26
|
Hickman TWP, Baud D, Benhamou L, Hailes HC, Ward JM. Characterisation of four hotdog-fold thioesterases for their implementation in a novel organic acid production system. Appl Microbiol Biotechnol 2020; 104:4397-4406. [PMID: 32193574 PMCID: PMC7190597 DOI: 10.1007/s00253-020-10519-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 11/24/2022]
Abstract
With increasing interest in the diverse properties of organic acids and their application in synthetic pathways, developing biological tools for producing known and novel organic acids would be very valuable. In such a system, organic acids may be activated as coenzyme A (CoA) esters, then modified by CoA-dependent enzymes, followed by CoA liberation by a broad-acting thioesterase. This study has focused on the identification of suitable thioesterases (TE) for utilisation in such a pathway. Four recombinant hotdog-fold TEs were screened with a range of CoA esters in order to identify a highly active, broad spectrum TE. The TesB-like TE, RpaL, from Rhodopseudomonas palustris was found to be able to use aromatic, alicyclic and both long and short aliphatic CoA esters. Size exclusion chromatography, revealed RpaL to be a monomer of fused hotdog domains, in contrast to the complex quaternary structures found with similar TesB-like TEs. Nonetheless, sequence alignments showed a conserved catalytic triad despite the variation in quaternary arrangement. Kinetic analysis revealed a preference towards short-branched chain CoA esters with the highest specificity towards DL-β-hydroxybutyryl CoA (1.6 × 104 M−1 s−1), which was found to decrease as the acyl chain became longer and more functionalised. Substrate inhibition was observed with the fatty acyl n-heptadecanoyl CoA at concentrations exceeding 0.3 mM; however, this was attributed to its micellar aggregation properties. As a result of the broad activity observed with RpaL, it is a strong candidate for implementation in CoA ester pathways to generate modified or novel organic acids.
Collapse
|
27
|
Willard-Mack CL, Elmore SA, Hall WC, Harleman J, Kuper CF, Losco P, Rehg JE, Rühl-Fehlert C, Ward JM, Weinstock D, Bradley A, Hosokawa S, Pearse G, Mahler BW, Herbert RA, Keenan CM. Nonproliferative and Proliferative Lesions of the Rat and Mouse Hematolymphoid System. Toxicol Pathol 2020; 47:665-783. [PMID: 31526133 DOI: 10.1177/0192623319867053] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative changes in rats and mice. The purpose of this publication is to provide a standardized nomenclature for classifying changes observed in the hematolymphoid organs, including the bone marrow, thymus, spleen, lymph nodes, mucosa-associated lymphoid tissues, and other lymphoid tissues (serosa-associated lymphoid clusters and tertiary lymphoid structures) with color photomicrographs illustrating examples of the lesions. Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. The nomenclature for these organs is divided into 3 terminologies: descriptive, conventional, and enhanced. Three terms are listed for each diagnosis. The rationale for this approach and guidance for its application to toxicologic pathology are described in detail below.
