26
|
Xu P, Wu N, Shen G. A rapid element pressure field simulation method for transcranial phase correction in focused ultrasound therapy. Phys Med Biol 2023; 68:235015. [PMID: 37934058 DOI: 10.1088/1361-6560/ad0a59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Transcranial focused ultrasound ablation has emerged as a promising technique for treating neurological disorders. The clinical system exclusively employed the ray tracing method to compute phase aberrations induced by the human skull, taking into account computational time constraints. However, this method compromises slightly on accuracy compared to simulation-based methods. This study evaluates a fast simulation method that simulates the time-harmonic pressure field within the region of interest for effective phase correction. Experimental validation was carried out using a 512-element, 670 kHz hemispherical transducer for fourex vivoskulls. The ray tracing method achieved a restoration ratio of 64.81% ± 4.33% of acoustic intensity normalized to hydrophone measurements. In comparison, the rapid simulation method demonstrated improved results with a restoration ratio of 73.10% ± 7.46%, albeit slightly lower than the full-wave simulation which achieved a restoration ratio of 75.87% ± 5.40%. The rapid simulation methods exhibited computational times that were less than five minutes for parallel computation with 8 threads. The incident angle was calculated, and a maximum difference of 6.8 degrees was found when the fixed position of the skull was changed. Meanwhile, the restoration ratio of acoustic intensity was validated to be above 70% for different target positions away from the geometrical focus of the transducer. The favorable balance between time consumption and correction accuracy makes this method valuable for clinical treatment applications.
Collapse
|
27
|
Men Y, Li Y, Luo Z, Jiang K, Yi F, Liu X, Xing R, Cheng H, Shen G, Tao S. Interpreting Highly Variable Indoor PM 2.5 in Rural North China Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18183-18192. [PMID: 37150969 DOI: 10.1021/acs.est.3c02014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Household air pollution associated with solid fuel use is a long-standing public concern. The global population mainly using solid fuels for cooking remains large. Besides cooking, large amounts of coal and biomass fuels are burned for space heating during cold seasons in many regions. In this study, a wintertime multiple-region field campaign was carried out in north China to evaluate indoor PM2.5 variations. With hourly resolved data from ∼1600 households, key influencing factors of indoor PM2.5 were identified from a machine learning approach, and a random forest regression (RFR) model was further developed to quantitatively assess the impacts of household energy transition on indoor PM2.5. The indoor PM2.5 concentration averaged at 120 μg/m3 but ranged from 16 to ∼400 μg/m3. Indoor PM2.5 was ∼60% lower in families using clean heating approaches compared to those burning traditional coal or biomass fuels. The RFR model had a good performance (R2 = 0.85), and the interpretation was consistent with the field observation. A transition to clean coals or biomass pellets can reduce indoor PM2.5 by 20%, and further switching to clean modern energies would reduce it an additional 30%, suggesting many significant benefits in promoting clean transitions in household heating activities.
Collapse
|
28
|
Liang X, Wang L, Du W, Chen Y, Yun X, Chen Y, Shen G, Shen H, Yang X, Tao S. Emission factors of oxygenated polycyclic aromatic hydrocarbons from ships in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122483. [PMID: 37669698 DOI: 10.1016/j.envpol.2023.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
The rapid growth of maritime traffic, transportation, and fishery activities has increased shipping emissions and degraded the air quality in coastal areas. As a result, controlling ocean-based pollution sources have become increasingly important. This study investigated the real-world emission characteristics of oxygenated polycyclic aromatic hydrocarbons (OPAHs, a group of highly toxic semi-volatile organic compounds) from five types of offshore ships using diesel oil: small and medium fishing ships, tug boats, ferry, and engineering ships, under various driving mode. Both gaseous and particle emission factors (EF) of four specific OPAHs were determined in our study. Among the OPAHs species emitted from ships, 9-fluorenone (9FO; 72%) and anthrathrace-9,10-quinone (ATQ; 25%) were the most abundant. The arithmetic mean of the sum of gaseous OPAHs EFs for all ships in this study was 2.5 ± 4.4 mg/kg fuel burned, and the mean particulate OPAHs EF was 4.7 ± 7.9 mg/kg. Small fishing ships had the highest total OPAHs EFs (31.0 ± 17.0 mg/kg). Apart from small fishing ships, there was no significant difference in the total EF of OPAHs for the other four types of ships. The emissions of the four OPAHs are predominantly in the particulate phase. There were no significant differences in the emissions of the four OPAHs under different driving mode. According to estimates, the annual OPAH emissions from the four types of ships in Hainan in 2017 were approximately 4.2 (range: 2.7-7.0) tons, dwarfing the OPAH emissions from diesel-powered on-road vehicles in China (23.5 kg).
