326
|
Zargar A, Maurin M, Mostafavi E. Tularemia, a re-emerging infectious disease in Iran and neighboring countrie. Epidemiol Health 2015; 37:e2015011. [PMID: 25773439 PMCID: PMC4430760 DOI: 10.4178/epih/e2015011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Tularemia is a zoonotic disease transmitted by direct contact with infected animals and through arthropod bites, inhalation of contaminated aerosols, ingestion of contaminated meat or water, and skin contact with any infected material. It is widespread throughout the northern hemisphere, including Iran and its neighbors to the north, northeast, and northwest. METHODS In this paper, the epidemiology of tularemia as a re-emerging infectious disease in the world with a focus on Iran and the neighboring countries is reviewed. RESULTS In Iran, positive serological tests were first reported in 1973, in wildlife and domestic livestock in the northwestern and southeastern parts of the country. The first human case was reported in 1980 in the southwest of Iran, and recent studies conducted among at-risk populations in the western, southeastern, and southwestern parts of Iran revealed seroprevalences of 14.4, 6.52, and 6%, respectively. CONCLUSIONS Several factors may explain the absence of reported tularemia cases in Iran since 1980. Tularemia may be underdiagnosed in Iran because Francisella tularensis subspecies holarctica is likely to be the major etiological agent and usually causes mild to moderately severe disease. Furthermore, tularemia is not a disease extensively studied in the medical educational system in Iran, and empirical therapy may be effective in many cases. Finally, it should be noted that laboratories capable of diagnosing tularemia have only been established in the last few years. Since both recent and older studies have consistently found tularemia antibodies in humans and animals, the surveillance of this disease should receive more attention. In particular, it would be worthwhile for clinical researchers to confirm tularemia cases more often by isolating F. tularensis from infected humans and animals.
Collapse
|
327
|
Zasada AA, Formińska K, Zacharczuk K, Jacob D, Grunow R. Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Lett Appl Microbiol 2015; 60:409-13. [PMID: 25598285 DOI: 10.1111/lam.12392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Yersinia pestis, Bacillus anthracis and Francisella tularensis cause serious zoonotic diseases and have the potential to cause high morbidity and mortality in humans. In case of natural outbreaks and deliberate or accidental release of these pathogens rapid detection of the bacteria is crucial for limitation of negative effects of the release. In the present study, we evaluated 11 commercially available rapid test kits for the detection of Y. pestis, B. anthracis and F. tularensis in terms of sensitivity, specificity and simplicity of the procedure. The results revealed that rapid and easy-to-perform lateral flow assays for detection of highly pathogenic bacteria have very limited sensitivity. In contrast, the immunofiltration assays showed high sensitivity but limited specificity and required a too complicated procedure to be applied in the field by nonlaboratory workers (e.g. First Responders like fire, police and emergency medical personnel). Each sample - whether tested negative or positive by the rapid tests - should be retested in a reference laboratory using validated methods. SIGNIFICANCE AND IMPACT OF THE STUDY Rapid detection of highly pathogenic bacteria causing anthrax, plague and tularemia is crucial for the limitation of negative effects of a potential release (natural, accidental or deliberate). In the study, commercially available rapid tests for detection of Bacillus anthracis, Yersinia pestis and Francisella tularensis were investigated in terms of sensitivity, specificity and ease-to-perform. The study showed problems which could be faced during testing and results interpretation. Conclusions from this study should be helpful not only in selection of the most appropriate test for particular group of First Responders but also in undertaking decisions in situation of a contamination suspicion which have high social and economical impacts.
Collapse
|
328
|
Chandler JC, Sutherland MD, Harton MR, Molins CR, Anderson RV, Heaslip DG, Bosio CM, Belisle JT. Francisella tularensis LVS surface and membrane proteins as targets of effective post-exposure immunization for tularemia. J Proteome Res 2014; 14:664-75. [PMID: 25494920 PMCID: PMC4324441 DOI: 10.1021/pr500628k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Francisella tularensis causes disease (tularemia)
in a large number of mammals, including man. We previously demonstrated
enhanced efficacy of conventional antibiotic therapy for tularemia
by postexposure passive transfer of immune sera developed against
a F. tularensis LVS membrane protein fraction (MPF).
