26
|
Bao HL, Liu LY, Fang LW, Cong S, Fu ZT, Tang JL, Yang S, Shi WW, Fan M, Cao MQ, Guo XL, Sun JX, Geng CZ, Duan XN, Yu ZG, Wang LH. [The Breast Cancer Cohort Study in Chinese Women: the methodology of population-based cohort and baseline characteristics]. ZHONGHUA LIU XING BING XUE ZA ZHI = ZHONGHUA LIUXINGBINGXUE ZAZHI 2020; 41:2040-2045. [PMID: 33378814 DOI: 10.3760/cma.j.cn112338-20200507-00695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: Breast cancer has been the first cancer among women with the incidence increasing gradually. In September 2016, the Breast Cancer Cohort Study in Chinese Women (BCCS-CW) was initiated, aiming to establish a standardized and sharable breast cancer-specific cohort by integrating the existing cohort resource and improving the quality of follow-up. The BCCS-CW may provide a research basis and platform for the precision prevention and treatment of breast cancer in etiology identification, prevention, early diagnosis, treatment, and prognosis prediction. Methods: We conducted a population-based perspective cohort by questionnaire interview, anthropometry, biological specimens, breast ultrasound and mammography. The cohort was followed by using regional health surveillance and ad hoc survey. Results: Finally, BCCS-CW included 112 118 women, in which 55 419 women completed the standardized investigation and blood specimens were collected from 54 304 women. The mean age of participants was 51.7 years old, 62.7% were overweight or obese, and 48.9% were menopausal. Conclusion: The BCCS-CW will provide population-based cohort resource and research platform for the precise prevention and treatment of breast cancer in Chinese women.
Collapse
|
27
|
Zheng MS, Liu YS, Yuan T, Liu LY, Li ZY, Huang XL. [Research progress on chemical constituents of Citrullus colocynthis and their pharmacological effects]. ZHONGGUO ZHONG YAO ZA ZHI = ZHONGGUO ZHONGYAO ZAZHI = CHINA JOURNAL OF CHINESE MATERIA MEDICA 2020; 45:816-824. [PMID: 32237481 DOI: 10.19540/j.cnki.cjcmm.20191104.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Citrullus colocynthis is widely distributed in the desert regions of the world. C. colocynthis has shown to improve constipation, liver diseases, jaundice, typhoid fever, diabetes and asthma in traditional use. As a kind of exterritorialy medicinal material, C. colocynthis has been used in China and introduced successfully. The main active ingredients of C. colocynthis are cucurbitacin, flavonoids, alkaloids and phenolic acids, which have been proven to have antioxidant, anti-diabetic, anti-pathogenic microorganisms and anti-cancer activities in modern pharmacological research. This paper reviews the traditional application, chemical composition and pharmacological effects of C. colocynthis, and provides reference for the in-depth study for the efficacy and mechanism of different components of C. colocynthis.
Collapse
|
28
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Pan Y, Papenbrock M, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schnier C, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan L, Yan WB, Yan WC, Yan WC, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YXZ, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. Study of Open-Charm Decays and Radiative Transitions of the X(3872). PHYSICAL REVIEW LETTERS 2020; 124:242001. [PMID: 32639837 DOI: 10.1103/physrevlett.124.242001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The processes X(3872)→D^{*0}D[over ¯]^{0}+c.c.,γJ/ψ,γψ(2S), and γD^{+}D^{-} are searched for in a 9.0 fb^{-1} data sample collected at center-of-mass energies between 4.178 and 4.278 GeV with the BESIII detector. We observe X(3872)→D^{*0}D^{0}[over ¯]+c.c. and find evidence for X(3872)→γJ/ψ with statistical significances of 7.4σ and 3.5σ, respectively. No evident signals for X(3872)→γψ(2S) and γD^{+}D^{-} are found, and the upper limit on the relative branching ratio R_{γψ}≡{B[X(3872)→γψ(2S)]}/{B[X(3872)→γJ/ψ]}<0.59 is set at 90% confidence level. Measurements of branching ratios relative to decay X(3872)→π^{+}π^{-}J/ψ are also reported for decays X(3872)→D^{*0}D^{0}[over ¯]+c.c.,γψ(2S),γJ/ψ, and γD^{+}D^{-}, as well as the non-D^{*0}D^{0}[over ¯] three-body decays π^{0}D^{0}D^{0}[over ¯] and γD^{0}D^{0}[over ¯].
Collapse
|
29
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Ambrose D, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen J, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Determination of Strong-Phase Parameters in D→K_{S,L}^{0}π^{+}π^{-}. PHYSICAL REVIEW LETTERS 2020; 124:241802. [PMID: 32639796 DOI: 10.1103/physrevlett.124.241802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
We report the most precise measurements to date of the strong-phase parameters between D^{0} and D[over ¯]^{0} decays to K_{S,L}^{0}π^{+}π^{-} using a sample of 2.93 fb^{-1} of e^{+}e^{-} annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider. Our results provide the key inputs for a binned model-independent determination of the Cabibbo-Kobayashi-Maskawa angle γ/ϕ_{3} with B decays. Using our results, the decay model sensitivity to the γ/ϕ_{3} measurement is expected to be between 0.7° and 1.2°, approximately a factor of three smaller than that achievable with previous measurements, based on the studies of the simulated data. The improved precision of this work ensures that measurements of γ/ϕ_{3} will not be limited by knowledge of strong phases for the next decade. Furthermore, our results provide critical input for other flavor-physics investigations, including charm mixing, other measurements of CP violation, and the measurement of strong-phase parameters for other D-decay modes.