Collapse
|
29
|
Jiang K, Xing R, Luo Z, Li J, Men Y, Shen H, Shen G, Tao S. Trends in air pollutants emissions in the Qinghai-Tibet Plateau and its surrounding areas under different socioeconomic scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165745. [PMID: 37495127 DOI: 10.1016/j.scitotenv.2023.165745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
The Qinghai-Tibetan Plateau (QTP) and its surrounding areas are undergoing rapid changes in socioeconomic conditions, activity sectors, and emission levels. These changes underscore the significance of conducting local environmental assessments in the future and generating air pollutant emission forecasts necessary for effective evaluation. Current pollutants emissions pathways exhibit regional limitation since their based historical inventory could not accurately reflect the emission characteristics in QTP. This study constructed a high spatial resolution (0.1° × 0.1°) atmospheric pollutant emissions dataset in the Qinghai-Tibet Plateau and its surrounding Areas (QTPA) based on updated emission inventory and various socioeconomic scenarios. We found that the pollutant emissions levels are distinct among different social development scenarios, with SSP3-7.0 demonstrating the highest magnitude of emissions. Regional and sectoral contributions exhibit substantial variations. Notably, solid fuel combustion originating from residential sectors in Northeast India and open fires in Myanmar are identified as high-density sources of PM2.5 emissions. Current pollutant emission patterns in the QTPA are more akin to SSP2-4.5, however, specific regions such as Qinghai and Tibet have exhibited more pronounced trends of emission reduction. The comparison with previous datasets reveals that the predicted pollutant emissions in this study are lower than Scenario Model Intercomparison Project (SMIP) dataset but higher than Asian-Pacific Integrated Model (AIM) dataset due to the revised inventory data and model variations, in which the latter might be the main obstacle to accurate emissions prediction.
Collapse
|
30
|
Jiao X, Xiong R, Luo Z, Li Y, Cheng H, Rashid A, Shen G, Tao S. Household energy stacking and structures in Pakistan - Results from a multiple-energy study in Azad Kashmir and Punjab. J Environ Sci (China) 2023; 133:152-160. [PMID: 37451784 DOI: 10.1016/j.jes.2022.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 07/18/2023]
Abstract
Solid fuel use (SFU) is common in most developing countries and would release many hazardous air pollutants posing high risks on human health. The Global Burden of Disease (GBD) study highlighted risks associated with household SFU in Pakistan, however, high uncertainties prevail because of scanty data on SFU and unaccounted energy stacking. This study conducted a field campaign aiming at collecting first-hand data on household energy mix in Pakistan. The first survey was in Punjab and Azad Kashmir, and revealed that stacked energy use was pervasive, especially for cooking. The stacking was found to be much more obvious in SFU households (defined as those using SFU dominantly) compared to those non-SFU. There were significantly substantial differences between Azad Kashmir and Punjab because of distinct resources available and economic conditions. Woody materials comprised up to nearly 70% in Azad Kashmir, but in Punjab, gas was frequently used for cooking. Only investigating primary household energy would probably overestimate main energy types that being used for a longer time but underestimated other supplements, suggesting the preference of multiple-energy surveys in household energy studies.
Collapse
|
31
|
Xiao K, Wang Z, Zhou Y, Fu D, Zhang Y, Luo Z, Lin Y, Wang Q, Pei J, Shen G. Size-resolved environmentally persistent free radicals in urban road dust and association with transition metals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7829-7839. [PMID: 37486413 DOI: 10.1007/s10653-023-01688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Environmental persistent free radicals (EPFRs) are receiving growing concerns owing to their potentially adverse impacts on human health. Road dust is one important source of air pollution in most cities and may pose significant health risks. Characteristics of EPFRs in urban road dusts and its formation mechanism(s) are still rarely studied. Here, we evaluated occurrence and size distributions of EPFRs in road dusts from different functional areas of an urban city, and assessed relationship between EPFRs and some transition metals. Strong electron paramagnetic resonance signals of 6.01 × 1016 - 1.3 × 1019 spins/g with the mean g value of 2.0029 ± 0.0019 were observed, indicating that EPFRs consisted of a mixture of C-centered radicals, and C-centered radicals with an adjacent oxygen atom in the urban road dust. Much more EPFRs enriched in finer dust particles. EPFRs significantly correlated with the total Fe, but not water-soluble Fe, suggesting different impacts of water-soluble and insoluble metals in the formation of EFPRs. Health risk assessment results indicated high risk potentials via the ingestion and dermal exposure to EPFRs in road dusts. Future studies are calling to look into formation mechanisms of EPFRs in urban road dusts and to quantitatively evaluate its potential risks on human health.
