Sci 2018; 20:E43. [PMID: 30583489 PMCID: PMC6337712 DOI: 10.3390/ijms20010043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Space radiation and microgravity (μG) are two major environmental stressors for humans in space travel. One of the fundamental questions in space biology research is whether the combined effects of μG and exposure to cosmic radiation are interactive. While studies addressing this question have been carried out for half a century in space or using simulated μG on the ground, the reported results are ambiguous. For the assessment and management of human health risks in future Moon and Mars missions, it is necessary to obtain more basic data on the molecular and cellular responses to the combined effects of radiation and µG. Recently we incorporated a μG⁻irradiation system consisting of a 3D clinostat synchronized to a carbon-ion or X-ray irradiation system. Our new experimental setup allows us to avoid stopping clinostat rotation during irradiation, which was required in all other previous experiments. Using this system, human fibroblasts were exposed to X-rays or carbon ions under the simulated μG condition, and chromosomes were collected with the premature chromosome condensation method in the first mitosis. Chromosome aberrations (CA) were quantified by the 3-color fluorescent in situ hybridization (FISH) method. Cells exposed to irradiation under the simulated μG condition showed a higher frequency of both simple and complex types of CA compared to cells irradiated under the static condition by either X-rays or carbon ions.
Collapse
|
12
|
Yuan P, Koppelmans V, Reuter-Lorenz P, De Dios Y, Gadd N, Riascos R, Kofman I, Bloomberg J, Mulavara A, Seidler RD. Change of cortical foot activation following 70 days of head-down bed rest. J Neurophysiol 2018; 119:2145-2152. [PMID: 29488843 PMCID: PMC6032127 DOI: 10.1152/jn.00693.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/09/2018] [Accepted: 02/25/2018] [Indexed: 12/11/2022] Open
Abstract
Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to study some of the effects of microgravity on human physiology, cognition, and sensorimotor functions. Previous studies have reported declines in balance control and functional mobility after spaceflight and HDBR. In this study we investigated how the brain activation for foot movement changed with HDBR. Eighteen healthy men participated in the current HDBR study. They were in a 6° head-down tilt position continuously for 70 days. Functional MRI scans were acquired to estimate brain activation for foot movement before, during, and after HDBR. Another 11 healthy men who did not undergo HDBR participated as control subjects and were scanned at four time points. In the HDBR subjects, the cerebellum, fusiform gyrus, hippocampus, and middle occipital gyrus exhibited HDBR-related increases in activation for foot tapping, whereas no HDBR-associated activation decreases were found. For the control subjects, activation for foot tapping decreased across sessions in a couple of cerebellar regions, whereas no activation increase with session was found. Furthermore, we observed that less HDBR-related decline in functional mobility and balance control was associated with greater pre-to-post HDBR increases in brain activation for foot movement in several cerebral and cerebellar regions. Our results suggest that more neural control is needed for foot movement as a result of HDBR. NEW & NOTEWORTHY Long-duration head-down bed rest serves as a spaceflight analog research environment. We show that brain activity in the cerebellum and visual areas during foot movement increases from pre- to post-bed rest and then shows subsequent recovery. Greater increases were seen for individuals who exhibited less decline in functional mobility and balance control, suggestive of adaptive changes in neural control with long-duration bed rest.
Collapse
|
13
|
Zhang YN, Shi WG, Li H, Hua JR, Feng X, Wei WJ, Wang JF, He JP, Lei SW. Bone Loss Induced by Simulated Microgravity, Ionizing Radiation and/or Ultradian Rhythms in the Hindlimbs of Rats. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2018; 31:126-135. [PMID: 29606191 DOI: 10.3967/bes2018.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms. METHODS Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats. RESULTS Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-5b) in serum was in line with the changes in trabecular parameters. CONCLUSION Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone.