Collapse
|
30
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JC, Li JL, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Lin DX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LY, Liu Q, Liu SB, Liu S, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Papenbrock M, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schnier C, Schoenning K, Shan DC, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Song YX, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZY, Wang Z, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan L, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of a Resonant Structure in e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0}. PHYSICAL REVIEW LETTERS 2020; 124:112001. [PMID: 32242687 DOI: 10.1103/physrevlett.124.112001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
A partial-wave analysis is performed for the process e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0} at the center-of-mass energies ranging from 2.000 to 2.644 GeV. The data samples of e^{+}e^{-} collisions, collected by the BESIII detector at the BEPCII collider with a total integrated luminosity of 300 pb^{-1}, are analyzed. The total Born cross sections for the process e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0}, as well as the Born cross sections for the subprocesses e^{+}e^{-}→ϕπ^{0}π^{0}, K^{+}(1460)K^{-}, K_{1}^{+}(1400)K^{-}, K_{1}^{+}(1270)K^{-}, and K^{*+}(892)K^{*-}(892), are measured versus the center-of-mass energy. The corresponding results for e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0} and ϕπ^{0}π^{0} are consistent with those of BABAR with better precision. By analyzing the cross sections for the four subprocesses, K^{+}(1460)K^{-}, K_{1}^{+}(1400)K^{-}, K_{1}^{+}(1270)K^{-}, and K^{*+}(892)K^{*-}(892), a structure with mass M=(2126.5±16.8±12.4) MeV/c^{2} and width Γ=(106.9±32.1±28.1) MeV is observed with an overall statistical significance of 6.3σ, although with very limited significance in the subprocesses e^{+}e^{-}→K_{1}^{+}(1270)K^{-} and K^{*+}(892)K^{*-}(892). The resonant parameters of the observed structure suggest it can be identified with the ϕ(2170), thus the results provide valuable input to the internal nature of the ϕ(2170).
Collapse
|
31
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen J, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao Y, Gao Y, Gao YG, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang LQ, Huang XT, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JC, Li K, Li LK, Li L, Li PL, Li PR, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Lin DX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi M, Qian S, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang WP, Wang X, Wang XF, Wang XL, Wang YD, Wang Y, Wang Y, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZY, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu JF, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JW, Zhang JY, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao J, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Measurement of Proton Electromagnetic Form Factors in e^{+}e^{-}→pp[over ¯] in the Energy Region 2.00-3.08 GeV. PHYSICAL REVIEW LETTERS 2020; 124:042001. [PMID: 32058790 DOI: 10.1103/physrevlett.124.042001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/19/2019] [Indexed: 06/10/2023]
Abstract
The process of e^{+}e^{-}→pp[over ¯] is studied at 22 center-of-mass energy points (sqrt[s]) from 2.00 to 3.08 GeV, exploiting 688.5 pb^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section (σ_{pp[over ¯]}) of e^{+}e^{-}→pp[over ¯] is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (|G_{E}/G_{M}|) and the value of the effective (|G_{eff}|), electric (|G_{E}|), and magnetic (|G_{M}|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. |G_{E}/G_{M}| and |G_{M}| are determined with high accuracy, providing uncertainties comparable to data in the spacelike region, and |G_{E}| is measured for the first time. We reach unprecedented accuracy, and precision results in the timelike region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on nonperturbative quantum chromodynamics.
Collapse
|
32
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales CM, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Measurement of the Cross Section for e^{+}e^{-}→Ξ^{-}Ξ[over ¯]^{+} and Observation of an Excited Ξ Baryon. PHYSICAL REVIEW LETTERS 2020; 124:032002. [PMID: 32031834 DOI: 10.1103/physrevlett.124.032002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Using a total of 11.0 fb^{-1} of e^{+}e^{-} collision data with center-of-mass energies between 4.009 and 4.6 GeV and collected with the BESIII detector at BEPCII, we measure fifteen exclusive cross sections and effective form factors for the process e^{+}e^{-}→Ξ^{-}Ξ[over ¯]^{+} by means of a single baryon-tag method. After performing a fit to the dressed cross section of e^{+}e^{-}→Ξ^{-}Ξ[over ¯]^{+}, no significant ψ(4230) or ψ(4260) resonance is observed in the Ξ^{-}Ξ[over ¯]^{+} final states, and upper limits at the 90% confidence level on Γ_{ee}B for the processes ψ(4230)/ψ(4260)→Ξ^{-}Ξ[over ¯]^{+} are determined. In addition, an excited Ξ baryon at 1820 MeV/c^{2} is observed with a statistical significance of 6.2-6.5σ by including the systematic uncertainty, and the mass and width are measured to be M=(1825.5±4.7±4.7) MeV/c^{2} and Γ=(17.0±15.0±7.9) MeV, which confirms the existence of the J^{P}=3/2^{-} state Ξ(1820).