However, the protein composition of this immunogenic fraction was
not defined. Proteomic approaches were applied to define the protein
composition and identify the immunogens of MPF. MPF consisted of at
least 299 proteins and 2-D Western blot analyses using sera from MPF-immunized
and F. tularensis LVS-vaccinated mice coupled to
liquid chromatography–tandem mass spectrometry identified 24
immunoreactive protein spots containing 45 proteins. A reverse vaccinology
approach that applied labeling of F. tularensis LVS
surface proteins and bioinformatics was used to reduce the complexity
of potential target immunogens. Bioinformatics analyses of the immunoreactive
proteins reduced the number of immunogen targets to 32. Direct surface
labeling of F. tularensis LVS resulted in the identification
of 31 surface proteins. However, only 13 of these were reactive with
MPF and/or F. tularensis LVS immune sera. Collectively,
this use of orthogonal proteomic approaches reduced the complexity
of potential immunogens in MPF by 96% and allowed for prioritization
of target immunogens for antibody-based immunotherapies against tularemia.
Collapse
|
329
|
Gillard JJ, Laws TR, Lythe G, Molina-París C. Modeling early events in Francisella tularensis pathogenesis. Front Cell Infect Microbiol 2014; 4:169. [PMID: 25566509 PMCID: PMC4263195 DOI: 10.3389/fcimb.2014.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/17/2014] [Indexed: 11/24/2022] Open
Abstract
Computational models can provide valuable insights into the mechanisms of infection and be used as investigative tools to support development of medical treatments. We develop a stochastic, within-host, computational model of the infection process in the BALB/c mouse, following inhalational exposure to Francisella tularensis SCHU S4. The model is mechanistic and governed by a small number of experimentally verifiable parameters. Given an initial dose, the model generates bacterial load profiles corresponding to those produced experimentally, with a doubling time of approximately 5 h during the first 48 h of infection. Analytical approximations for the mean number of bacteria in phagosomes and cytosols for the first 24 h post-infection are derived and used to verify the stochastic model. In our description of the dynamics of macrophage infection, the number of bacteria released per rupturing macrophage is a geometrically-distributed random variable. When combined with doubling time, this provides a distribution for the time taken for infected macrophages to rupture and release their intracellular bacteria. The mean and variance of these distributions are determined by model parameters with a precise biological interpretation, providing new mechanistic insights into the determinants of immune and bacterial kinetics. Insights into the dynamics of macrophage suppression and activation gained by the model can be used to explore the potential benefits of interventions that stimulate macrophage activation.
Collapse
|
330
|
Birdsell DN, Johansson A, Öhrman C, Kaufman E, Molins C, Pearson T, Gyuranecz M, Naumann A, Vogler AJ, Myrtennäs K, Larsson P, Forsman M, Sjödin A, Gillece JD, Schupp J, Petersen JM, Keim P, Wagner DM. Francisella tularensis subsp. tularensis group A.I, United States. Emerg Infect Dis 2014; 20:861-5. [PMID: 24755401 PMCID: PMC4012810 DOI: 10.3201/eid2005.131559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We used whole-genome analysis and subsequent characterization of geographically diverse strains using new genetic signatures to identify distinct subgroups within Francisella tularensis subsp. tularensis group A.I: A.I.3, A.I.8, and A.I.12. These subgroups exhibit complex phylogeographic patterns within North America. The widest distribution was observed for A.I.12, which suggests an adaptive advantage.
Collapse
|
331
|
Abstract
Francisella tularensis is a category A bioterrorism agent. It is the etiological agent of tularemia, a zoonotic disease found throughout the northern hemisphere. The intentional spread of F. tularensis aerosols would probably lead to severe and often fatal pneumonia cases, but also secondary cases from contaminated animals and environments. We are not ready to face such a situation. No vaccine is currently available. A few antibiotics are active against F. tularensis, but strains resistant to these antibiotics could be used in the context of bioterrorism. We need new therapeutic strategies to fight against category A bioterrorism agents, including development of new drugs inhibiting F. tularensis growth and/or virulence, or enhancing the host response to infection by this pathogen.