Collapse
|
14
|
Koppelmans V, Bloomberg JJ, De Dios YE, Wood SJ, Reuter-Lorenz PA, Kofman IS, Riascos R, Mulavara AP, Seidler RD. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest. PLoS One 2017; 12:e0182236. [PMID: 28767698 PMCID: PMC5540603 DOI: 10.1371/journal.pone.0182236] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 07/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background Adverse effects of spaceflight on sensorimotor function have been linked to altered somatosensory and vestibular inputs in the microgravity environment. Whether these spaceflight sequelae have a central nervous system component is unknown. However, experimental studies have shown spaceflight-induced brain structural changes in rodents’ sensorimotor brain regions. Understanding the neural correlates of spaceflight-related motor performance changes is important to ultimately develop tailored countermeasures that ensure mission success and astronauts’ health. Method Head down-tilt bed rest (HDBR) can serve as a microgravity analog because it mimics body unloading and headward fluid shifts of microgravity. We conducted a 70-day 6° HDBR study with 18 right-handed males to investigate how microgravity affects focal gray matter (GM) brain volume. MRI data were collected at 7 time points before, during and post-HDBR. Standing balance and functional mobility were measured pre and post-HDBR. The same metrics were obtained at 4 time points over ~90 days from 12 control subjects, serving as reference data. Results HDBR resulted in widespread increases GM in posterior parietal regions and decreases in frontal areas; recovery was not yet complete by 12 days post-HDBR. Additionally, HDBR led to balance and locomotor performance declines. Increases in a cluster comprising the precuneus, precentral and postcentral gyrus GM correlated with less deterioration or even improvement in standing balance. This association did not survive Bonferroni correction and should therefore be interpreted with caution. No brain or behavior changes were observed in control subjects. Conclusions Our results parallel the sensorimotor deficits that astronauts experience post-flight. The widespread GM changes could reflect fluid redistribution. Additionally, the association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation. Future studies are warranted to determine causality and underlying mechanisms.
Collapse
|
15
|
Li K, Guo X, Jin Z, Ouyang X, Zeng Y, Feng J, Wang Y, Yao L, Ma L. Effect of Simulated Microgravity on Human Brain Gray Matter and White Matter--Evidence from MRI. PLoS One 2015; 10:e0135835. [PMID: 26270525 PMCID: PMC4535759 DOI: 10.1371/journal.pone.0135835] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is limited and inconclusive evidence that space environment, especially microgravity condition, may affect microstructure of human brain. This experiment hypothesized that there would be modifications in gray matter (GM) and white matter (WM) of the brain due to microgravity. METHOD Eighteen male volunteers were recruited and fourteen volunteers underwent -6° head-down bed rest (HDBR) for 30 days simulated microgravity. High-resolution brain anatomical imaging data and diffusion tensor imaging images were collected on a 3T MR system before and after HDBR. We applied voxel-based morphometry and tract-based spatial statistics analysis to investigate the structural changes in GM and WM of brain. RESULTS We observed significant decreases of GM volume in the bilateral frontal lobes, temporal poles, parahippocampal gyrus, insula and right hippocampus, and increases of GM volume in the vermis, bilateral paracentral lobule, right precuneus gyrus, left precentral gyrus and left postcentral gyrus after HDBR. Fractional anisotropy (FA) changes were also observed in multiple WM tracts. CONCLUSION These regions showing GM changes are closely associated with the functional domains of performance, locomotion, learning, memory and coordination. Regional WM alterations may be related to brain function decline and adaption. Our findings provide the neuroanatomical evidence of brain dysfunction or plasticity in microgravity condition and a deeper insight into the cerebral mechanisms in microgravity condition.
Collapse
|
16
|
Xu D, Zhao X, Li Y, Ji Y, Zhang J, Wang J, Xie X, Zhou G. The combined effects of X-ray radiation and hindlimb suspension on bone loss. JOURNAL OF RADIATION RESEARCH 2014; 55:720-5. [PMID: 24699002 PMCID: PMC4100006 DOI: 10.1093/jrr/rru014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Outer space is a complex environment with various phenomena that negatively affect bone metabolism, including microgravity and highly energized ionizing radiation. In the present study, we used four groups of male Wistar rats treated with or without four-week hindlimb suspension after 4 Gy of X-rays to test whether there is a combined effect for hindlimb suspension and X-ray radiation. We tested trabecular parameters and some cytokines of the bone as leading indicators of bone metabolism. The results showed that hindlimb suspension and X-ray radiation could cause a significant increase in bone loss. Hindlimb suspension caused a 56.6% bone loss (P = 0.036), while X-ray radiation caused a 30.7% (P = 0.041) bone loss when compared with the control group. The combined factors of hindlimb suspension and X-rays exerted a combined effect on bone mass, with a reduction of 64.8% (P = 0.003).