Collapse
|
33
|
Liu LY, Shi BY, Wu LP, Gao AB. [The influence of dihydrotestosterone on cytokine releases in male mice model with Graves disease]. ZHONGHUA NEI KE ZA ZHI 2020; 59:47-51. [PMID: 31887836 DOI: 10.3760/cma.j.issn.0578-1426.2020.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To study the influences of dihydrotestosterone (DHT) on the development of experimental autoimmune Graves disease (EAGD), and to observe the effect of DHT on cytokines in male BALB/c mice model. Methods: Male BALB/c mice aged 6-8 weeks were divided into 4 groups using random number table: (1) control group; (2) EAGD group; (3) placebo group; (4) DHT group. EAGD mice were induced with an adenovirus expressing the human thyroid stimulating hormone receptor antibody A-subunit (Ad-TSHR289). DHT (5mg) or a matching placebo were implanted one week before the first immunization. Thyroid hormones were detected with radioimmunoassay kit.. Cytokines [such as interferonγ (IFNγ), interleukin (IL)-4, IL-10, IL-9, and IL-17] producing cells from the spleen were detected using flow cytometry. Results: As expected Ad-TSHR289 treatment increased total thyroxine [EAGD group vs. control group: (117.76±32.69) nmol/L vs. (33.08±12.61) nmol/L, P<0.0001] and free thyroxine [EAGD group vs. control group: (15.01±11.55) pmol/L vs. (3.55±1.88) pmol/L, P<0.0001]. Treatment of DHT slightly lowered thyroid hormones [DHT group vs. placebo group: total thyroxine (114.80±44.27) nmol/L vs. (123.17±77.73) nmol/L; free thyroxine (13.48±6.01) pmol/L vs. (14.19±12.65) pmol/L], without significant difference (all P>0.05)]. However, the percentage of IL-10, but not IFN γ, IL-4, IL-9 and IL-17, secreted spleen cells increased in DHT group than in the placebo group [(7.11±3.29)% vs. (3.51±1.36)%, P<0.05]. Conclusion: The effects of DHT on thyroid hormone are mild. It might play an immunomodulatory role in the male mouse Graves disease model by up-regulating the cytokine IL-10.
Collapse
|
34
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of the Semileptonic D^{+} Decay into the K[over ¯]_{1}(1270)^{0} Axial-Vector Meson. PHYSICAL REVIEW LETTERS 2019; 123:231801. [PMID: 31868427 DOI: 10.1103/physrevlett.123.231801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Indexed: 06/10/2023]
Abstract
By analyzing a 2.93 fb^{-1} data sample of e^{+}e^{-} collisions, recorded at a center-of-mass energy of 3.773 GeV with the BESIII detector operated at the BEPCII collider, we report the first observation of the semileptonic D^{+} transition into the axial-vector meson D^{+}→K[over ¯]_{1}(1270)^{0}e^{+}ν_{e} with a statistical significance greater than 10σ. Its decay branching fraction is determined to be B[D^{+}→K[over ¯]_{1}(1270)^{0}e^{+}ν_{e}]=(2.30±0.26_{-0.21}^{+0.18}±0.25)×10^{-3}, where the first and second uncertainties are statistical and systematic, respectively, and the third originates from the input branching fraction of K[over ¯]_{1}(1270)^{0}→K^{-}π^{+}π^{0}.
Collapse
|
35
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales CM, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of the Leptonic Decay D^{+}→τ^{+}ν_{τ}. PHYSICAL REVIEW LETTERS 2019; 123:211802. [PMID: 31809130 DOI: 10.1103/physrevlett.123.211802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 06/10/2023]
Abstract
We report the first observation of D^{+}→τ^{+}ν_{τ} with a significance of 5.1σ. We measure B(D^{+}→τ^{+}ν_{τ})=(1.20±0.24_{stat}±0.12_{syst})×10^{-3}. Taking the world average B(D^{+}→μ^{+}ν_{μ})=(3.74±0.17)×10^{-4}, we obtain R_{τ/μ}=Γ(D^{+}→τ^{+}ν_{τ})/Γ(D^{+}→μ^{+}ν_{μ})=3.21±0.64_{stat}±0.43_{syst}., which is consistent with the standard model expectation of lepton flavor universality. Using external inputs, our results give values for the D^{+} decay constant f_{D^{+}} and the Cabibbo-Kobayashi-Maskawa matrix element |V_{cd}| that are consistent with, but less precise than, other determinations.