Collapse
|
32
|
Li S, Men Y, Luo Z, Huang W, Xing R, Sun C, Shen G. Indoor exposure to polycyclic aromatic hydrocarbons associated with solid fuel use in rural China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8761-8770. [PMID: 37737552 DOI: 10.1007/s10653-023-01751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants associated with various health risks including lung cancer. Indoor exposure to PAHs, particularly from the indoor burning of fuels, is significant; however, long-term large-scale assessments of indoor PAHs are hampered by high costs and time-consuming in field sampling and laboratory experiments. A simple fuel-based approach and statistical regression models were developed as a trial to predict indoor BaP, as a typical PAH, in China, and consequently spatiotemporal variations in indoor BaP and indoor exposure contributions were discussed. The results show that the national population-weighted indoor BaP concentration has decreased substantially from 46.1 ng/m3 in 1992 to 6.60 ng/m3 in 2017, primarily due to the increased use of clean energies for cooking and heating. Indoor BaP exposure contributed to > 70% of the total inhalation exposure in most cities, particularly in regions where solid fuels are widely utilized. With limited experimental observation data in building statistical models, quantitative results of the study are associated with high uncertainties; however, the study undoubtedly supports effective countermeasures on indoor PAHs from solid fuel use and the importance of promoting clean household energy usage to improve household air quality.
Collapse
|
33
|
Zhang J, Shen H, Chen Y, Meng J, Li J, He J, Guo P, Dai R, Zhang Y, Xu R, Wang J, Zheng S, Lei T, Shen G, Wang C, Ye J, Zhu L, Sun HZ, Fu TM, Yang X, Guan D, Tao S. Iron and Steel Industry Emissions: A Global Analysis of Trends and Drivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16477-16488. [PMID: 37867432 PMCID: PMC10621597 DOI: 10.1021/acs.est.3c05474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
The iron and steel industry (ISI) is important for socio-economic progress but emits greenhouse gases and air pollutants detrimental to climate and human health. Understanding its historical emission trends and drivers is crucial for future warming and pollution interventions. Here, we offer an exhaustive analysis of global ISI emissions over the past 60 years, forecasting up to 2050. We evaluate emissions of carbon dioxide and conventional and unconventional air pollutants, including heavy metals and polychlorinated dibenzodioxins and dibenzofurans. Based on this newly established inventory, we dissect the determinants of past emission trends and future trajectories. Results show varied trends for different pollutants. Specifically, PM2.5 emissions decreased consistently during the period 1970 to 2000, attributed to adoption of advanced production technologies. Conversely, NOx and SO2 began declining recently due to stringent controls in major contributors such as China, a trend expected to persist. Currently, end-of-pipe abatement technologies are key to PM2.5 reduction, whereas process modifications are central to CO2 mitigation. Projections suggest that by 2050, developing nations (excluding China) will contribute 52-54% of global ISI PM2.5 emissions, a rise from 29% in 2019. Long-term emission curtailment will necessitate the innovation and widespread adoption of new production and abatement technologies in emerging economies worldwide.
Collapse
|
34
|
Zhang Q, Yin Z, Lu X, Gong J, Lei Y, Cai B, Cai C, Chai Q, Chen H, Dai H, Dong Z, Geng G, Guan D, Hu J, Huang C, Kang J, Li T, Li W, Lin Y, Liu J, Liu X, Liu Z, Ma J, Shen G, Tong D, Wang X, Wang X, Wang Z, Xie Y, Xu H, Xue T, Zhang B, Zhang D, Zhang S, Zhang S, Zhang X, Zheng B, Zheng Y, Zhu T, Wang J, He K. Synergetic roadmap of carbon neutrality and clean air for China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100280. [PMID: 37273886 PMCID: PMC10236195 DOI: 10.1016/j.ese.2023.100280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/06/2023]
Abstract
It is well recognized that carbon dioxide and air pollutants share similar emission sources so that synergetic policies on climate change mitigation and air pollution control can lead to remarkable co-benefits on greenhouse gas reduction, air quality improvement, and improved health. In the context of carbon peak, carbon neutrality, and clean air policies, this perspective tracks and analyzes the process of the synergetic governance of air pollution and climate change in China by developing and monitoring 18 indicators. The 18 indicators cover the following five aspects: air pollution and associated weather-climate conditions, progress in structural transition, sources, inks, and mitigation pathway of atmospheric composition, health impacts and benefits of coordinated control, and synergetic governance system and practices. By tracking the progress in each indicator, this perspective presents the major accomplishment of coordinated control, identifies the emerging challenges toward the synergetic governance, and provides policy recommendations for designing a synergetic roadmap of Carbon Neutrality and Clean Air for China.
Collapse
|
35
|
Ma T, Zhang S, Xiao Y, Liu X, Wang M, Wu K, Shen G, Huang C, Fang YR, Xie Y. Costs and health benefits of the rural energy transition to carbon neutrality in China. Nat Commun 2023; 14:6101. [PMID: 37773252 PMCID: PMC10541415 DOI: 10.1038/s41467-023-41707-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
The rural energy transition is critical in China's efforts to achieve carbon neutrality and improve air quality. However, the costs and health benefits associated with the transition to carbon neutrality remain unclear. Here we explore the cost-effective transition pathways and air quality-related health impacts using an integrated energy-air quality-health modeling framework. We find that decarbonizing rural cooking and heating would triple contemporary energy consumption from 2014 to 2060, considerably reducing energy poverty nationwide. By 2060, electric cooking ranges and air-to-air heat pumps should be widely integrated, costing an additional 13 billion USD nationally in transformation costs, with ~40% concentrated in Shandong, Heilongjiang, Shanxi and Hebei provinces. Rural residential decarbonization would remarkably improve air quality in northern China, yielding substantial health co-benefits. Notably, monetized health benefits in most provinces are projected to offset transformation costs, except for certain relatively lower-development southwestern provinces, implying more financial support for rural residents in these areas will be needed.