Collapse
|
28
|
Nagarajan VK, Ward JM, Yu B. Association of Liver Tissue Optical Properties and Thermal Damage. Lasers Surg Med 2020; 52:779-787. [PMID: 31919868 DOI: 10.1002/lsm.23209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Complete thermocoagulation of tumors is vital to minimize the risk of local tumor recurrence after a thermal ablation. Histological assessments are not real-time and require experienced pathologists to grade the thermal damage (histopathology) [Correction added on 21 January, 2020 after first online publication: After thermal damage in the preceding sentence, (histopathology) was added]. Real-time assessment of thermal tissue damage during an ablation is necessary to achieve optimal tumor ablation. In our previous studies, we found that continuous monitoring of the wavelength-averaged (435-630 nm) tissue absorption coefficient (µa ) and the reduced scattering coefficient ( μ s ' ) during heating of a porcine liver at 100°C follows a sigmoidal growth curve. Therefore, we concluded that increases in the tissue µa and μ s ' during thermocoagulation were correlated with true thermal damage. The goal of this study was to determine if increases in the tissue µa and μ s ' during thermocoagulation are correlated with true thermal damage. STUDY DESIGN/MATERIALS AND METHODS In this paper, continuously measured values of µa and μ s ' during heating of the porcine liver tissue were compared with the histology-assessed thermal damage scores at four different temperature points (37°C, 55°C, 65°C, and 75°C). RESULTS The damage scores for the tissues in Group 3 (65°C) and Group 4 (75°C) were significantly different from each other and from the other groups. The damage scores were not significantly different between Group 1 (37°C) and Group 2 (55°C). CONCLUSION The results indicate that relative changes in µa and μ s ' can be used to classify thermal damage (histopathology) scores with an overall accuracy of 72.5% up to 75°C. [Correction added on 21 January, 2020 after first online publication: After thermal damage in the preceding sentence, (histopathology) was added]. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
|
29
|
Elmore SA, Cardiff R, Cesta MF, Gkoutos GV, Hoehndorf R, Keenan CM, McKerlie C, Schofield PN, Sundberg JP, Ward JM. A Review of Current Standards and the Evolution of Histopathology Nomenclature for Laboratory Animals. ILAR J 2019; 59:29-39. [PMID: 30476141 DOI: 10.1093/ilar/ily005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
The need for international collaboration in rodent pathology has evolved since the 1970s and was initially driven by the new field of toxicologic pathology. First initiated by the World Health Organization's International Agency for Research on Cancer for rodents, it has evolved to include pathology of the major species (rats, mice, guinea pigs, nonhuman primates, pigs, dogs, fish, rabbits) used in medical research, safety assessment, and mouse pathology. The collaborative effort today is driven by the needs of the regulatory agencies in multiple countries, and by needs of research involving genetically engineered animals, for "basic" research and for more translational preclinical models of human disease. These efforts led to the establishment of an international rodent pathology nomenclature program. Since that time, multiple collaborations for standardization of laboratory animal pathology nomenclature and diagnostic criteria have been developed, and just a few are described herein. Recently, approaches to a nomenclature that is amenable to sophisticated computation have been made available and implemented for large-scale programs in functional genomics and aging. Most terminologies continue to evolve as the science of human and veterinary pathology continues to develop, but standardization and successful implementation remain critical for scientific communication now as ever in the history of veterinary nosology.
Collapse
|
30
|
Everitt JI, Treuting PM, Scudamore C, Sellers R, Turner PV, Ward JM, Zeiss CJ. Pathology Study Design, Conduct, and Reporting to Achieve Rigor and Reproducibility in Translational Research Using Animal Models. ILAR J 2019; 59:4-12. [DOI: 10.1093/ilar/ily020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractIn translational research, animal models are an important tool to aid in decision-making when taking potential therapies into human clinical trials. Recently, there have been a number of papers that have suggested limited concordance of preclinical animal experiments with subsequent human clinical experience. Assessments of preclinical animal studies have led to concerns about the reproducibility of data and have highlighted the need for an emphasis on rigor and quality in the planning, conduct, analysis, and reporting of such studies. The incorporation of a wider role for the comparative pathologist using pathology best practices in the planning and conduct of animal model-based research is one way to increase the quality and reproducibility of data. The use of optimal design and planning of tissue collection, incorporation of pathology methods into written protocols, conduct of pathology procedures using accepted best practices, and the use of optimal pathology analysis and reporting methods enhance the quality of the data acquired from many types of preclinical animal models and studies. Many of these pathology practices are well established in the discipline of toxicologic pathology and have a proven and useful track record in enhancing the data from animal-based studies used in safety assessment of human therapeutics. Some of this experience can be adopted by the wider community of preclinical investigators to increase the reproducibility of animal study data.