Collapse
|
332
|
Ulu-Kilic A, Doganay M. An overview: tularemia and travel medicine. Travel Med Infect Dis 2014; 12:609-16. [PMID: 25457302 DOI: 10.1016/j.tmaid.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 12/15/2022]
Abstract
Tularemia is a bacterial zoonotic infection. The disease is endemic in most parts of the world, has been reported through the northern hemisphere between 30 and 71° N latitude. Francisella tularensis causes infection in a wide range of vertebrates (rodents, lagomorphs) and invertebrates (ticks, mosquitoes and other arthropods). Humans can acquire this infection through several routes including; a bite from an infected tick, deerfly or mosquito, contact with an infected animal or its dead body. It can also be spread to human by drinking contaminated water or breathing contaminated dirt or aerosol. Clinical manifestation of this disease varies depending on the biotype, inoculum and port of entry. Infection is potentially life threatening, but can effectively be treated with antibiotics. Travelers visiting rural and agricultural areas in endemic countries may be at greater risk. Appropriate clothing and use of insect repellants is essential to prevent tick borne illness. Travelers also should be aware of food and waterborne disease; avoid consuming potentially contaminated water and uncooked meat. Physicians should be aware of any clinical presentation of tularemia in the patients returning from endemic areas.
Collapse
|
333
|
Lenco J, Tambor V, Link M, Klimentova J, Dresler J, Peterek M, Charbit A, Stulik J. Changes in proteome of the Δhfq strain derived from Francisella tularensis LVS correspond with its attenuated phenotype. Proteomics 2014; 14:2400-9. [PMID: 25156581 DOI: 10.1002/pmic.201400198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/30/2014] [Accepted: 08/19/2014] [Indexed: 12/23/2022]
Abstract
The posttranscriptional regulatory protein Hfq was shown to be an important determinant of the stress resistance and full virulence in the dangerous human pathogen Francisella tularensis. Transcriptomics brought rather limited clues to the precise contribution of Hfq in virulence. To reveal the molecular basis of the attenuation caused by hfq inactivation, we employed iTRAQ in the present study and compared proteomes of the parent and isogenic Δhfq strains. We show that Hfq modulates the level of 76 proteins. Most of them show decreased abundance in the ∆hfq mutant, thereby indicating that Hfq widely acts rather as a positive regulator of Francisella gene expression. Several key Francisella virulence factors including those encoded within the Francisella pathogenicity island were found among the downregulated proteins, which is in a good agreement with the attenuated phenotype of the Δhfq strain. To further validate the iTRAQ exploratory findings, we subsequently performed targeted LC-SRM analysis of selected proteins. This accurate quantification method corroborated the trends found in the iTRAQ data.
Collapse
|
334
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
|
335
|
Feld GK, El-Etr S, Corzett MH, Hunter MS, Belhocine K, Monack DM, Frank M, Segelke BW, Rasley A. Structure and function of REP34 implicates carboxypeptidase activity in Francisella tularensis host cell invasion. J Biol Chem 2014; 289:30668-30679. [PMID: 25231992 DOI: 10.1074/jbc.m114.599381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis is the etiological agent of tularemia, or rabbit fever. Although F. tularensis is a recognized biothreat agent with broad and expanding geographical range, its mechanism of infection and environmental persistence remain poorly understood. Previously, we identified seven F. tularensis proteins that induce a rapid encystment phenotype (REP) in the free-living amoeba, Acanthamoeba castellanii. Encystment is essential to the pathogen's long term intracellular survival in the amoeba. Here, we characterize the cellular and molecular function of REP34, a REP protein with a mass of 34 kDa. A REP34 knock-out strain of F. tularensis has a reduced ability to both induce encystment in A. castellanii and invade human macrophages. We determined the crystal structure of REP34 to 2.05-Å resolution and demonstrate robust carboxypeptidase B-like activity for the enzyme. REP34 is a zinc-containing monomeric protein with close structural homology to the metallocarboxypeptidase family of peptidases. REP34 possesses a novel topology and substrate binding pocket that deviates from the canonical funnelin structure of carboxypeptidases, putatively resulting in a catalytic role for a conserved tyrosine and distinct S1' recognition site. Taken together, these results identify REP34 as an active carboxypeptidase, implicate the enzyme as a potential key F. tularensis effector protein, and may help elucidate a mechanistic understanding of F. tularensis infection of phagocytic cells.