Collapse
|
36
|
Xiong Y, Shen G, Shi L, Lin Y, Zhang HW, Li SL, Di Q, Chen CH, Cao JJ. [A case of intrarenal artery stenosis treated by transcathether segmental renal artery embolization]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2023; 61:742-744. [PMID: 37528020 DOI: 10.3760/cma.j.cn112140-20221214-01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
|
37
|
Song X, Shen G, Grishenkov D. A comparative study on detection of polymer-shelled microbubbles by different excitation pulses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:482-493. [PMID: 37490275 DOI: 10.1121/10.0020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023]
Abstract
Contrast agents are widely used in ultrasound imaging. Many imaging techniques have been developed to improve the contrast between tissue and the agents, based on the nonlinear response of microbubbles. In this study, heterodyne excitation was introduced and was compared with traditional sinusoidal signal and chirp excitation for visualizing polymer-shelled microbubbles and degassed water in a tissue-mimicking phantom. Pulse inversion technique was implemented under plane wave (PW) and focused imaging mode. Image enhancement was evaluated by contrast-to-tissue ratio (CTR) at different transmitting peak negative pressures (PNPs). Experimental results showed that heterodyne excitation had a better suppression effect on tissue signals in PW imaging. The CTR reached an approximation of 17 dB at a low peak negative pressure, which was much higher compared to other excitations. In focused wave imaging, a saturation threshold of CTR was observed for the sinusoidal wave burst and chirp excitation at high PNPs. Heterodyne excitation showed considerable contrast-to-noise ratio under both imaging modes. The response of a polymer-shelled microbubble under heterodyne excitation was simulated. Simulations suggest that in future work, specific filters are required to extract the nonlinear components, such as at the two-peak frequencies around fundamental frequency, to achieve a better image enhancement effect.
Collapse
|
38
|
Meng W, Zhu L, Liang Z, Xu H, Zhang W, Li J, Zhang Y, Luo Z, Shen G, Shen H, Chen Y, Cheng H, Ma J, Tao S. Significant but Inequitable Cost-Effective Benefits of a Clean Heating Campaign in Northern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37256786 DOI: 10.1021/acs.est.2c07492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Residential emissions significantly contribute to air pollution. To address this issue, a clean heating campaign was implemented to replace coal with electricity or natural gas among 13.9 million rural households in northern China. Despite great success, the cost-benefits and environmental equity of this campaign have never been fully investigated. Here, we modeled the environmental and health benefits, as well as the total costs of the campaign, and analyzed the inequality and inequity. We found that even though the campaign decreased only 1.1% of the total energy consumption, PM2.5 emissions and PM2.5 exposure experienced 20% and 36% reduction, respectively, revealing the amplification effects along the causal pathway. Furthermore, the number of premature deaths attributable to residential emissions reduced by 32%, suggesting that the campaign was highly beneficial. Governments and residents shared the cost of 2,520 RMB/household. However, the benefits and the costs were unevenly distributed, as the residents in mountainous areas were not only less benefited from the campaign but also paid more because of the higher costs, resulting in a notably lower cost-effectiveness. Moreover, villages in less developed areas tended to choose natural gas with a lower initial investment but a higher total cost (2,720 RMB/household) over electricity (2,190 RMB/household). With targeted investment and subsidies in less developed areas and the promotion of electricity and other less expensive alternatives, the multidevelopment goals of improved air quality, reduced health impacts, and reduced inequity in future clean heating interventions could be achieved.
Collapse
|
39
|
Ren H, Ge X, Qi Z, Lin Q, Shen G, Yu Y, An T. Emission and gas-particle partitioning characteristics of atmospheric halogenated and organophosphorus flame retardants in decabromodiphenyl ethane-manufacturing functional areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121709. [PMID: 37116567 DOI: 10.1016/j.envpol.2023.121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
The emission and gas-particle partitioning characteristics in various functional areas of production lines are still unknown. However, flame-retardant manufacturing activities are the primary emission source of flame retardants. Thus, fine particles and gases were investigated in three functional areas of a decabromodiphenyl ethane production line, i.e., polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), dechlorane plus (DPs), and organophosphorus flame retardants (OPFRs) in a flame-retardant manufacturing factory. High levels of PBDEs (8.02 × 103-4.16 × 104 pg/m3), NBFRs (6.05 × 103-1.92 × 105 pg/m3), and DPs (89.5-5.20 × 103 pg/m3) were found in various functional areas, suggesting manufacturing activities were a primary emission source. In contrast, OPFRs were derived from long-range transport or other non-industrial sources. Varied concentrations of PBDEs, NBFRs, and DPs were observed in different production lines, higher in the reaction zone area than others. As the predominant compounds, decabromodiphenyl ether, decabromodiphenyl ethane, syn-DP, and tris(chloropropyl) phosphate accounted for 54.7%, 89.3%, 93.4%, and 34.7% of PBDEs, NBFRs, DPs, and OPFRs, respectively. Three models were used to predict the gas-particle partitioning of the halogenated flame retardants emitted from manufacturing activities. The Li-Jia Empirical Model predicted the gas-particle partitioning behavior well. This research shows that the adsorption-desorption process of the halogenated flame retardants between the gaseous and particulate phases did not reach equilibrium.