Collapse
|
31
|
Sundberg JP, Boyd K, Hogenesch H, Nikitin AY, Treuting PM, Ward JM. Training mouse pathologists: 16 th annual workshop on the pathology of mouse models of human disease. Lab Anim (NY) 2018; 47:38-40. [PMID: 29384517 DOI: 10.1038/laban.1399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Ward JM, Meyerholz DK. Citation Index Is Not Critically Important to Veterinary Pathology, Medicine, and Research. Vet Pathol 2018; 55:595-596. [PMID: 29890927 DOI: 10.1177/0300985818758472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Janke LJ, Ward JM, Vogel P. Classification, Scoring, and Quantification of Cell Death in Tissue Sections. Vet Pathol 2018; 56:33-38. [DOI: 10.1177/0300985818800026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The analysis and description of the appearance of cell death in tissue sections can add valuable information to research studies. The scoring/grading and quantification of cell death can be used either as part of a larger scoring scheme or as the final end point of a study. The degree of precision needed is study dependent and will be determined by the question being addressed and the complexity of the model. The methods one uses to quantify cell death are often guided by the tissue of interest. For example, in the brain, it is sometimes necessary to examine death of specific neuronal populations, whereas in more homogeneous tissue such as a tumor xenograft, quantification can be done on a whole-slide basis. In addition to examination of hematoxylin and eosin (HE)–stained sections, immunohistochemistry can be employed to highlight areas of cell death or to identify specific types of cell death, for example, when differentiating apoptosis from necrosis. Automated quantification can be useful in generating statistically comparable data from HE-stained or immunolabeled samples. The rapidly expanding classification of cell death requires the use of multiple techniques to identify them in vivo. This article will provide examples of how different methods of examining and quantifying cell death are used in a variety of research areas, ranging from semiquantitative evaluation in HE-stained intestine to automated quantification of immunohistochemistry-immunolabeled brain and tumor xenografts. The recently described process of necroptosis will be discussed briefly, with the description and example of the methods used to differentiate this from apoptosis.
Collapse
|
34
|
Caswell JL, Bassel LL, Rothenburger JL, Gröne A, Sargeant JM, Beck AP, Ekman S, Gibson-Corley KN, Kuiken T, LaDouceur EEB, Meyerholz DK, Origgi FC, Posthaus H, Priestnall SL, Ressel L, Sharkey L, Teixeira LBC, Uchida K, Ward JM, Webster JD, Yamate J. Observational Study Design in Veterinary Pathology, Part 2: Methodology. Vet Pathol 2018; 55:774-785. [DOI: 10.1177/0300985818798121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Observational studies are a basis for much of our knowledge of veterinary pathology, yet considerations for conducting pathology-based observational studies are not readily available. In part 1 of this series, we offered advice on planning and carrying out an observational study. Part 2 of the series focuses on methodology. Our general recommendations are to consider using already-validated methods, published guidelines, data from primary sources, and quantitative analyses. We discuss 3 common methods in pathology research—histopathologic scoring, immunohistochemistry, and polymerase chain reaction—to illustrate principles of method validation. Some aspects of quality control include use of clear objective grading criteria, validation of key reagents, assessing sample quality, determining specificity and sensitivity, use of technical and biologic negative and positive controls, blinding of investigators, approaches to minimizing operator-dependent variation, measuring technical variation, and consistency in analysis of the different study groups. We close by discussing approaches to increasing the rigor of observational studies by corroborating results with complementary methods, using sufficiently large numbers of study subjects, consideration of the data in light of similar published studies, replicating the results in a second study population, and critical analysis of the study findings.
Collapse
|
35
|
Caswell JL, Bassel LL, Rothenburger JL, Gröne A, Sargeant JM, Beck AP, Ekman S, Gibson-Corley KN, Kuiken T, LaDouceur EEB, Meyerholz DK, Origgi FC, Posthaus H, Priestnall SL, Ressel L, Sharkey L, Teixeira LBC, Uchida K, Ward JM, Webster JD, Yamate J. Observational Study Design in Veterinary Pathology, Part 1: Study Design. Vet Pathol 2018; 55:607-621. [PMID: 30071806 DOI: 10.1177/0300985818785705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Observational studies are the basis for much of our knowledge of veterinary pathology and are highly relevant to the daily practice of pathology. However, recommendations for conducting pathology-based observational studies are not readily available. In part 1 of this series, we offer advice on planning and conducting an observational study with examples from the veterinary pathology literature. Investigators should recognize the importance of creativity, insight, and innovation in devising studies that solve problems and fill important gaps in knowledge. Studies should focus on specific and testable hypotheses, questions, or objectives. The methodology is developed to support these goals. We consider the merits and limitations of different types of analytic and descriptive studies, as well as of prospective vs retrospective enrollment. Investigators should define clear inclusion and exclusion criteria and select adequate numbers of study subjects, including careful selection of the most appropriate controls. Studies of causality must consider the temporal relationships between variables and the advantages of measuring incident cases rather than prevalent cases. Investigators must consider unique aspects of studies based on archived laboratory case material and take particular care to consider and mitigate the potential for selection bias and information bias. We close by discussing approaches to adding value and impact to observational studies. Part 2 of the series focuses on methodology and validation of methods.