Collapse
|
36
|
Dun S, Zou LP, Zhang MN, Wang YY, He W, Chen HM, Hu LY, Chen XQ, Lu Q, Pang LY, Liu LY, Tang LN, Wang B. [Rapamycin in the treatment of renal diseases associated with tuberous sclerosis complex]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2019; 57:852-856. [PMID: 31665839 DOI: 10.3760/cma.j.issn.0578-1310.2019.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the efficacy and safety of rapamycin in children with tuberous sclerosis complex (TSC) associated renal disease. Methods: A prospective self-control study was conducted. The clinical data of 92 children diagnosed with tuberous sclerosis complex associated kidney disease at the People's Liberation Army General Hospital from January 2011 to January 2019 were collected. The long-term rapamycin treatment for all patients initiated at 1 mg/(m(2)·d), which was gradually adjusted to reach a blood concentration of 5-10 μg/L. The changes of the maximum diameter of renal lesions in children after rapamycin treatment were observed and analyzed with Wilcoxon test. Results: Ninety-two children, including 52 males and 40 females, who met the criteria were analyzed. Sixty patients had only renal angiomyolipoma(RAML), while 24 patients had only multiple renal cysts(MRC), and 8 patients had both lesions. The age of TSC diagnosis was 16.0 (7.0, 42.0) months, and the age of initial treatment with rapamycin was 63.5 (21.0, 103.0) months. The follow-up lasted for 12.0 (4.0, 23.0) months. Sequencing of TSC1 and TSC2 genes was performed in 54 children with TSC, including 3 patients (6%) with mutations in TSC1 gene and 51 patients (94%) with mutations in TSC2 gene. The maximum RAML diameter before treatment was 7.0 (4.0, 9.0) mm. The best effect reached at 3 months of treatment, with the diameter of 4.0 (0,7.0) mm. The maximum diameters at 6 months, 1 year and 1-2 years were 5.0 (0,9.8) mm, 5.0 (1.5, 8.5) mm, 5.5 (3.0, 9.0) mm, respectively, and were significantly different from the baseline (Z=-2.404,-2.350,-2.750,P=0.016,0.019,0.006, respectively). The maximum diameter after 2-3 years, and ≥3 years were 5.0 (3.9,7.0) mm and 6.0 (1.0, 11.0) mm, without significant difference from the baseline (Z=-0.856,-0.102,P=0.393,0.919, respectively).The maximum diameters of MRC after 3 months, 6 months, 1 year,1-2 years, 2-3 years, and ≥3 years were 11.0 (5.0, 14.0) mm,3.0 (0.0,11.0) mm,5.0 (0,21.0) mm,0 (0,14.0) mm,0 (0,10.0) mm, and 0 (0,18.3) mm, respectively, but were not significantly different rom the baseline (7.0 (5.0, 15.7) mm)(Z=-0.944,-1.214,-1.035,-1.896,-1.603,-1.214,P=0.345,0.225,0.301,0.058,0.109,0.225, respectively).Twenty-nine patients (32%) had oral ulcers during the entire treatment period, and no serious adverse reactions were observed. Conclusions: Rapamycin could decrease the diameter of TSC-related RAML, but could not inhibit the growth of cysts. It is well tolerated in the treatment of renal diseases associated with tuberous sclerosis complex.
Collapse
|
37
|
Chu WL, Chai JK, Wang XT, Han SF, Liu LY. [Effects of insulin therapy on skeletal muscle wasting in severely scalded rats and its related mechanism]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2019; 35:333-340. [PMID: 31154730 DOI: 10.3760/cma.j.issn.1009-2587.2019.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To explore the effects of insulin therapy on skeletal muscle wasting (SMW) in severely scalded rats and its related mechanism. Methods: Totally 48 male Wistar rats aged 7-8 weeks were divided into simple scald (SS) group and insulin therapy (IT) group according to the random number table, with 24 rats in each group. After weighing the body mass and measuring the blood glycemic level of the tail end with a glucometer, the rats in the two groups were immersed in hot water at 94 ℃ for 12 seconds to make a full-thickness dorsal scald model involving 30% total body surface area. Rats in group IT were subcutaneously injected with 1 U/kg insulin glargine at 8: 00 a day from post injury day (PID) 1 to 7, whilst rats in group SS were given the same amount of normal saline. Rats in the two groups were given 10 mL/kg enteral nutritional emulsion by intragastric infusion at 8: 00 (after insulin administration), 13: 00, and 18: 00 a day respectively from PID 1 to 7. The blood glycemic levels of tail end of rats in the two groups were measured by glucometer before insulin administration on PID 1-4, 6, and 7 and on every morning of PID 8, 9, 11, 12, and 14. The body mass of rats in the two groups on PID 14 without any treatment was weighed. Eight rats from each group were collected respectively on PID 4, 7, and 14 to harvest tibialis anterior muscle (TAM) samples. The mass of TAM on PID 14 was weighed. The ultrastructural changes of TAM myocytes on PID 7 were observed with transmission electron microscope. The apoptotic rates of TAM myocytes on PID 4, 7, and 14 were assessed by the assay of terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphate-biotin nick end labeling, the expressions of cysteine-aspartic protease-3 (caspase-3) of TAM on PID 4, 7, and 14 were detected with immunohistochemistry, and protein expressions of endoplasmic reticulum (ER) stress (ERS) associated proteins glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein-homologous protein (CHOP), and activated caspase-12 of TAM on PID 4, 7, and 14 were detected with Western blotting. Data were processed with completely random design t test, analysis of variance for repeated measurement, analysis of variance for factorial design, t test, and Bonferroni correction. Results: The blood glycemic level and body mass of rats in the two groups before injury were