Collapse
|
17
|
Mulder E, Frings-Meuthen P, von der Wiesche M, Clément G, Linnarsson D, Paloski WH, Wuyts FL, Zange J, Rittweger J. Study protocol, implementation, and verification of a short versatile upright exercise regime during 5 days of bed rest. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2014; 14:111-123. [PMID: 24583546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES This work provides a reference for future papers originating from this study by providing basic results on body mass, urine volume, and hemodynamic changes to 5 days of bed rest (BR) and by describing acute cardio-respiratory/mechanographic responses to a short versatile upright exercise battery. METHODS Ten male subjects (mean ± SEM age: 29.4 ± 1.5 years; height: 178.8 ± 1.5 cm; body mass: 77.7 ± 1.5 kg) performed, in random order, 5 days of 6° head-down tilt (HDT) BR with no exercise (CON), or BR with daily 25 minutes of quiet upright standing (STA) or upright locomotion replacement training (LRT). RESULTS Plasma volume, exercise capacity and orthostatic tolerance decreased similarly between interventions following 5 days of BR. Upright heart rate during LRT and STA increased throughout BR; from 137 ± 4 bpm to 146 ± 4 bpm for LRT (P<0.01); and from 90 ± 3 bpm to 102 ± 6 bpm (P<0.001) for STA. CONCLUSION the overall similarity in the response to BR, and increase in upright heart rate during the LRT sessions suggest early and advancing cardiovascular deconditioning during 5 days of BR bed rest, which was not prevented by the versatile exercise regime.
Collapse
|
18
|
Morgan JLL, Zwart SR, Heer M, Ploutz-Snyder R, Ericson K, Smith SM. Bone metabolism and nutritional status during 30-day head-down-tilt bed rest. J Appl Physiol (1985) 2012; 113:1519-29. [PMID: 22995395 PMCID: PMC3524659 DOI: 10.1152/japplphysiol.01064.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/18/2012] [Indexed: 11/22/2022] Open
Abstract
Bed rest studies provide an important tool for modeling physiological changes that occur during spaceflight. Markers of bone metabolism and nutritional status were evaluated in 12 subjects (8 men, 4 women; ages 25-49 yr) who participated in a 30-day -6° head-down-tilt diet-controlled bed rest study. Blood and urine samples were collected twice before, once a week during, and twice after bed rest. Data were analyzed using a mixed-effects linear regression with a priori contrasts comparing all days to the second week of the pre-bed rest acclimation period. During bed rest, all urinary markers of bone resorption increased ~20% (P < 0.001), and serum parathyroid hormone decreased ~25% (P < 0.001). Unlike longer (>60 days) bed rest studies, neither markers of oxidative damage nor iron status indexes changed over the 30 days of bed rest. Urinary oxalate excretion decreased ~20% during bed rest (P < 0.001) and correlated inversely with urinary calcium (R = -0.18, P < 0.02). These data provide a broad overview of the biochemistry associated with short-duration bed rest studies and provide an impetus for using shorter studies to save time and costs wherever possible. For some effects related to bone biochemistry, short-duration bed rest will fulfill the scientific requirements to simulate spaceflight, but other effects (antioxidants/oxidative damage, iron status) do not manifest until subjects are in bed longer, in which case longer studies or other analogs may be needed. Regardless, maximizing research funding and opportunities will be critical to enable the next steps in space exploration.
Collapse
|
19
|
Hayatsu M, Ono M, Hamamoto C, Suzuki S. Cytochemical and electron probe X-ray microanalysis studies on the distribution change of intracellular calcium in columella cells of soybean roots under simulated microgravity. JOURNAL OF ELECTRON MICROSCOPY 2012; 61:57-69. [PMID: 22155718 DOI: 10.1093/jmicro/dfr095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The columella cells of soybean roots grown under gravity and simulated microgravity induced by a clinostat were examined using potassium pyroantimonate (PA) and quantitative X-ray microanalysis of cryosections to determine the role of Ca in the regulation of the gravitropic response. Amyloplasts in the columella cells were localized exclusively at the bottom under gravity, but diffusely distributed in the cytoplasmic matrix under simulated microgravity, thus supporting the statolith theory. In the columella cells, PA precipitates containing Ca were diffusely distributed in the cytoplasmic matrix under gravity. Under simulated microgravity, however, they decreased in number and size in the cytoplasmic matrix, whereas increased only in number in the vacuole, indicating that Ca moved from the cytoplasmic matrix into the vacuole. The vacuole of columella cells contained mostly electron-dense granular structures localized along the inner surface of tonoplasts, which closely resembled the tannin vacuole reported in Mimosa pulvinar motor cells. Under simulated microgravity, their configuration changed dramatically from a granular shape to a flat plate. The quantitative X-ray microanalysis of cryosections showed that the vacuolar electron-dense structures contained a large amount of Ca. Under simulated microgravity, the concentration of Ca increased conspicuously in these vacuolar electron-dense structures, concomitantly with a marked decrease of K in the vacuoles and an increase of K in the cell walls. These results suggest that the release of Ca(2+) from, and uptake by, the vacuolar electron-dense structures is closely related to the signal transmission in the gravitropic response and that Ca movement occurs opposite to that of K.