Collapse
|
36
|
Schofield PN, Ward JM, Sundberg JP. Show and tell: disclosure and data sharing in experimental pathology. Dis Model Mech 2017; 9:601-5. [PMID: 27483498 PMCID: PMC4920154 DOI: 10.1242/dmm.026054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reproducibility of data from experimental investigations using animal models is increasingly under scrutiny because of the potentially negative impact of poor reproducibility on the translation of basic research. Histopathology is a key tool in biomedical research, in particular for the phenotyping of animal models to provide insights into the pathobiology of diseases. Failure to disclose and share crucial histopathological experimental details compromises the validity of the review process and reliability of the conclusions. We discuss factors that affect the interpretation and validation of histopathology data in publications and the importance of making these data accessible to promote replicability in research. Summary: Reproducibility of findings in experiments using model organisms has recently become a source of concern, particularly for translational science. We discuss factors affecting the interpretation and reliability of experimental pathology findings in the mouse, and how disclosure and transparent reporting are crucial for replicability.
Collapse
|
37
|
Guillen Sacoto MJ, Martinez AF, Abe Y, Kruszka P, Weiss K, Everson JL, Bataller R, Kleiner DE, Ward JM, Sulik KK, Lipinski RJ, Solomon BD, Muenke M. Human germline hedgehog pathway mutations predispose to fatty liver. J Hepatol 2017; 67. [PMID: 28645738 PMCID: PMC5613974 DOI: 10.1016/j.jhep.2017.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. METHODS Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2+/-) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. RESULTS Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2+/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2+/- mice exposed to a high-fat diet. CONCLUSIONS Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous buildup (scar tissue) and inflammation of the liver tissue. For the first time patients with holoprosencephaly, a disease caused by SHH signaling mutations, are shown to have increased liver steatosis independent of obesity. This observation was recapitulated in a mouse model of attenuated SHH signaling that also showed increased liver steatosis but with decreased fibrosis and inflammation. While SHH inhibition is associated with a good NAFLD prognosis, this increase in liver fat accumulation in the context of SHH signaling inhibition must be studied prospectively to evaluate its long-term effects, especially in individuals with Western-type dietary habits.
Collapse
|
38
|
Jain S, Ward JM, Shin DM, Wang H, Naghashfar Z, Kovalchuk AL, Morse HC. Associations of Autoimmunity, Immunodeficiency, Lymphomagenesis, and Gut Microbiota in Mice with Knockins for a Pathogenic Autoantibody. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2020-2033. [PMID: 28727987 DOI: 10.1016/j.ajpath.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/09/2017] [Indexed: 01/26/2023]
Abstract
A number of mouse strains transgenic for B-cell receptors specific for nucleic acids or other autoantigens have been generated to understand how autoreactive B cells are regulated in normal and autoimmune mice. Previous studies of nonautoimmune C57BL/6 mice heterozygous for both the IgH and IgL knockins of the polyreactive autoantibody, 564, produced high levels of autoantibodies in a largely Toll-like receptor 7-dependent manner. Herein, we describe studies of mice homozygous for the knockins that also expressed high levels of autoantibodies but, unlike the heterozygotes, exhibited a high incidence of mature B-cell lymphomas and enhanced susceptibility to bacterial infections. Microarray analyses and serological studies suggested that lymphomagenesis might be related to chronic B-cell activation promoted by IL-21. Strikingly, mice treated continuously with antibiotic-supplemented water did not develop lymphomas or abscesses and exhibited less autoimmunity. This mouse model may help us understand the reasons for enhanced susceptibility to lymphoma development exhibited by humans with a variety of autoimmune diseases, such as Sjögren syndrome, systemic lupus erythematosus, and highly active rheumatoid arthritis.
