26
|
Mori H, Ikegami H, Kawaguchi Y, Seino S, Yokoi N, Takeda J, Inoue I, Seino Y, Yasuda K, Hanafusa T, Yamagata K, Awata T, Kadowaki T, Hara K, Yamada N, Gotoda T, Iwasaki N, Iwamoto Y, Sanke T, Nanjo K, Oka Y, Matsutani A, Maeda E, Kasuga M. The Pro12 -->Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes 2001; 50:891-4. [PMID: 11289058 DOI: 10.2337/diabetes.50.4.891] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The allele frequencies for a Pro12-->Ala substitution in peroxisome proliferator-activated receptor-gamma differ among ethnic groups, and its relationship with diabetes and associated diseases is controversial. The prevalence of this polymorphism and its effects on clinical characteristics have now been evaluated with a large number of Japanese individuals with type 2 diabetes (n = 2,201) and normal control subjects (n = 1,212) recruited by 10 institutions located in seven different cities in Japan. The allele frequency for the Ala12 variant was significantly lower in the type 2 diabetic group than in the control group (2.39 vs. 4.13%, P = 0.000054). However, compared with subjects without the Ala12 variant, the diabetic subjects with this variant exhibited a significantly higher serum concentration of total cholesterol (P = 0.001), manifested a reduced capacity for insulin secretion as evaluated by homeostasis model assessment (P = 0.007), and tended to possess a higher level of HbA1c. These data suggest that the Ala12 variant is associated with a reduced risk for the development of diabetes in the general population, but that it may be also a risk factor for insulin deficiency and disease severity in individuals with type 2 diabetes.
Collapse
|
|
24 |
179 |
27
|
Masugi J, Tamori Y, Mori H, Koike T, Kasuga M. Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-gamma 2 on thiazolidinedione-induced adipogenesis. Biochem Biophys Res Commun 2000; 268:178-82. [PMID: 10652233 DOI: 10.1006/bbrc.2000.2096] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a member of the nuclear hormone receptor superfamily of transcription factors and appears to be a key regulator of adipogenesis. Members of the thiazolidinedione class of insulin-sensitizing agents act as high-affinity ligands for PPARgamma, indicating that PPARgamma is also important in systemic insulin action. To determine whether Pro(12) --> Ala (P12A) mutation in PPARgamma gene contributes to the development of obesity or insulin sensitivity, we examined the effects of the P12A mutation on the function of PPARgamma by expression of the mutant protein in COS or 3T3-L1 cells. The abilities of the P12A mutant of PPARgamma to mediate both transcriptional activation of a luciferase reporter gene construct containing the peroxisome proliferator response element and adipogenesis induced by a thiazolidinedione drug were reduced compared with those of the wild-type protein. These results suggest that the P12A substitution in PPARgamma gene may be associated with abnormalities of adipose tissue formation and insulin sensitivity.
Collapse
|
|
25 |
161 |
28
|
Kasuga M, Hedo JA, Yamada KM, Kahn CR. The structure of insulin receptor and its subunits. Evidence for multiple nonreduced forms and a 210,000 possible proreceptor. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34032-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
|
43 |
152 |
29
|
Kasuga M, Kahn CR, Hedo JA, Van Obberghen E, Yamada KM. Insulin-induced receptor loss in cultured human lymphocytes is due to accelerated receptor degradation. Proc Natl Acad Sci U S A 1981; 78:6917-21. [PMID: 7031662 PMCID: PMC349163 DOI: 10.1073/pnas.78.11.6917] [Citation(s) in RCA: 149] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have measured the turnover rate of the polypeptide subunits of the insulin receptor in cultured human lymphocytes (IM-9 line) and have investigated the mechanism of insulin-induced receptor loss. To estimate the rate of receptor degradation, lymphocytes were either pulse-labeled with [35S]methionine or surface labeled with Na125I and lactoperoxidase. The insulin receptor was isolated by immunoprecipitation with anti-receptor antibody, and the rate of loss of radioactivity from each receptor subunit was determined after sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Two major (Mr 135,000 and 95,000) and one minor (Mr 210,000) subunits were found. By both labeling methods, the half-lives of the major insulin receptor subunits were 9--12 hr in normal media. When the cells were cultured in media containing 1 microM insulin the turnover was accelerated 2.5- to 3.5-fold (half-life approximately 3 hr). The increase in degradation rate was dependent on the insulin concentration and correlated well with the ability to "down-regulate" the receptor. Guinea pig insulin was about 2% as active as porcine insulin in accelerating degradation, and human growth hormone was without effect. The acceleration of receptor degradation induced by insulin was partially blocked by 100 microM cycloheximide. The rate of biosynthesis of the insulin receptor did not appear to be altered in the presence of 1 microM insulin after correction for the change in degradation rate. In conclusion, these data demonstrate that insulin-induced receptor loss in cultured lymphocytes is due to accelerated receptor degradation.