Collapse
|
40
|
Zhu Y, Jiao X, Meng W, Yu X, Cheng H, Shen G, Wang X, Tao S. Drinking Water in Rural China: Water Sources, Treatment, and Boiling Energy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6465-6473. [PMID: 37040484 DOI: 10.1021/acs.est.2c09344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Access to safe drinking water is a major public concern in China. A national survey of 57 029 households was conducted to fill major knowledge gaps on drinking water sources, end-of-use treatment methods, and energy used to boil water. Herein, we show that surface water and well water were frequently used by >147 million rural residents living in low-income inland and mountainous areas. Driven by socioeconomic development and government intervention, the level of access to tap water in rural China increased to 70% by 2017. Nevertheless, the rate was considerably lower than that in cities and unevenly distributed across the country. Approximately 90% of drinking water was boiled, an increase from 85% a decade ago. The contribution of electricity, mainly electric kettles, to the boiling of water was 69%. Similar to cooking, living conditions and heating requirements are the main influencing indicators of energy used to boil water. In addition to socioeconomic development, government intervention is a key factor driving the transition to safe water sources, universal access to tap water, and clean energy. Further improvement in drinking water safety in poor and remote rural areas remains challenging, and more intervention and more investment are needed.
Collapse
|
41
|
Liu D, Shen G, Tang N, Lu H, Wei B. Robotic system for magnetic resonance imaging-guided high-intensity focus ultrasound application: Feasibility of breast fibroadenoma treatment. Int J Med Robot 2023:e2519. [PMID: 37081747 DOI: 10.1002/rcs.2519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE This paper presents a high-intensity focus ultrasound (HIFU) robotic system for treating breast fibroadenoma under the guidance of magnetic resonance imaging (MRI). Based on the thermal and mechanical effects of ultrasound, the system aims to deliver ultrasound energy to a target precisely without damaging the normal tissue. The temperature elevation can be monitored in real time by MRI, and the treatment plan can be adjusted during the procedure. The requirements, design specifications, control system and registration of the robotic system are specified. METHODS The robotic system was designed with a 3 degrees of freedom manipulator with limit switches and encoders, a customised MRI-compatible breast coil, a water bladder with sets of breast-conforming brackets, and a probe capable of generating ultrasound. Twenty volunteers were recruited for this study, and their data were analysed to provide more precise data for the design. The accuracy of the robot was evaluated in free space using a coordinate measuring machine, phantom and ex vivo porcine tissue in MRI room. The study also verified the signal-to-noise ratio (SNR) of the MRI with the effect of the robotic system. RESULTS The research findings revealed that the manipulator exhibited a translational precision of 0.10 ± 0.14 mm, a rotational fidelity around the X direction of 0.11 ± 0.09°, and an oscillatory exactness around the Y direction of 0.10 ± 0.08°. The investigation of positioning accuracy demonstrated that the robot's error in free space was 0.26 ± 0.07 mm. When subjected to MRI room with agar-silica phantom and ex vivo porcine tissue, the positioning accuracy amounted to 1.11 ± 0.47 mm and 1.57 ± 0.52 mm. In the presence of the robotic system, the SNR of the MRI experienced a 4.2% reduction, which had a negligible impact on image quality. CONCLUSIONS The conducted experiments validate the efficacy of the proposed MRI-guided HIFU robotic system in executing agar-silica phantom and ex vivo porcine tissue investigations with adequate positioning accuracy. Consequently, this system exhibits certain feasibility for the treatment of breast fibroadenomas.
Collapse
|
42
|
Chen Y, Yu W, Zhang L, Cao L, Ling J, Liao K, Shen G, Du W, Chen K, Zhao M, Wu J, Jin H. First evidence of neonicotinoid insecticides in human bile and associated hepatotoxicity risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130715. [PMID: 36603418 DOI: 10.1016/j.jhazmat.2022.130715] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids (NEOs) are widely applied in agricultural lands and are widespread in different environments, accelerating threats to ecosystems and human health. A number of in vitro/in vivo studies have reported adverse effects of NEOs on mammalian health, but the link between NEO exposure and toxic effects on human liver remains unclear. We randomly recruited 201 participants and quantified eight commercialized NEOs in bile. High frequency and concentration of detection indicate low degradation of human liver on NEOs. The main NEOs are nitenpyram and dinotefuran, which contribute to about 86% of the total residual levels of eight NEOs, due to the highest solubility in bile and are not degraded easily in liver. In contrast, imidacloprid and thiacloprid are major compounds in human blood, according to previous studies, suggesting that individual NEOs behave differently in blood and bile distribution. There was no statistical difference in NEO residues between cancer and non-cancer participants and among the different participant demographics (e.g., age, gender, and body mass index). The serum hematological parameters -bile acid, total bilirubin, cholesterol and alkaline phosphatase -were positively correlated with individual NEO concentrations, suggesting that NEO exposure affects liver metabolism and even enterohepatic circulation. The study first examined the NEO residues in human bile and provided new insights into their bioavailability and hepatoxicity risk.