Collapse
|
39
|
Ward JM, Schofield PN, Sundberg JP. Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab Anim (NY) 2017; 46:146-151. [PMID: 28328876 DOI: 10.1038/laban.1214] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
Reproducibility of in vivo research using the mouse as a model organism depends on many factors, including experimental design, strain or stock, experimental protocols, and methods of data evaluation. Gross and histopathology are often the endpoints of such research and there is increasing concern about the accuracy and reproducibility of diagnoses in the literature. To reproduce histopathological results, the pathology protocol, including necropsy methods and slide preparation, should be followed by interpretation of the slides by a pathologist familiar with reading mouse slides and familiar with the consensus medical nomenclature used in mouse pathology. Likewise, it is important that pathologists are consulted as reviewers of manuscripts where histopathology is a key part of the investigation. The absence of pathology expertise in planning, executing and reviewing in vivo research using mice leads to questionable pathology-based findings and conclusions from studies, even in high-impact journals. We discuss the various aspects of this problem, give some examples from the literature and suggest solutions.
Collapse
|
40
|
Ward JM, Youssef SA, Treuting PM. Why Animals Die: An Introduction to the Pathology of Aging. Vet Pathol 2017; 53:229-32. [PMID: 26936750 DOI: 10.1177/0300985815612151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Sundberg JP, Boyd K, Hogenesch H, Nikitin AY, Treuting PM, Ward JM. Training mouse pathologists: 15 years of workshops on the pathology of mouse models of human disease. Lab Anim (NY) 2017; 46:204-206. [PMID: 28422111 DOI: 10.1038/laban.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Rangel R, Lee SC, Hon-Kim Ban K, Guzman-Rojas L, Mann MB, Newberg JY, Kodama T, McNoe LA, Selvanesan L, Ward JM, Rust AG, Chin KY, Black MA, Jenkins NA, Copeland NG. Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression. Proc Natl Acad Sci U S A 2016; 113:E7749-E7758. [PMID: 27849608 PMCID: PMC5137755 DOI: 10.1073/pnas.1613859113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1 Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC.
Collapse
|
43
|
Ward JM. Canine Mammary Neoplasms. Vet Pathol 2016. [DOI: 10.1177/0300985875012005-00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Abstract
As many as 5% of human cancers appear to be of hereditable etiology. Of the more than 50 characterized familial cancer syndromes, most involve disease affecting multiple organs and many can be traced to one or more abnormalities in specific genes. Studying these syndromes in humans is a difficult task, especially when it comes to genes that may manifest themselves early in gestation. It has been made somewhat easier with the development of genetically engineered mice (GEM) that phenotypically mimic many of these inheritable human cancers. The past 15 years has seen the establishment of mouse lines heterozygous or homozygous null for genes known or suspected of being involved in human cancer syndromes, including APC, ATM, BLM, BRCA1, BRCA2, LKB1, MEN1, MLH, MSH, NF1, TP53, PTEN, RB1, TSC1, TSC2, VHL, and XPA. These lines not only provide models for clinical disease and pathology, but also provide avenues to investigate molecular pathology, gene-gene and protein-tissue interaction, and, ultimately, therapeutic intervention. Possibly of even greater importance, they provide a means of looking at placental and fetal tissues, where genetic abnormalities are often first detected and where they may be most easily corrected. We will review these mouse models, examine their usefulness in medical research, and furnish sources of animals and references.