Collapse
|
research-article |
44 |
149 |
30
|
|
Review |
28 |
149 |
31
|
Tanigawara Y, Aoyama N, Kita T, Shirakawa K, Komada F, Kasuga M, Okumura K. CYP2C19 genotype-related efficacy of omeprazole for the treatment of infection caused by Helicobacter pylori. Clin Pharmacol Ther 1999; 66:528-34. [PMID: 10579481 DOI: 10.1016/s0009-9236(99)70017-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Omeprazole is used for the treatment of infection caused by Helicobacter pylori, and it is metabolized by the polymorphic cytochrome P4502C19 (CYP2C19). We have found that the anti-H pylori efficacy by the combination of omeprazole and antibiotics is related to the CYP2C19 genotype. METHODS One hundred eight patients with cultured H pylori-positive gastritis or peptic ulcer were treated with three regimens: quadruple treatment without proton pump inhibitors (n = 25), dual treatment with omeprazole and amoxicillin (INN, amoxicilline) (n = 26), and triple treatment with omeprazole, amoxicillin, and clarithromycin (n = 57). The CYP2C19 genotype was determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and the assessment of the eradication of H pylori was based on all negative examinations, including culture, histology, and 13C-urea breath test. RESULTS The eradication rates for the extensive metabolizers were 50% and 86% for the dual and triple treatments, respectively. In contrast, all of the poor metabolizers treated with omeprazole and antibiotics (n = 15) showed an eradication of H pylori. CONCLUSION The anti-H pylori effect of dual treatment is highly efficient for CYP2C19 poor metabolizers, which suggests that clarithromycin is not necessary as a first line of therapy for this type of patients. Genotyping can provide a choice for the optimal regimen based on individual CYP2C19 genotype.
Collapse
|
|
26 |
146 |
32
|
Ueno N, Inui A, Iwamoto M, Kaga T, Asakawa A, Okita M, Fujimiya M, Nakajima Y, Ohmoto Y, Ohnaka M, Nakaya Y, Miyazaki JI, Kasuga M. Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology 1999; 117:1427-32. [PMID: 10579984 DOI: 10.1016/s0016-5085(99)70293-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Pancreatic polypeptide (PP) is a 36-amino acid hormone produced by F cells within the pancreatic islets and the exocrine pancreas. The definitive function of PP in mammalian physiology remains to be determined. This study examined the effects of chronic overexpression of PP through the development of PP transgenic mice. METHODS PP transgenic mice were created by using mouse PP complementary DNA under the control of the cytomegalovirus immediate early enhancer-chicken beta-actin hybrid promoter (pCAGGS expression vector). RESULTS A unique line of transgenic mice was created that overexpresses PP in the pancreatic islets with low levels of expression in other tissues including the brain. Plasma PP concentrations were more than 20 times higher than those of control littermates. However, PP overproduction led to postnatal lethality in half of the pups because of markedly decreased milk intake. The remaining PP transgenic mice gained less weight with specifically reduced food intake and fat mass compared with controls, a result that was more evident in male than in female mice. The transgenic mice exhibited a reduced rate of gastric emptying of a solid meal but had normal oxygen consumption and fasting leptin levels. Immunoneutralization with anti-PP antiserum reversed the phenotypic changes of transgenic animals. CONCLUSIONS PP could be involved in feeding and body weight regulation partly through regulation of gastric emptying.