Collapse
|
43
|
Wang X, Yin Y, Yu Z, Shen G, Cheng H, Tao S. Distinct distribution patterns of the abundant and rare bacteria in high plateau hot spring sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160832. [PMID: 36521602 DOI: 10.1016/j.scitotenv.2022.160832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The diversity and distribution patterns of the abundant and rare microbial sub-communities in hot spring ecosystems and their assembly mechanisms are poorly understood. The present study investigated the diversity and distribution patterns of the total, abundant, conditionally rare, and always rare taxa in the low- and moderate-temperature hot spring sediments on the Tibetan Plateau based on high-throughput 16S rRNA gene sequencing, and explored their major environmental drivers. The diversity of these four bacterial taxa showed no significant change between the low-temperature and moderate-temperature hot spring sediments, whereas the bacterial compositions were obviously different. Stochasticity dominated the bacterial sub-community assemblages, while heterogeneous selection also played an important role in shaping the abundant and conditionally rare taxa between the low-temperature and moderate-temperature hot spring sediments. No significant difference in the topological properties of co-occurrence networks was found between the conditionally rare and abundant taxa, and the connections between the paired operational taxonomic units (OTUs) were almost positive. The diversity of the total, abundant, and conditionally rare taxa was governed by the salinity of hot spring sediments, while that of the always rare taxa was determined by the content of S element. In contrast, temperature had significant direct effect on the composition of the total, abundant, and conditionally rare taxa, but relatively weak influence on that of the always rare taxa. Besides, salinity was another major environmental factor driving the composition of the abundant and rare sub-communities in the hot spring sediments. These results reveal the assembly processes and major environmental drivers that shaped different bacterial sub-communities in the hot spring sediments on the Tibetan Plateau, and indicate the importance of conditionally rare taxa in constructing bacterial communities. These findings enhance the current understanding of the ecological mechanisms maintaining the ecosystem stability and services in extreme environment.
Collapse
|
44
|
Liu X, Li Y, Luo Z, Xing R, Men Y, Huang W, Jiang K, Zhang L, Sun C, Xie L, Cheng H, Shen H, Chen Y, Du W, Shen G, Tao S. Identification of Factors Determining Household PM 2.5 Variations at Regional Scale and Their Implications for Pollution Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3722-3732. [PMID: 36826460 DOI: 10.1021/acs.est.2c05750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Indoor PM2.5, particulate matter no more than 2.5 μm in aerodynamic equivalent diameter, has very high spatiotemporal variabilities; and exploring the key factors influencing the variabilities is critical for purifying air and protecting human health. Here, we conducted a longer-term field monitoring campaign using low-cost sensors and evaluated inter- and intra-household PM2.5 variations in rural areas where energy or stove stacking is common. Household PM2.5 varied largely across different homes but also within households. Using generalized linear models and dominance analysis, we estimated that outdoor PM2.5 explained 19% of the intrahousehold variation in indoor daily PM2.5, whereas factors like the outdoor temperature and indoor-outdoor temperature difference that was associated with energy use directly or indirectly, explained 26% of the temporal variation. Inter-household variation was lower than intrahousehold variation. The inter-household variation was strongly associated with distinct internal sources, with energy-use-associated factors explaining 35% of the variation. The statistical source apportionment model estimated that solid fuel burning for heating contributed an average of 31%-55% of PM2.5 annually, whereas the contribution of sources originating from the outdoors was ≤10%. By replacing raw biomass or coal with biomass pellets in gasifier burners for heating, indoor PM2.5 could be significantly reduced and indoor temperature substantially increased, providing thermal comforts in addition to improved air quality.
Collapse
|
45
|
Huang L, Liu Y, Wu Y, Ye Z, Ren F, Liu X, Shen G. Impact of Stove Renovation on PM 2.5 Exposure, Risk Perception, Self-Protective Willingness of Rural Residents. TOXICS 2023; 11:245. [PMID: 36977010 PMCID: PMC10051283 DOI: 10.3390/toxics11030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
To improve household air quality, the Chinese government has launched a number of pilot stove renovation projects, but few studies have explored the impact of the project on people's perception of and willingness to participate in these renovations; moreover, factors affecting willingness to pay for the project in rural China are not yet clear. We conducted a field measurement and a corresponding door-to-door questionnaire survey using the renovated group and the unrenovated group. The results showed that (1) the stove renovation project could not only reduce PM2.5 exposure and the excess mortality risk of rural residents, but also (2) improve residents' risk perception and self-protective willingness. (3) Specifically, the project had a deeper impact on female and low-income residents. (4) Meanwhile, the higher the income and the larger family size, the higher the risk perception and self-protective willingness. (5) Furthermore, willingness to pay for the project was related with residents' support for the project, benefit from renovation, income, and family size. Our results recommended that stove renovation policies should pay more attention to families with lower income and smaller size.