similar (t=0.204, 0.405, P>0.05). There were no statistically significant differences in blood glycemic levels of rats between the two groups on PID 1, 6, 9, 11, 12, and 14 (t=0.229, 3.339, 1.610, 0.178, 0.181, 0.079, P>0.05). Compared with those of group SS, blood glycemic levels of rats in group IT were significantly lower on PID 2, 3, 4, 7, and 8 (t=7.245, 4.165, 4.609, 4.018, 3.995, P<0.05 or P<0.01). On PID 14, the body mass and TAM mass of rats in group IT were (271±19) g and (0.47±0.05) g respectively, both obviously higher than (254±12) g and (0.43±0.04) g of group SS (t=2.159, 2.375, P<0.05). On PID 7, nuclear pyknosis and deformation, chromosome misdistribution, and ER swelling in TAM myocytes of rats in group SS were observed; the apoptotic alterations and ER swelling of TAM myocytes were alleviated in rats of group IT as compared with those of group SS. The apoptotic rates of TAM myocytes of rats in group IT were obviously lower than those of group SS on PID 4, 7, and 14 (t=4.262, 9.153, 9.799, P<0.01). The expressions of caspase-3 in TAM of rats in group IT were obviously lower than those of group SS on PID 7 and 14 (t=10.429, 7.617, P<0.01). Compared with those of group SS, the protein expressions of GRP78 were obviously increased on PID 4 and 14 (t=4.172, 4.437, P<0.05), the protein expressions of activated caspase-12 were obviously decreased on PID 7 and 14 (t=11.049, 11.181, P<0.01), and the protein expressions of CHOP were obviously decreased on PID 4, 7, and 14 (t=13.837, 9.572, 6.930, P<0.01) in TAM of rats in group IT. Conclusions: Insulin therapy may reduce skeletal muscle myocytes apoptosis and SMW by alleviating ERS in rats with severe scald.
Collapse
|
38
|
Hua CZ, Yu H, Yang LH, Xu HM, Lyu Q, Lu HP, Liu LY, Chen XJ, Wang CQ. [Streptococcal toxic shock syndrome caused by Streptococcus pyogenes: a retrospective study of 15 pediatric cases]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2019; 56:587-591. [PMID: 30078239 DOI: 10.3760/cma.j.issn.0578-1310.2018.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To improve the understanding of clinical characteristics of streptococcal toxic shock syndrome (STSS) caused by Streptococcus pyogenes (S. pyogenes) in children. Methods: A retrospective study was conducted to analyze the clinical data of STSS caused by S. pyogenes (culture-confirmed) in 7 tertiary hospitals during 2010-2017 in China. Clinical and laboratory data were collected by reviewing the medical records. Results: Fifteen cases of STSS, including 9 males, were confirmed and the ages of the patients ranged from 6 months to 15 years, with median age of 3 years. All cases had the positive blood culture for S. pyogenes and only 3 cases had short course of β-lactam treatment before blood culture. Medical evaluation was initiated within (5.1±4.6) days after symptom onset. All patients had fever, and 13 patients had multiple organ dysfunction and 10 patients had disseminated intravascular coagulationl (DIC). Twelve cases had severe pneumonia with or without skin and (or) soft tissue infections. Underlying conditions included giant hemangioma of the skin in 2 patients and varicella in 1 patient. All isolated strains in 14 cases were sensitive to penicillin G, ceftriaxone/cefotaxime, vancomycin, but 12 and 13 isolates were resistant to clindamycin and erythromycin, respectively. Eight patients died, and 5 of them died within 24 hours after admission. One patient was lost to follow-up after intended discharge against medical advice. Conclusion: STSS caused by S. pyogenes in children is a severe syndrome with rapid clinical progression and high mortality rate, and thus the pediatricians should be aware of STSS and immediately initiate aggressive treatment for the suspected cases.
Collapse
|
39
|
Sun NX, Tong LT, Liang TT, Wang LL, Liu LY, Zhou XR, Zhou SM. Effect of Oat and Tartary Buckwheat - Based Food on Cholesterol - Lowering and Gut Microbiota in Hypercholesterolemic Hamsters. J Oleo Sci 2019; 68:251-259. [PMID: 30760672 DOI: 10.5650/jos.ess18221] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nutritional components in oat and tartary buckwheat had been assessed to have cholesterollowering effects. However, The effect of oat and tartary buckwheat based-food (OF) on cholesterol-lowering and gut microbiota in hypercholesterole hamsters was still limited studied because they are usually consumed in whole gran as well as after being processed. In this study, normal diets, high fat diet (HFD) with/without OF were fed to hamsters for 30 days respectively and growth parameters, metabolic parameters, and gut microbiota were investigated, respectively. It was found that OF significantly decreased plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-cholesterol), lowered liver TC, cholesterol ester (CE), and triglycerides (TG) concentrations, and increased fecal weight and bile acids (BA) concentrations, compared with HFD (p < 0.05). Moreover, the concentrations of acetate, propionate, butyrate and total short-chain fatty acids (SCFAs) were significantly increased in hamsters fed with OF, compared with HFD (p < 0.05). OF changed the overall structure of gut microbiota. The relative abundances of Erysipelotrichaceae, Ruminococcaceae, and Lachnospiraceae were decreased and the relative abundance of Eubacteriaceae was increased, compared with HFD. These results suggested that OF could reduce the concentrations of plasma lipid by inhibiting cholesterol absorption in liver and promoting excretions of fecal lipid and BA. And it also increased SCFAs and modulated the gut microbiota effectively to exert the hypocholesterolemic effects.