Collapse
|
|
26 |
137 |
33
|
Sakaue H, Ogawa W, Matsumoto M, Kuroda S, Takata M, Sugimoto T, Spiegelman BM, Kasuga M. Posttranscriptional control of adipocyte differentiation through activation of phosphoinositide 3-kinase. J Biol Chem 1998; 273:28945-52. [PMID: 9786898 DOI: 10.1074/jbc.273.44.28945] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation of adipocytes is an important aspect of energy homeostasis. Although the transcriptional regulation of adipocyte differentiation is relatively well characterized, the subsequent molecular events remain unclear. The activity of phosphoinositide (PI) 3-kinase precipitated with antibodies to phosphotyrosine has now been shown to increase transiently during adipocyte differentiation of 3T3-F442A and of 3T3-L1 cells. PI 3-kinase activity precipitated with antibodies to insulin receptor substrate 1 (IRS1) and association of subunits of PI 3-kinase with IRS1 were also increased at this stage of differentiation, suggesting that IRS1 contributes to PI 3-kinase activation. Inhibition of the activation of PI 3-kinase by expression of dominant negative mutant subunits of the enzyme prevented adipogenesis, as assessed by lipid accumulation and expression of key adipocyte proteins such as GLUT4, adipsin, and aP2, suggesting that PI 3-kinase activation is essential for adipocyte differentiation. However, these mutant proteins did not affect either the expression of the transcription factor PPARgamma at the mRNA or protein level or the increase in the abundance of mRNAs encoding the adipocyte marker proteins. These results demonstrate that adipocyte differentiation is regulated at the posttranscriptional level and that activation of PI 3-kinase is required for this regulation.
Collapse
|
|
27 |
126 |
34
|
Quon MJ, Chen H, Ing BL, Liu ML, Zarnowski MJ, Yonezawa K, Kasuga M, Cushman SW, Taylor SI. Roles of 1-phosphatidylinositol 3-kinase and ras in regulating translocation of GLUT4 in transfected rat adipose cells. Mol Cell Biol 1995; 15:5403-11. [PMID: 7565691 PMCID: PMC230790 DOI: 10.1128/mcb.15.10.5403] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin stimulates glucose transport in insulin target tissues by recruiting glucose transporters (primarily GLUT4) from an intracellular compartment to the cell surface. Previous studies have demonstrated that insulin receptor tyrosine kinase activity and subsequent phosphorylation of insulin receptor substrate 1 (IRS-1) contribute to mediating the effect of insulin on glucose transport. We have now investigated the roles of 1-phosphatidylinositol 3-kinase (PI 3-kinase) and ras, two signaling proteins located downstream from tyrosine phosphorylation. Rat adipose cells were cotransfected with expression vectors that allowed transient expression of epitope-tagged GLUT4 and the other genes of interest. Overexpression of a mutant p85 regulatory subunit of PI 3-kinase lacking the ability to bind and activate the p110 catalytic subunit exerted a dominant negative effect to inhibit insulin-stimulated translocation of epitope-tagged GLUT4 to the cell surface. In addition, treatment of control cells with wortmannin (an inhibitor of PI 3-kinase) abolished the ability of insulin to recruit epitope-tagged GLUT4 to the cell surface. Thus, our data suggest that PI 3-kinase plays an essential role in insulin-stimulated GLUT4 recruitment in insulin target tissues. In contrast, over-expression of a constitutively active mutant of ras (L61-ras) resulted in high levels of cell surface GLUT4 in the absence of insulin that were comparable to levels seen in control cells treated with a maximally stimulating dose of insulin. However, wortmannin treatment of cells overexpressing L61-ras resulted in only a small decrease in the amount of cell surface GLUT4 compared with that of the same cells in the absence of wortmannin. Therefore, while activated ras is sufficient to recruit GLUT4 to the cell surface, it does so by a different mechanism that is probably not involved in the mechanism by which insulin stimulates GLUT4 translocation in physiological target tissues.