Collapse
|
20
|
Gershkovich PM, Gershkovich IG, Buravkova LB. [Expression of cytoskeleton genes in culture of human mesenchymal stromal cells in different periods of simulating the effects of microgravity]. AVIAKOSMICHESKAIA I EKOLOGICHESKAIA MEDITSINA = AEROSPACE AND ENVIRONMENTAL MEDICINE 2011; 45:39-41. [PMID: 21970042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Simulation of microgravity for cultivated multipotent mesenchymal stromal cells (MSCs) from human marrow changes transiently expression of genes associated with actin cytoskeleton; the effect fades away partially in 120 hrs. following microgravity and completely after 24-hr cell readaptation to static conditions. These changes in expression of some cytoskeleton genes seem to predetermine their reaction to simulated microgravity, and therefore inhibition of MSCs differentiation potential.
Collapse
|
21
|
Markin AA, Zhuravleva OA, Morukov BV, Zabolotskaia IV, Vostrikova LV, Kuzichkin DS. [Metabolic effects of physical countermeasures against deficient weight-bearing in an experiment with 7-day immersion]. AVIAKOSMICHESKAIA I EKOLOGICHESKAIA MEDITSINA = AEROSPACE AND ENVIRONMENTAL MEDICINE 2011; 45:28-34. [PMID: 21970040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Metabolic effects of physical countermeasures against deficient weight-loading were studied in three groups of 21-30 y.o. volunteers for 7-d dry immersion. Blood serum was investigated for 38 biochemical parameters that characterize myocardium, skeletal musculature, hepatobiliary system, kidney, pancreas, GI tract, prostate, and protein-nucleic, carbohydrate, electrolyte and mineral metabolism. Seven-day DI w/o countermeasures (n = 5) increased concentration of conjugated bilirubin, suppressed activities of muscular (creatine phosphokinase MM) and myocardial enzymes (CPK MB, OBDH), and caused an upward trend in cholesterol, its atherogenic LDP fraction and triglycerides. Mechanic sole stimulation (n = 6) intensified, within the physiological norm, erythrocyte hematolysis raising total bilirubin and potassium. Despite the stimulation, activity of muscle and myocardial enzymes made a decrease. Blood creatinine decreased to a less extent than in the immersed group w/o stimulation, however, lipid parameters did not rise. High-frequency stimulation of the lower leg and hip muscles in the course of immersion (n = 5) was noted to heighten the activity of muscle enzymes and potassium level in blood beyond the physiological norm. Change in creatinine did not reach a statistical significance and lipid metabolism parameters were not different from baseline values. Application of these physical methods of counteracting deficiency of weight bearing did not interfere with redistribution of body liquids due to immersion. Values of the parameters under study were mostly within the normal limits throughout the experimental exposure suggesting absence of pathological developments during DI or in consequence of physical stimulation. Therefore, the reactions were obviously of normal adaptive character.
Collapse
|
22
|
Ponomarev SA, Rykova MP, Antropova EN, Berendeeva TA, Morukov BV. [Congenital human immunity during 5-day dry immersion]. AVIAKOSMICHESKAIA I EKOLOGICHESKAIA MEDITSINA = AEROSPACE AND ENVIRONMENTAL MEDICINE 2011; 45:17-23. [PMID: 21916246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The system of congenital immunity was studied in 12 essentially healthy males 18 to 26 years of age subjected to 5-day dry immersion without use of countermeasures. Peripheral blood was analyzed for monocytes, granulocytes and lymphocytes expressing the TLR2+, TLR4+, TLR6+, CD11b+, CD14+, CD16+, CD18+, CD24+, CD36+, CD54+, CD56+ and CD206+ receptors. Expression of early activation marker CD69 on lymphocytes-natural killers was studied in unstimulated and interleukin-2 activated mononuclear cell cultures. The negative shifts in the congenital immunity system in some volunteers at the end of immersion and during recovery can be considered as warnings about depletion of the system reserve and increase of the risk of infectious diseases such as caused by normal microflora which typically does not provoke pathological reactions of the host.