Collapse
|
40
|
Liu YT, Liu LY, Hu LY. [A novel compound heterozygous mutations in LAMC3 in a boy with infantile spasms]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2018; 56:780-781. [PMID: 30293285 DOI: 10.3760/cma.j.issn.0578-1310.2018.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
41
|
Yu FY, Zhu RN, Deng J, Song QW, Jia LP, Liu LY, Qian Y. [Pathogen spectrum in enteroviral infections among children in Beijing from 2010 to 2016]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2018; 56:575-581. [PMID: 30078237 DOI: 10.3760/cma.j.issn.0578-1310.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: To understand the epidemiological and etiological characteristics of enterovirus (EV)-associated diseases among children in Beijing from 2010 to 2016. Methods: This was a repeated cross-sectional study. The throat swabs were collected from children with probable EV-associated diseases at the Children' s Hospital Affiliated to Capital Institute of Pediatrics from 2010 to 2016. The samples were sent for pan-EV, enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) detection by real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR) . The viral types of non-EV-A71 and non-CV-A16 EV-positive samples were identified using modified RT-PCR and sequencing with CV-A6, EV-A/B group and 5 'UTR universal primers. The constituent ratios of the prevalence of different EV types in different age and gender groups were compared. Results: Of the 2 703 throat swabs, 1 992 (73.7%) samples were positive for EV, including EV-A71 (19.1%, 516/2 703), CV-A16 (24.3%, 658/2 703), CV-A6 (22.2%, 600/2 703), CV-A10 (4.5%, 122/2 703) and other types of EV (3.5%, 95/2 703). There was 1 case of EV-A71 and CV-A16 co-infection. The positive detection rate of EV-A group (excluding EV-A71, CV-A16, CV-A6 and CV-A10) increased from 11.3% (7/62) to 95.2% (59/62) after using the modified VP1-specific primers and PCR amplification conditions. During the period between 2010 and 2012, CV-A16 and EV-A71 predominated in EV-positive samples. However, CV-A6 accounted for 60.7% (68/112) in 2013, much higher than CV-A16 (23.2%, 26/112) and EV-A71 (12.5%, 14/112). In 2014, EVs were mainly of CV-A16 and EV-A71, but CV-A6 was the predominant type in 2015 (68.2%, 232/340) and in 2016 (38.6%, 151/391). The epidemic season of EVs was mostly from April to August, but CV-A6 showed a small epidemic peak from October to November. The male-to-female ratio of EV-positive patients was 1.50∶1, and EV-associated diseases mostly occurred in children under 5 years of age. Younger children were more susceptible to CV-A6 than to EV-A71 and CV-A16. Conclusions: From 2010 to 2016, there was a significant change in the spectrum of EVs in children with EV-associated diseases in Beijing. Since 2013, non-EV-A71 and non-CV-A16 increased, and CV-A6 gradually became one of the major pathogens of EV-associated diseases. The modified PCR primers and amplification conditions can effectively improve the reliability of test results.
Collapse
|
42
|
Guo LL, Zheng H, Lyu YL, Liu LY, Kong F, Wang SR. Trends in atmospheric particles and their light extinction performance between 1980 and 2015 in Beijing, China. CHEMOSPHERE 2018; 205:52-61. [PMID: 29680305 DOI: 10.1016/j.chemosphere.2018.04.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
This study explored the interdecadal variations and their horizontal and vertical light extinction performances of atmospheric particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), particulate matter with aerodynamic diameters ≤ 10 μm (PM10), and total suspended particulates (TSPs) in Beijing from 1980 to 2015, using data available from historical publications. Prominent declines of PM2.5, PM10, and TSPs were detected with long-term linear trends of -6.7, -4.3, and -1.9 μg m-3 yr-1, respectively. Generally, on the annual scale during the studied period, it was found that PM2.5 displayed negative correlation (R2 = 0.38, p < 0.01) with visibility and positive correlation (R2 = 0.41, p < 0.01) with aerosol optical depth (AOD). Comparably, PM10 exhibited robust negative correlation (R2 = 0.61, p < 0.01) with visibility and positive correlation (R2 = 0.82, p < 0.01) with AOD. The complicated interdecadal variations and light extinction performances of PM2.5 were found, suggesting the changes on particle composition and vertical distribution of PM2.5 in the atmosphere.