Collapse
|
336
|
Roberts LM, Ledvina HE, Sempowski GD, Frelinger JA. TLR2 Signaling is Required for the Innate, but Not Adaptive Response to LVS clpB. Front Immunol 2014; 5:426. [PMID: 25250027 PMCID: PMC4155801 DOI: 10.3389/fimmu.2014.00426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/20/2014] [Indexed: 11/21/2022] Open
Abstract
Toll-like receptor 2 (TLR2) is the best-characterized pattern-recognition receptor for the highly pathogenic intracellular bacterium, Francisella tularensis. We previously identified a mutant in the live vaccine strain (LVS) of Francisella, LVS clpB, which is attenuated, but induces a protective immune response. We sought to determine whether TLR2 signaling was required during the immune response to LVS clpB. TLR2 knock-out (TLR2 KO) mice previously infected with LVS clpB are completely protected during a lethal challenge with LVS. Furthermore, the kinetics and magnitude of the primary T-cell response in B6 and TLR2 KO mice are similar indicating that TLR2 signaling is dispensable for the adaptive immune response to LVS clpB. TLR2 signaling was important, however, for the innate immune response to LVS clpB. We identified three classes of cytokines/chemokines that differ in their dependence on TLR2 signaling for production on day 3 post-inoculation in the bronchoalveolar lavage fluid. IL-1α, IL-1β, IL-2, IL-17, MIP-1α, and TNF-α production depended on TLR2 signaling, while GM-CSF, IFN-γ, and VEGF production were completely independent of TLR2 signaling. IL-6, IL-12, IP-10, KC, and MIG production were partially dependent on TLR2 signaling. Together our data indicate that the innate immune response to LVS clpB requires TLR2 signaling for the maximal innate response, whereas TLR2 is not required for the adaptive immune response.
Collapse
|
337
|
Seo SH, Lee YR, Ho Jeon J, Hwang YR, Park PG, Ahn DR, Han KC, Rhie GE, Hong KJ. Highly sensitive detection of a bio-threat pathogen by gold nanoparticle-based oligonucleotide-linked immunosorbent assay. Biosens Bioelectron 2014; 64:69-73. [PMID: 25194798 DOI: 10.1016/j.bios.2014.08.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/07/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023]
Abstract
Francisella (F.) tularensis causes the zoonotic disease tularemia and categorized as one of the highest-priority biological agents. The sensing approaches utilized by conventional detection methods, including enzyme-linked immunosorbent assay (ELISA), are not sensitive enough to identify an infectious dose of this high-risk pathogen due to its low infective dose. As an attempt to detect F. tularensis with high sensitivity, we utilized the highly sensitive immunoassay system named gold nanoparticle-based oligonucleotide-linked immunosorbent assay (GNP-OLISA) which uses antibody-gold nanoparticles conjugated with DNA strands as a signal generator and RNA oligonucleotides appended with a fluorophore as a quencher for signal amplification. We modified the GNP-OLISA for the detection F. tularensis to utilize one antibody for both the capture of the target and for signal generation instead of using two different antibodies, which are usually employed to construct the antibody sandwich in the ELISA. The GNP-OLISA showed 37-fold higher sensitivity compared with ELISA and generated very consistent detection results in the sera. In addition, the detection specificity was not affected by the presence of non-target bacteria, suggesting that GNP-OLISA can be used as a sensitive detection platform for monitoring high-risk pathogens thereby overcoming the limit of the conventional assay system.