Collapse
|
23
|
Sun LW, Wang C, Pu F, Li DY, Niu HJ, Fan YB. Comparative study on measured variables and sensitivity to bone microstructural changes induced by weightlessness between in vivo and ex vivo micro-CT scans. Calcif Tissue Int 2011; 88:48-53. [PMID: 20886208 DOI: 10.1007/s00223-010-9422-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 08/24/2010] [Indexed: 11/24/2022]
Abstract
Depending on the experimental design, micro-CT can be used to examine bones either in vivo or ex vivo (excised fresh or formalin-fixed). In this study we investigated if differences exist in the variables measured by micro-CT between in vivo and ex vivo scans and which kind of scan is more sensitive to the changes of bone microstructure induced by simulated weightlessness. Rat tail suspension was used to simulate the weightless condition. The same bone from either normal or tail-suspended rats was scanned by micro-CT both in vivo and ex vivo (fresh and fixed by formalin). Then, bone mineral density (BMD) and microstructural characteristics were analyzed. The results showed that no significant differences existed in the microstructural parameters of trabecular bone among in vivo, fresh, and formalin-fixed bone scans from both femurs and tibias, although BMD exhibited differences. On the other hand, most parameters of the tail-suspended rats measured by micro-CT deteriorated compared with controls. Ex vivo scanning appeared to be more sensitive to bone microstructural changes induced by tail suspension than in vivo scanning. In general, the results indicate that values obtained in vivo and ex vivo (fresh and fixed) are comparable, thus allowing for meaningful comparison of experimental results from different studies irrespective of the type of scans. In addition, this study suggests that it is better to use ex vivo scanning when evaluating bone microstructure under weightlessness. However, researchers can select any type of scan depending upon the objective and the demands of the experiment.
Collapse
|
24
|
Ogneva IV, Kurushin VA, Glashev MM, Mikhaĭlova EV, Ponomareva EV, Altaeva EG, Krivoĭ II, Shenkman BS. [Comparative analysis of structural and functional characteristics of soleus muscle in rats and Mongolian gerbils during gravitational unloading of various duration]. BIOFIZIKA 2010; 55:1117-1123. [PMID: 21268358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A comparative investigation of the dynamics of contractile properties of the whole soleus muscle and its fibers during 3- and 12-day-long hind limb suspension of Wistar rats and Mongolian gerbils (Meriones unguiculatus) has been performed. The data obtained indicate that the structural and functional changes caused by hypogravity in gerbils are slowed down compared with rats. A very intensive drop in water containment in gerbils was found, which can cause shifts in the ionic strength of the intracellular space of the muscle fiber. As a result, the photolytic activity of different enzymes may change, which can induce a less pronounced reduction in Z-disc and M-line stiffness and contractile capabilities in gerbils compared to rats.
Collapse
|
25
|
Belavý DL, Bock O, Börst H, Armbrecht G, Gast U, Degner C, Beller G, Soll H, Salanova M, Habazettl H, Heer M, de Haan A, Stegeman DF, Cerretelli P, Blottner D, Rittweger J, Gelfi C, Kornak U, Felsenberg D. The 2nd Berlin BedRest Study: protocol and implementation. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2010; 10:207-219. [PMID: 20811145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Long-term bed-rest is used to simulate the effect of spaceflight on the human body and test different kinds of countermeasures. The 2nd Berlin BedRest Study (BBR2-2) tested the efficacy of whole-body vibration in addition to high-load resisitance exercise in preventing bone loss during bed-rest. Here we present the protocol of the study and discuss its implementation. Twenty-four male subjects underwent 60-days of six-degree head down tilt bed-rest and were randomised to an inactive control group (CTR), a high-load resistive exercise group (RE) or a high-load resistive exercise with whole-body vibration group (RVE). Subsequent to events in the course of the study (e.g. subject withdrawal), 9 subjects participated in the CTR-group, 7 in the RVE-group and 8 (7 beyond bed-rest day-30) in the RE-group. Fluid intake, urine output and axiallary temperature increased during bed-rest (p < .0001), though similarly in all groups (p > or = .17). Body weight changes differed between groups (p < .0001) with decreases in the CTR-group, marginal decreases in the RE-group and the RVE-group displaying significant decreases in body-weight beyond bed-rest day-51 only. In light of events and experiences of the current study, recommendations on various aspects of bed-rest methodology are also discussed.
Collapse
|