Collapse
|
43
|
Ren YX, Ma JX, Zhao F, An JB, Geng YX, Liu LY. Effects of Curcumin on Epidermal Growth Factor in Proliferative Vitreoretinopathy. Cell Physiol Biochem 2018; 47:2136-2146. [PMID: 29975931 DOI: 10.1159/000491525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 05/25/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Proliferative vitreoretinopathy (PVR) is a common refractory eye disease that causes blindness and occurs after retinal detachment or retinal reattachment. Epidermal growth factor (EGF) has been shown to play an important role in the migration and proliferation of retinal pigment epithelium (RPE) cells, which promote PVR. Curcumin inhibits RPE cell proliferation, but it is not known whether it participates in the formation of PVR. Curcumin regulates the biological functions of EGF, which plays important roles in the development of PVR. This study aimed to evaluate the effect of curcumin on the regulation of EGF in PVR. METHODS Rabbit RPE cells were cultured, and EGF expression was detected by immunocytochemistry. MTT assay was conducted to determine cell proliferation induced by different concentrations of EGF. Immunocytochemical staining was used to detect EGF expression after treatment with curcumin at varying concentrations. Real-time PCR (RT-PCR) and western blot analysis were used to detect the concentrations of EGF mRNA and protein after treatment with curcumin. After RPE cells and curcumin were injected into experimental rabbit eyes, the cornea, aqueous humor, lens, and vitreous opacity were observed and recorded simultaneously by indirect ophthalmoscopy, fundus color photography, and B-ultrasonography. The vitreous body was extracted, and the EGF content in the vitreous humor was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS At each time point (24, 48, and 72 h), cell proliferation gradually increased with increasing EGF concentrations (0, 3, 6, and 9 ng/mL) in a dose-dependent manner. Cell proliferation between EGF concentrations of 9 and 12 ng/mL were no different, which suggested that 9 ng/mL EGF was the best concentration to use to stimulate RPE cell proliferation in vitro. Under all EGF concentrations (0, 3, 6, 9, and 12 ng/mL), RPE cell proliferation increased with time (from 24 to 72 h), suggesting a time-effect relationship. Curcumin downregulated EGF expression in RPE cells, which also indicated time-effect and dose-effect relationships. The best curcumin concentration for the inhibition of EGF expression was 15 µg/mL. RT-PCR and western blot analyses indicated that the EGF mRNA and expression of the protein in RPE cells treated with curcumin significantly decreased with time. Ocular examinations revealed that the vitreous opacity was lower and the proliferative membrane was thinner in the curcumin group compared with the control group. The PVR grade and the incidence of retinal detachment were significantly lower in the experimental group than in the control group. ELISA results showed that the EGF content in vitreous humor was higher in the control group than in the curcumin group. The curcumin and control groups were significantly different at each time point. CONCLUSION Curcumin inhibited RPE cell proliferation by downregulating EGF and thus effectively inhibited the initiation and development of PVR.
Collapse
|
44
|
Liu LY, Zou LP, Wang J. [Neurofibromatosis typeⅠmanifested as early-onset epileptic encephalopathy and bilateral basal ganglia lesions]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2018; 56:464-465. [PMID: 29886613 DOI: 10.3760/cma.j.issn.0578-1310.2018.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
45
|
Zhao XJ, Liu LY, Li C, Yan X, Gao ZP, Liu Y, Wang BD, Guan T, Wei ZQ. [Epidemiological characteristics of a cutaneous anthrax outbreak in Huairou District of Beijing]. ZHONGHUA YU FANG YI XUE ZA ZHI [CHINESE JOURNAL OF PREVENTIVE MEDICINE] 2017; 51:1050-1052. [PMID: 29136755 DOI: 10.3760/cma.j.issn.0253-9624.2017.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
46
|
Zhao LY, Tong DD, Xue M, Ma HL, Liu SY, Yang J, Liu YX, Guo B, Ni L, Liu LY, Qin YN, Wang LM, Zhao XG, Huang C. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis 2017; 6:e368. [PMID: 28759023 PMCID: PMC5541712 DOI: 10.1038/oncsis.2017.60] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 02/08/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is involved in the carcinogenesis and progression of multiple types of cancer. However, its precise role in gastric cancer (GC) and the relevant molecular mechanism remain unknown. In the present study, we found that miR-638 levels were lower in GC tissues and GC cell lines than in adjacent normal tissues and normal gastric epithelial cell lines, respectively. Low miR-638 levels were associated with poor tumor differentiation, tumor size and lymph node metastasis. MeCP2 expression levels were higher in GC tissues than in adjacent normal tissues. It was found that miR-638 inhibited GC cell proliferation, colony formation, G1–S transition and tumor growth, and induced cell apoptosis by directly targeting MeCP2. MeCP2 promoted GC cell proliferation, colony formation and G1–S cell-cycle transition, and suppressed apoptosis. Molecular mechanistic investigations were performed using an integrated approach with a combination of microarray analysis, chromatin immunoprecipitation sequencing and a reporter gene assay. The results showed that MeCP2 bound to the methylated CpG islands of G-protein-coupled receptor kinase-interacting protein 1 (GIT1) promoter and upregulated its expression, thereby activating the MEK1/2–ERK1/2 signaling pathway and promoting GC cell proliferation. Taken together, our study demonstrates that MeCP2, a target of miR-638, facilitates GC cell proliferation and induces cell-cycle progression through activation of the MEK1/2–ERK1/2 signaling pathway by upregulating GIT1. The findings suggest that MeCP2 plays a significant role in GC progression, and may serve as a potential target for GC therapy.