Collapse
|
338
|
Maurin M. New anti-infective strategies for treatment of tularemia. Front Cell Infect Microbiol 2014; 4:115. [PMID: 25191647 PMCID: PMC4137221 DOI: 10.3389/fcimb.2014.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 11/13/2022] Open
|
339
|
Johansson A, Lärkeryd A, Widerström M, Mörtberg S, Myrtännäs K, Ohrman C, Birdsell D, Keim P, Wagner DM, Forsman M, Larsson P. An outbreak of respiratory tularemia caused by diverse clones of Francisella tularensis. Clin Infect Dis 2014; 59:1546-53. [PMID: 25097081 DOI: 10.1093/cid/ciu621] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The bacterium Francisella tularensis is recognized for its virulence, infectivity, genetic homogeneity, and potential as a bioterrorism agent. Outbreaks of respiratory tularemia, caused by inhalation of this bacterium, are poorly understood. Such outbreaks are exceedingly rare, and F. tularensis is seldom recovered from clinical specimens. METHODS A localized outbreak of tularemia in Sweden was investigated. Sixty-seven humans contracted laboratory-verified respiratory tularemia. F. tularensis subspecies holarctica was isolated from the blood or pleural fluid of 10 individuals from July to September 2010. Using whole-genome sequencing and analysis of single-nucleotide polymorphisms (SNPs), outbreak isolates were compared with 110 archived global isolates. RESULTS There were 757 SNPs among the genomes of the 10 outbreak isolates and the 25 most closely related archival isolates (all from Sweden/Finland). Whole genomes of outbreak isolates were >99.9% similar at the nucleotide level and clustered into 3 distinct genetic clades. Unexpectedly, high-sequence similarity grouped some outbreak and archival isolates that originated from patients from different geographic regions and up to 10 years apart. Outbreak and archival genomes frequently differed by only 1-3 of 1 585 229 examined nucleotides. CONCLUSIONS The outbreak was caused by diverse clones of F. tularensis that occurred concomitantly, were widespread, and apparently persisted in the environment. Multiple independent acquisitions of F. tularensis from the environment over a short time period suggest that natural outbreaks of respiratory tularemia are triggered by environmental cues. The findings additionally caution against interpreting genome sequence identity for this pathogen as proof of a direct epidemiological link.
Collapse
|
340
|
Furuya Y, Steiner D, Metzger DW. Does Type I Interferon Limit Protective Neutrophil Responses during Pulmonary Francisella Tularensis Infection? Front Immunol 2014; 5:355. [PMID: 25101094 PMCID: PMC4107939 DOI: 10.3389/fimmu.2014.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/09/2014] [Indexed: 01/12/2023] Open
|
341
|
Szigeti A, Kreizinger Z, Hornok S, Abichu G, Gyuranecz M. Detection of Francisella-like endosymbiont in Hyalomma rufipes from Ethiopia. Ticks Tick Borne Dis 2014; 5:818-20. [PMID: 25108781 DOI: 10.1016/j.ttbdis.2014.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/26/2014] [Accepted: 06/16/2014] [Indexed: 11/17/2022]
Abstract
The expanding family of Francisellaceae includes the genus Francisella, where several pathogen bacteria, e.g. the zoonotic F. tularensis, and different Francisella-like agents belong to. Francisella-like endosymbionts (FLEs) are widespread in hard and soft ticks and their pathogenicity is unknown. The examination of 296 ticks collected in Ethiopia was performed for the detection of F. tularensis and FLEs using polymerase chain reaction (PCR) assays based on the amplification of 16S rRNA, sdhA and tul4 gene fragments. FLE was described in one Hyalomma rufipes tick based on the 16S rRNA and sdhA gene sequences. The 16S rRNA gene fragment was identical with the ones detected previously in Rhipicephalus sanguineus and Hyalomma marginatum marginatum in Bulgaria. The presence of endosymbionts with identical 16S rRNA gene sequence in both Rhipicephalus and Hyalomma species further supports the hypotheses, that certain FLEs had independent evolution from their tick hosts.
Collapse
|
342
|
Cunningham AL, Dang KM, Yu JJ, Guentzel MN, Heidner HW, Klose KE, Arulanandam BP. Enhancement of vaccine efficacy by expression of a TLR5 ligand in the defined live attenuated Francisella tularensis subsp. novicida strain U112ΔiglB::fljB. Vaccine 2014; 32:5234-40. [PMID: 25050972 DOI: 10.1016/j.vaccine.2014.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 07/09/2014] [Indexed: 01/13/2023]
Abstract
Oral vaccination with the defined live attenuated Francisella novicida vaccine strain U112ΔiglB has been demonstrated to induce protective immunity against pulmonary challenge with the highly human virulent Francisella tularensis strain SCHU S4. However, this vaccination regimen requires a booster dose in mice and Exhibits 50% protective efficacy in the Fischer 344 rat model. To enhance the efficacy of this vaccine strain, we engineered U112ΔiglB to express the Salmonella typhimurium FljB flagellin D1 domain, a TLR5 agonist. The U112ΔiglB::fljB strain was highly attenuated for intracellular macrophage replication, and although the FljB protein was expressed within the cytosol, it exhibited TLR5 activation in a TLR5-expressing HEK cell line. Additionally, infection of splenocytes and lymphocytes with U112ΔiglB::fljB induced significantly greater TNF-α production than infection with U112ΔiglB. Oral vaccination with U112ΔiglB::fljB also induced significantly greater protection than U112ΔiglB against pulmonary SCHU S4 challenge in rats. The enhanced protection was accompanied by higher IgG2a production and serum-mediated reduction of Francisella infectivity. Thus, the U112ΔiglB::fljB strain may serve as a potential vaccine candidate against pneumonic tularemia.