Collapse
|
45
|
Yoneda M, Xu L, Kajiyama H, Kawabe S, Paiz J, Ward JM, Kimura S. Secretoglobin Superfamily Protein SCGB3A2 Alleviates House Dust Mite-Induced Allergic Airway Inflammation in Mice. Int Arch Allergy Immunol 2016; 171:36-44. [PMID: 27820933 PMCID: PMC5127774 DOI: 10.1159/000450788] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Secretoglobin (SCGB) 3A2, a novel, lung-enriched, cytokine-like, secreted protein of small molecular weight, was demonstrated to exhibit various biological functions including anti-inflammatory, antifibrotic and growth-factor activities. Anti-inflammatory activity was uncovered using the ovalbumin-induced allergic airway inflammation model. However, further validation of this activity using knockout mice in a different allergic inflammation model is necessary in order to establish the antiallergic inflammatory role for this protein. METHODS Scgb3a2-null (Scgb3a2-/-) mice were subjected to nasal inhalation of Dermatophagoides pteronyssinus extract for 5 days/week for 5 consecutive weeks; control mice received nasal inhalation of saline as a comparator. Airway inflammation was assessed by histological analysis, the number of inflammatory cells and various Th2-type cytokine levels in the lungs and bronchoalveolar lavage fluids by qRT-PCR and ELISA, respectively. RESULTS Exacerbated inflammation was found in the airway of Scgb3a2-/- mice subjected to house dust mite (HDM)-induced allergic airway inflammation compared with saline-treated control groups. All the inflammation end points were increased in the Scgb3a2-/- mice. The Ccr4 and Ccl17 mRNA levels were higher in HDM-treated lungs of Scgb3a2-/- mice than wild-type mice or saline-treated Scgb3a2-/- mice, whereas no changes were observed for Ccr3 and Ccl11 mRNA levels. CONCLUSIONS These results demonstrate that SCGB3A2 has an anti-inflammatory activity in the HDM-induced allergic airway inflammation model, in which SCGB3A2 may modulate the CCR4-CCL17 pathway. SCGB3A2 may provide a useful tool to treat allergic airway inflammation, and further studies on the levels and function of SCGB3A2 in asthmatic patients are warranted.
Collapse
|
46
|
Delaney MA, Ward JM, Walsh TF, Chinnadurai SK, Kerns K, Kinsel MJ, Treuting PM. Response to "Regarding Mole-rats and Cancer". Vet Pathol 2016; 53:1266-1267. [PMID: 27733704 DOI: 10.1177/0300985816658773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Mann KM, Newberg JY, Black MA, Jones DJ, Amaya-Manzanares F, Guzman-Rojas L, Kodama T, Ward JM, Rust AG, van der Weyden L, Yew CCK, Waters JL, Leung ML, Rogers K, Rogers SM, McNoe LA, Selvanesan L, Navin N, Jenkins NA, Copeland NG, Mann MB. Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq. Nat Biotechnol 2016; 34:962-72. [PMID: 27479497 PMCID: PMC6124494 DOI: 10.1038/nbt.3637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/20/2016] [Indexed: 02/03/2023]
Abstract
A central challenge in oncology is how to kill tumors containing heterogeneous cell populations defined by different combinations of mutated genes. Identifying these mutated genes and understanding how they cooperate requires single-cell analysis, but current single-cell analytic methods, such as PCR-based strategies or whole-exome sequencing, are biased, lack sequencing depth or are cost prohibitive. Transposon-based mutagenesis allows the identification of early cancer drivers, but current sequencing methods have limitations that prevent single-cell analysis. We report a liquid-phase, capture-based sequencing and bioinformatics pipeline, Sleeping Beauty (SB) capture hybridization sequencing (SBCapSeq), that facilitates sequencing of transposon insertion sites from single tumor cells in a SB mouse model of myeloid leukemia (ML). SBCapSeq analysis of just 26 cells from one tumor revealed the tumor's major clonal subpopulations, enabled detection of clonal insertion events not detected by other sequencing methods and led to the identification of dominant subclones, each containing a unique pair of interacting gene drivers along with three to six cooperating cancer genes with SB-driven expression changes.