Collapse
|
47
|
Li YL, Zhai LC, Ji JH, Liu LY. Detection of combined procalcitonin and c-reactive protein applied in the diagnosis of bacterial infections. J BIOL REG HOMEOS AG 2017; 31:177-181. [PMID: 28337889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, procalcitonin and C-reactive protein have been used as important indexes in the detection of inflammation. In order to analyze the combined detection of procalcitonin and C-reactive protein in infected patients, 57 subjects in the Clinical Laboratory of Zhengzhou Maternal and Child Health Hospital with a bacterial infection were selected as the observation group. Correspondingly, 57 non-infected subjects were selected for the control group. The procalcitonin and C-reactive protein levels in the included cases were analyzed and compared by extracting peripheral blood. The results showed that the two indexes of C-reactive protein (46.13±8.24 mg/L) and procalcitonin (6.61±3.45 ug/L) of the observation group were significantly higher than those of the control group (P less than 0.05). The positive rates of C-reactive protein (71.93%) and procalcitonin (91.23%) of the observation group were significantly higher than those of the control group (P less than0.05). Within the observation group, the C-reactive protein and procalcitonin levels in the infected patients after 2 and 3 days of treatment, decreased significantly (P less than 0.05). This study indicates that the combined detection of procalcitonin and C-reactive protein in patients with bacterial infections is effective and can be used in clinical settings.
Collapse
|
48
|
He LB, Wang H, Luo LF, Jiang SH, Liu LY, Li YM, Huang R, Liao LJ, Zhu ZY, Wang YP. Characterization, expression analysis and localization pattern of toll-like receptor 1 (tlr1) and toll-like receptor 2 (tlr2) genes in grass carp Ctenopharyngodon idella. JOURNAL OF FISH BIOLOGY 2016; 89:1434-1440. [PMID: 27221024 DOI: 10.1111/jfb.12997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
In this study, the toll-like receptor 1 (tlr1) and toll-like receptor 2 (tlr2) genes of grass carp Ctenopharyngodon idella were cloned and characterized. tlr1 and tlr2 were found to be highly expressed in immune system organs such as spleen, middle kidney and heart kidney. The expression level of tlr1 and tlr2 was found to be up-regulated at the later stage of viral challenge process. Moreover, subcellular localization indicated that Tlr1 and Tlr2 shared similar localization pattern and both of them may locate in the plasma membrane of transfected cells.
Collapse
|
49
|
Tian SS, Song P, Liu LY. Tetrahydroxystilbene Glucoside Exerts Cytoprotective Effect against Hydrogen Peroxide-induced Cell Death Involving ROS Production and Antioxidant Enzyme Activation. Indian J Pharm Sci 2016. [DOI: 10.4172/pharmaceutical-sciences.1000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
50
|
Liu LY, Yu H, Bai JL, Zeng P, Miao DD, Chen F. Verification of the correlation between progression-free survival and overall survival considering magnitudes of survival post- progression in the treatment of four types of cancer. Asian Pac J Cancer Prev 2015; 16:1001-6. [PMID: 25735320 DOI: 10.7314/apjcp.2015.16.3.1001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With development and application of new and effective anti-cancer drugs, the median survival post-progression (SPP) is often prolonged, and the role of the median SPP on surrogacy performance should be considered. To evaluate the impact of the median SPP on the correlation between progression-free survival (PFS) and overall survival (OS), we performed simulations for treatment of four types of cancer, advanced gastric cancer (AGC), metastatic colorectal cancer (MCC), glioblastoma (GBM), and advanced non-small-cell lung cancer (ANSCLC). MATERIALS AND METHODS The effects of the median SPP on the statistical properties of OS and the correlation between PFS and OS were assessed. Further, comparisons were made between the surrogacy performance based on real data from meta-analyses and simulation results with similar scenarios. RESULTS The probability of a significant gain in OS and HR for OS was decreased by an increase of the SPP/ OS ratio or by a decrease of observed treatment benefit for PFS. Similarly, for each of the four types of cancer, the correlation between PFS and OS was reduced as the median SPP increased from 2 to 12 months. Except for ANSCLC, for which the median SPP was equal to the true value, the simulated correlation between PFS and OS was consistent with the values derived from meta-analyses for the other three kinds of cancer. Further, for these three types of cancer, when the median SPP was controlled at a designated level (i.e., < 4 months for AGC, < 12 months for MCC, and <6 months for GBM), the correlation between PFS and OS was strong; and the power of OS reached 34.9% at the minimum. CONCLUSIONS PFS is an acceptable surrogate endpoint for OS under the condition of controlling SPPs for AGC, MCC, and GBM at their limit levels; a similar conclusion cannot be made for ANSCLC.
Collapse
|