Collapse
|
343
|
Hamblin KA, Wong JP, Blanchard JD, Atkins HS. The potential of liposome-encapsulated ciprofloxacin as a tularemia therapy. Front Cell Infect Microbiol 2014; 4:79. [PMID: 24995163 PMCID: PMC4062069 DOI: 10.3389/fcimb.2014.00079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
Liposome-encapsulation has been suggested as method to improve the efficacy of ciprofloxacin against the intracellular pathogen, Francisella tularensis. Early work with a prototype formulation, evaluated for use against the F. tularensis live vaccine strain, showed that a single dose of liposomal ciprofloxacin given by the intranasal or inhalational route could provide protection in a mouse model of pneumonic tularemia. Liposomal ciprofloxacin offered better protection than ciprofloxacin given by the same routes. Liposomal ciprofloxacin has been further developed by Aradigm Corporation for Pseudomonas aeruginosa infections in patients with cystic fibrosis and non-cystic fibrosis bronchiectasis. This advanced development formulation is safe, effective and well tolerated in human clinical trials. Further evaluation of the advanced liposomal ciprofloxacin formulation against the highly virulent F. tularensis Schu S4 strain has shown that aerosolized CFI (Ciprofloxacin encapsulated in liposomes for inhalation) provides significantly better protection than oral ciprofloxacin. Thus, liposomal ciprofloxacin is a promising treatment for tularemia and further research with the aim of enabling licensure under the animal rule is warranted.
Collapse
|
344
|
Wood RM, Egan JR, Hall IM. A dose and time response Markov model for the in-host dynamics of infection with intracellular bacteria following inhalation: with application to Francisella tularensis. J R Soc Interface 2014; 11:20140119. [PMID: 24671937 PMCID: PMC4006251 DOI: 10.1098/rsif.2014.0119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In a novel approach, the standard birth–death process is extended to incorporate a fundamental mechanism undergone by intracellular bacteria, phagocytosis. The model accounts for stochastic interaction between bacteria and cells of the immune system and heterogeneity in susceptibility to infection of individual hosts within a population. Model output is the dose–response relation and the dose-dependent distribution of time until response, where response is the onset of symptoms. The model is thereafter parametrized with respect to the highly virulent Schu S4 strain of Francisella tularensis, in the first such study to consider a biologically plausible mathematical model for early human infection with this bacterium. Results indicate a median infectious dose of about 23 organisms, which is higher than previously thought, and an average incubation period of between 3 and 7 days depending on dose. The distribution of incubation periods is right-skewed up to about 100 organisms and symmetric for larger doses. Moreover, there are some interesting parallels to the hypotheses of some of the classical dose–response models, such as independent action (single-hit model) and individual effective dose (probit model). The findings of this study support experimental evidence and postulations from other investigations that response is, in fact, influenced by both in-host and between-host variability.