Collapse
|
48
|
Kodama T, Bard-Chapeau EA, Newberg JY, Kodama M, Rangel R, Yoshihara K, Ward JM, Jenkins NA, Copeland NG. Two-Step Forward Genetic Screen in Mice Identifies Ral GTPase-Activating Proteins as Suppressors of Hepatocellular Carcinoma. Gastroenterology 2016; 151:324-337.e12. [PMID: 27178121 DOI: 10.1053/j.gastro.2016.04.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/24/2016] [Accepted: 04/27/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS High-throughput sequencing technologies have identified thousands of infrequently mutated genes in hepatocellular carcinomas (HCCs). However, high intratumor and intertumor heterogeneity, combined with large numbers of passenger mutations, have made it difficult to identify driver mutations that contribute to the development of HCC. We combined transposon mutagenesis with a high-throughput screen of a small-hairpin RNA (shRNA) library to identify genes and pathways that contribute to HCC development. METHODS Sleeping beauty transposons were mobilized in livers of transgenic mice predisposed to develop hepatocellular adenoma and HCC owing to expression of the hepatitis B virus surface antigen. This whole-genome mutagenesis technique was used to generate an unbiased catalogue of candidate cancer genes (CCGs). Pooled shRNA libraries targeting 250 selected CCGs then were introduced into immortalized mouse liver cells and the cells were monitored for their tumor-forming ability after injection into nude mice. RESULTS Transposon-mediated mutagenesis identified 1917 high-confident CCGs and highlighted the importance of Ras signaling in the development of HCC. Subsequent pooled shRNA library screening of 250 selected CCGs validated 27 HCC tumor-suppressor genes. Individual shRNA knockdown of 4 of these genes (Acaa2, Hbs1l, Ralgapa2, and Ubr2) increased the proliferation of multiple human HCC cell lines in culture and accelerated the formation of xenograft tumors in nude mice. The ability of Ralgapa2 to promote HCC cell proliferation and tumor formation required its inhibition of Rala and Ralb. Dual inhibition of Ras signaling via Ral and Raf, using a combination of small-molecule inhibitor RBC8 and sorafenib, reduced the proliferation of HCC cells in culture and completely inhibited their growth as xenograft tumors in nude mice. CONCLUSIONS In a 2-step forward genetic screen in mice, we identified members of the Ral guanosine triphosphatase-activating protein pathway and other proteins as suppressors of HCC cell proliferation and tumor growth. These proteins might serve as therapeutic targets for liver cancer.
Collapse
|
49
|
Ward JM, Nikolov NP, Tschetter JR, Kopp JB, Gonzalez FJ, Kimura S, Siegel RM. Progressive Glomerulonephritis and Histiocytic Sarcoma Associated with Macrophage Functional Defects in CYP1B1-Deficient Mice. Toxicol Pathol 2016; 32:710-8. [PMID: 15580705 DOI: 10.1080/01926230490885706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cytochrome P450 CYP1B1 enzyme metabolically activates polycyclic aromatic hydrocarbons and is a major P450 isoenzyme in human monocytes and macrophages. We have shown previously that mice deficient in CYP1B1 were resistant to induced tumors after 7,12-dimethylbenz[a]anthracene exposure. The pathology of aging CYP1B1 null mice on a B6; 129 background was studied in groups of 29 males and 30 females. By 12 months, 50% of the female mice had developed a unusual progressive glomerulonephritis while males had similar renal lesions later in life. This disease followed a sequence of proliferative, membranoproliferative and sclerotic glomerulonephritis. Anti-DNA antibodies were found in the blood of the mice along with immune deposits containing immunoglobulins in subepithelial locations of the glomerular basement membrane. The lesions were unlike those found in aging wild-type B6;129 mice or mice of other strains. We found that macrophages from CYP1B1-null mice were impaired in the phagocytosis of apoptotic, necrotic, and opsonized cells. This suggests a generalized defect in the phagocytic activity of CYP1B1-null mouse macrophages. Male mice also developed a high incidence (62—64%) of histiocytic sarcomas. Our study provides evidence that deficiency of CYP1B1 can play a role in the development of glomerular disease, normal processing of catabolic DNA and tumors of the mononuclear phagocyte system. The function of CYP1B1 in histiocytes and macrophages may involve both self-tolerance and tumor suppression.
Collapse
|
50
|
|