Collapse
|
46
|
Jiang K, Men Y, Xing R, Fu B, Shen G, Li B, Tao S. Divergent Energy-Climate Nexus in the Global Fuel Combustion Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2506-2515. [PMID: 36734358 DOI: 10.1021/acs.est.2c08958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fuel combustion provides basic energy for the society but also produces CO2 and incomplete combustion products that threaten human survival, climate change, and global sustainability. A variety of fuels burned in different facilities expectedly have distinct impacts on climate, which remains to be quantitatively assessed. This study uses updated emission inventories and an earth system model to evaluate absolute and relative contributions in combustion emission-associated climate forcing by fuels, sectors, and regions. We showed that, from 1970 to 2014, coal burned in the energy sector and oil used in the transportation sector contributed comparable energies consumed (24 and 20% of the total) but had distinct climate forcing (1 and 40%, respectively). Globally, coal burned for energy production had negative impacts on climate forcing but positive effects in the residential sector. In many developing countries, coal combustion in the energy sector had negative radiative forcing (RF) per unit energy consumed due to insufficient controls on sulfur and scattering aerosol levels, but oils in the transportation sector had high positive RF values. These results had important implications on the energy transition and emission reduction actions in response to climate change. Distinct climate efficiencies of energies and the spatial heterogeneity implied differentiated energy utilization strategies and pollution control policies by region and sector.
Collapse
|
47
|
Cao JJ, Di Q, Shen G, Li SL, Chen CH, Xiong Y, Jiao YH, Guo XF. [Clinical analysis of 4 acute ischemic stroke children treated with endovascular thrombectomy]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2023; 61:159-163. [PMID: 36720599 DOI: 10.3760/cma.j.cn112140-20220927-00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objective: To assess the feasibility of endovascular thrombectomy (EVT) for the treatment of acute ischemic stroke (AIS) in children. Methods: Clinical data and follow-up information of 4 AIS children who received EVT in the Department of Intervention & Hemangioma at the Children's Hospital of the Capital Institute of Pediatrics from December 2020 to June 2021 were collected retrospectively. The vascular recanalization after EVT was assessed by the modified thrombolysis in cerebral infarction (mTICI) score. Efficacy outcomes were assessed with initial and postprocedural Pediatric National Institutes of Health Stroke Scale (PedNIHSS) score, and the modified Rankin scale (mRS) score at 3 and 6 months after treatment. Safety assessments included perioperative complications and intracranial hemorrhage post-treatment. Results: A total of 5 EVT treatment were performed on 4 children with AIS, of whom 3 were male. The age of onset was 4.6, 13.8, 7.8, 8.0, 8.9 years, respectively. The time from symptom onset to initiation of EVT was 19.0, 25.0, 22.0, 4.0, 16.5 hours, respectively and all patients achieved successful recanalization of the vessel after EVT (mTICI≥2b). The PedNIHSS score was 39, 14, 25, 39, 24 before treatment and decreased to 8, 1, 12, 39, 5 at discharge. All the procedures were performed with no perioperative complications. Only 1 patient with congenital heart disease had a recurrent AIS with malignant brain oedema and brain hernia. Although the occluded vessels were successfully recanalized,the symptoms were not improved and this patient died after treatment abandonment. The other 3 patients achieved good recovery at 6 months postoperatively. The mRS score of 3 patients was 3, 1, 2 at 3 months after EVT and decreased to 2, 1, 1 at 6 months. Conclusion: EVT treatment may be feasible and safe for pediatric AIS due to large vessel occlusion even when the treatment was initiated 6 hours post stroke, but children with heart disease may have a dismal prognosis.