Collapse
|
345
|
Roberts LM, Davies JS, Sempowski GD, Frelinger JA. IFN-γ, but not IL-17A, is required for survival during secondary pulmonary Francisella tularensis Live Vaccine Stain infection. Vaccine 2014; 32:3595-603. [PMID: 24837506 DOI: 10.1016/j.vaccine.2014.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/02/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
IL-17 and IFN-γ production by Th17 and Th1 cells, respectively, is critical for survival during primary respiratory infection with the pathogenic bacterium, Francisella tularensis Live Vaccine Strain (LVS). The importance, however, of these T cell subsets and their soluble mediators is not well understood during a secondary or memory response. We measured the number of CD4(+) T cells producing IFN-γ or IL-17 in the spleen and lungs of vaccinated mice on day four of the secondary response using intracellular cytokine staining in order to identify protective T cell subsets participating in the memory response. Few bacteria were present in spleens of vaccinated mice on day four and a T cell response was not observed. In the lung, where more bacteria were present, there was a robust Th1 response in vaccinated mice but Th17 cells were not present at higher numbers in vaccinated mice compared to unvaccinated mice. These data show that the lung is the dominant site of the secondary immune response and suggest that Th17 cells are not required for survival during secondary challenge. To further investigate the importance of IFN-γ and IL-17 during the secondary response to F. tularensis, we neutralized either IFN-γ or IL-17 in vivo using monoclonal antibody treatment. Vaccinated mice treated with anti-IFN-γ lost more weight and had higher bacterial burdens compared to vaccinated mice treated with isotype control antibody. In contrast, treatment with anti-IL-17A antibody did not alter weight loss profiles or bacterial burdens compared to mice treated with isotype control antibody. Together, these results suggested that IFN-γ is required during both primary and secondary respiratory F. tularensis infection. IL-17, on the other hand, is only critical during the primary response to respiratory F. tularensis but dispensable during the secondary response.
Collapse
|
346
|
David J, Sayer NM, Sarkar-Tyson M. The use of a three-dimensional cell culture model to investigate host-pathogen interactions of Francisella tularensis in human lung epithelial cells. Microbes Infect 2014; 16:735-45. [PMID: 24796635 DOI: 10.1016/j.micinf.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 01/14/2014] [Accepted: 04/07/2014] [Indexed: 01/25/2023]
Abstract
Francisella tularensis inhalation results in bacterial interaction with numerous lung cell types, including those of the epithelium. This work investigates a three-dimensional cell-culture system to characterise the epithelial response to F. tularensis. Immortalised human pneumocytes (A549s) grown in rotating-wall vessel (RWV) bioreactors display an in vivo-like phenotype, which has been confirmed to be driven by specific transcriptional events (8454 genes, p ≤ 0.05). These data support the RWV model as a more in vivo-like culture system to investigate the lung epithelium, compared to monolayer counterparts. RWV-cultured A549s were infected with F. tularensis SchuS4 and LVS and intracellular replication mapped over 22 h compared to monolayer cells. The RWV-cultured A549s were more resistant to SchuS4 and LVS infection (p ≤ 0.05). Transcriptomics identified 2086 genes (p ≤ 0.05) as candidates for host-pathogen interactions which result in the observed increase in resistance of the RWV-cultured A549 cells. Gene and pathway analysis identified processes involved in MMP modulation, endocytosis, mucin production and the complement pathway amongst others. The role of these pathways during infection was further characterised using chemical inhibitors. This work has revealed several new hypotheses worthy of further testing in order to understand the epithelial host response to F. tularensis infection.
Collapse
|
347
|
Sutera V, Caspar Y, Boisset S, Maurin M. A new dye uptake assay to test the activity of antibiotics against intracellular Francisella tularensis. Front Cell Infect Microbiol 2014; 4:36. [PMID: 24672776 PMCID: PMC3957058 DOI: 10.3389/fcimb.2014.00036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/24/2014] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis, a facultative intracellular bacterium, is the aetiological agent of tularaemia. Antibiotic treatment of this zoonosis is based on the administration of a fluoroquinolone or a tetracycline for cases with mild to moderate severity, whereas an aminoglycoside (streptomycin or gentamicin) is advocated for severe cases. However, treatment failures and relapses remain frequent, especially in patients suffering from chronic lymph node suppuration. Therefore, new treatment alternatives are needed. We have developed a dye uptake assay for determination of minimal inhibitory extracellular concentrations (MIECs) of antibiotics against intracellular F. tularensis, and validated the method by comparing the results obtained using a CFU-enumerating method. We also compared MIECs with MICs of the same compounds determined using a CLSI broth microdilution method. We tested the activity of 11 antibiotics against two clinical strains of F. tularensis subsp. holarctica isolated in France. Both strains displayed low MICs (≤1 μg/mL) to fluoroquinolones (ciprofloxacin, levofloxacin and moxifloxacin), gentamicin, doxycycline and rifampicin. Higher MICs (≥8 μg/mL) were found for carbapenems (imipenem and meropenem), daptomycin and linezolid. Erythromycin MICs were 4.0 and 16.0 μg/mL, respectively, for the two clinical strains. MIECs were almost the same with the two methods used. They were concordant with MICs, except for erythromycin and linezolid (respectively, four and eight times more active against intracellular F. tularensis) and gentamicin (four to eight times less active against intracellular F. tularensis). This study validated the dye uptake assay as a new tool for determination of the activity of a large panel of antibiotics against intracellular F. tularensis. This test confirmed the intracellular activity of first-line antibiotics used for tularaemia treatment, but also revealed significant activity of linezolid against intracellular F. tularensis.