Collapse
|
48
|
Long S, Hamilton PB, Fu B, Xu J, Han L, Suo X, Lai Y, Shen G, Xu F, Li B. Bioaccumulation and emission of organophosphate esters in plants affecting the atmosphere's phosphorus cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120803. [PMID: 36503012 DOI: 10.1016/j.envpol.2022.120803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The imbalance of atmospheric, terrestrial and aquatic phosphorus budgets remains a research conundrum and global concern. In this work, the uptake, distribution, bioaccumulation and emission of organophosphate esters (OPEs) by clove trees (Syzygium aromaticum), lemon trees (Citrus limon) and cape jasmine trees (Gardenia jasminoides var. fortuniana) was investigated as conduits for phosphorus transfer or sinks and sources. The objective was to assess the role OPEs in soils play as atmospheric phosphorus sources through plant bioaccumulation and emission. Results demonstrated OPEs in experimental soil plots ranging from 0.01 to 81.0 ng g-1 dry weight, were absorbed and transported through plants to the atmosphere. The total emission of OPEs varied greatly from 0.2 to 588.9 pg g-1 L-1 h-1, with a mean of 47.6 pg g-1 L-1 h-1. There was a negative linear relationship between the concentrations of total phosphorus and four OPEs, tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate. Trimethyl phosphate levels were positively correlated with total nitrogen, and the concentrations of tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate decreased along with available potassium in leaves after 72 h. There was a significantly positive linear relationship between higher emission concentrations of OPEs and the emission factor of OPEs concentration (F = 4.2, P = 0.002), with lower emissions of OPEs and the bioaccumulation of OPEs in leaves (F = 4.8, P = 0.004). OPEs releases to the atmosphere were enriched in aerosols, and participate in atmospheric chemical reactions like photolysis, thereby affecting the phosphorus balance and cycling in the atmosphere.
Collapse
|
49
|
Wang X, Yu Z, Shen G, Cheng H, Tao S. Distribution of microbial communities in seasonally frozen soil layers on the Tibetan Plateau and the driving environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1919-1937. [PMID: 35925461 DOI: 10.1007/s11356-022-22283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Large stocks of carbon and nitrogen stored in permafrost regions can potentially feed back to global biogeochemical cycles under climate warming. To understand the response of microbial communities to environmental changes, this study investigated the spatial distribution of bacterial communities in the upper layers (0-10, 10-20, and 20-30 cm) of seasonally frozen soil on the Tibetan Plateau and their relationships with the environmental factors. A total of 135 soil samples were collected from the soils at depths of 0-10, 10-20, and 20-30 cm in the Lhasa River and Nyang River basins, and the diversity and composition of bacterial communities in them were identified by high-throughput 16S rRNA gene sequencing. Bacterial diversity changed significantly with soil depth in the Nyang River basin (p < 0.001), while no obvious change was found in the Lhasa River basin. The whole bacterial composition exhibited small variations across different soil layers (p > 0.05). The relative abundance of aerobic bacteria, Sphingomonas and Arthrobacter, decreased with soil depth, while that of the other aerobic, facultative anaerobic, and anaerobic bacteria did not exhibit this trend. Soil pH was the key driving edaphic factor of the whole bacterial composition in all three depth layers, while vegetation also had an important influence on bacterial composition. Arthrobacter, Bradyrhizobium, and Bacillus had obvious correlations with soil nutrients or vegetation, while the other species were not significantly correlated with any environmental factors. Structural equation modeling revealed that vegetation and mean annual temperature had a key direct impact on the bacterial diversity and composition, respectively. Climate also indirectly affected bacterial communities, mainly through shaping soil pH and vegetation. These results indicate that the soil depth has a different impact on the bacterial α-diversity, whole bacterial composition, and specific taxa in the 0-30-cm surface layers of seasonally frozen soil, which were mainly determined by various environmental factors.
Collapse
|
50
|
Mutlu E, Cristy T, Stiffler B, Waidyanatha S, Chartier R, Jetter J, Krantz T, Shen G, Champion W, Miller B, Richey J, Burback B, Rider CV. Do Storage Conditions Affect Collected Cookstove Emission Samples? Implications for Field Studies. ANAL LETT 2022; 56:1911-1931. [PMID: 37200484 PMCID: PMC10054858 DOI: 10.1080/00032719.2022.2150772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 05/20/2023]
Abstract
Cookstove emissions are a significant source of indoor air pollution in developing countries and rural communities world-wide. Considering that many research sites for evaluating cookstove emissions and interventions are remote and require potentially lengthy periods of particulate matter (PM) filter sample storage in sub-optimal conditions (e.g., lack of cold storage), an important question is whether samples collected in the field are stable over time. To investigate this, red oak was burned in a natural-draft stove, and fine PM (PM2.5) was collected on polytetrafluoroethylene filters. Filters were stored at either ambient temperature or more optimal conditions (-20°C or -80°C) for up to 3 months and extracted. The effects of storage temperature and length on stability were evaluated for measurements of extractable organic matter (EOM), PM2.5, and polycyclic aromatic compound (PAC) levels in the filter extracts. A parallel, controlled laboratory condition was also evaluated to further explore sources of variability. In general, PM2.5 and EOM in both simulated field and laboratory samples were similar regardless of the storage condition or duration. The extracts were also analyzed by gas chromatography to quantify 22 PACs and determine similarities and/or differences between the conditions. PAC levels were a more sensitive stability measure in differentiating between storage conditions. The findings suggest that measurements are relatively consistent across storage duration/temperatures for filter samples with relatively low EOM levels. This study aims to inform protocols and filter storage procedures for exposure and intervention research conducted in low- and middle-income countries where studies may be budget- and infrastructure-limited.
Collapse
|