Collapse
|
348
|
Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 2014; 4:35. [PMID: 24660164 PMCID: PMC3952080 DOI: 10.3389/fcimb.2014.00035] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/22/2014] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is the causative agent of the acute disease tularemia. Due to its extreme infectivity and ability to cause disease upon inhalation, F. tularensis has been classified as a biothreat agent. Two subspecies of F. tularensis, tularensis and holarctica, are responsible for tularemia in humans. In comparison, the closely related species F. novicida very rarely causes human illness and cases that do occur are associated with patients who are immune compromised or have other underlying health problems. Virulence between F. tularensis and F. novicida also differs in laboratory animals. Despite this varying capacity to cause disease, the two species share ~97% nucleotide identity, with F. novicida commonly used as a laboratory surrogate for F. tularensis. As the F. novicida U112 strain is exempt from U.S. select agent regulations, research studies can be carried out in non-registered laboratories lacking specialized containment facilities required for work with virulent F. tularensis strains. This review is designed to highlight phenotypic (clinical, ecological, virulence, and pathogenic) and genomic differences between F. tularensis and F. novicida that warrant maintaining F. novicida and F. tularensis as separate species. Standardized nomenclature for F. novicida is critical for accurate interpretation of experimental results, limiting clinical confusion between F. novicida and F. tularensis and ensuring treatment efficacy studies utilize virulent F. tularensis strains.
Collapse
|
349
|
Jones BD, Faron M, Rasmussen JA, Fletcher JR. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 2014; 4:32. [PMID: 24639953 PMCID: PMC3945745 DOI: 10.3389/fcimb.2014.00032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies.
Collapse
|
350
|
Abstract
Tularemia is considered to have existed in Anatolia for several thousand years. There are suspicions regarding its use in biological warfare in the Neshite-Arzawan conflict. The causative agent of tularemia may have first been used as a biological weapon in 1320-1318 BC. The disease has recently become a significant re-emerging disease globally as well as in Turkey. In the period of 2001-2010, Kosovo had the highest annual incidence in Europe at a rate of 5.2 per 100,000. Sweden, Finland, Slovakia, Czech Republic, Norway, Serbia-Montenegro, Hungary, Bulgaria, and Croatia follow with rates of 2.80, 1.19, 1.0, 0.81, 0.42, 0.4, 0.36, 0.21, and 0.15 per 100,000 people, respectively. Tularemia in Turkey was first reported in the soldiers living in the region very close to the Kaynarca Stream of Thrace in 1936. It has started to gain more and more importance, especially in recent decades in Turkey, due to a very high number of cases and its spread throughout the country. A total of 431 tularemia cases were recorded in Turkey in 2005, but a significant reduction was observed in the number of the cases in the next three years; the number of patients decreased to 71 in 2008. The number of cases increased again in 2009 and continued in subsequent years. The number of cases reached 428, 1531, 2151, and 607 in 2009, 2010, 2011, and 2012, respectively. The number of cases peaked in 2011 in Turkey, and was in fact higher than the total number of cases in all European Union countries. The number of cases is higher in females than males in Turkey. In Turkey, 52% of cases of tularemia diagnoses occur from December to March and the most common clinical presentation is the oropharyngeal form caused by contaminated water. Rodents are the most likely sources of tularemia outbreaks in Turkey as well as in Kosovo. Organisms such as ticks, flies and mosquitoes are vectors of tularemia transmission to mammals. Because ticks can carry the bacteria by both transovarial and transstadial transmission, they play a role in the life cycle of tularemia as both reservoir and vector.
Collapse
|