Collapse
|
research-article |
30 |
125 |
35
|
Tamori Y, Kawanishi M, Niki T, Shinoda H, Araki S, Okazawa H, Kasuga M. Inhibition of insulin-induced GLUT4 translocation by Munc18c through interaction with syntaxin4 in 3T3-L1 adipocytes. J Biol Chem 1998; 273:19740-6. [PMID: 9677404 DOI: 10.1074/jbc.273.31.19740] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin induces the translocation of vesicles containing the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane in adipocytes. SNARE proteins have been implicated in the docking and fusion of these vesicles with the cell membrane. The role of Munc18c, previously identified as an n-Sec1/Munc18 homolog in 3T3-L1 adipocytes, in insulin-regulated GLUT4 trafficking has now been investigated in 3T3-L1 adipocytes. In these cells, Munc18c was predominantly associated with syntaxin4, although it bound both syntaxin2 and syntaxin4 to similar extents in vitro. In addition, SNAP-23, an adipocyte homolog of SNAP-25, associated with both syntaxins 2 and 4 in 3T3-L1 adipocytes. Overexpression of Munc18c in 3T3-L1 adipocytes by adenovirus-mediated gene transfer resulted in inhibition of insulin-stimulated glucose transport in a virus dose-dependent manner (maximal effect, approximately 50%) as well as in inhibition of sorbitol-induced glucose transport (by approximately 35%), which is mediated by a pathway different from that used by insulin. In contrast, Munc18b, which is also expressed in adipocytes but which did not bind to syntaxin4, had no effect on glucose transport. Furthermore, overexpression of Munc18c resulted in inhibition of insulin-induced translocation of GLUT4, but not of that of GLUT1, to the plasma membrane. These results suggest that Munc18c is involved in the insulin-dependent trafficking of GLUT4 from the intracellular storage compartment to the plasma membrane in 3T3-L1 adipocytes by modulating the formation of a SNARE complex that includes syntaxin4.
Collapse
|
|
27 |
125 |
36
|
Hedo JA, Kasuga M, Van Obberghen E, Roth J, Kahn CR. Direct demonstration of glycosylation of insulin receptor subunits by biosynthetic and external labeling: evidence for heterogeneity. Proc Natl Acad Sci U S A 1981; 78:4791-5. [PMID: 6946427 PMCID: PMC320249 DOI: 10.1073/pnas.78.8.4791] [Citation(s) in RCA: 123] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Insulin receptors of human lymphocytes (IM-9 line) were biosynthetically labeled with [3H]glucosamine, [3H]galactose, [3H]fucose, or [3H]mannose. After solubilization in Triton X-100, cell extracts were immunoprecipitated with serum from a patient containing autoantibodies to the insulin receptor. Na-DodSO4/polyacrylamide gel electrophoresis of the immunoprecipitates under reducing conditions showed the presence of major labeled subunits of apparent Mr 134,000 and 98,000 and a minor component of Mr 206,000. The ratio of activity in the 134,000 versus 98,000 Mr bands varied from 2:1 for mannose to 1.2:1 for galactose. In addition, the receptor subunits could be demonstrated when the cell surface of intact lymphocytes was labeled with NaB3H4 by using either the galactose oxidase (acts on nonreducing terminal galactose and N-acetylgalactosamine) technique or the periodate (oxidizes sialic acid) technique. With the periodate treatment, NaB3H4 labeled preferentially the Mr 98,000 band. With the galactose oxidase procedure, on the other hand, NaB3H4 labeled only the Mr 134,000 band; prior treatment with neuraminidase increased the labeling of this band and also revealed the Mr 98,000 subunit. These data demonstrate that the major subunits of the insulin receptor are complex glycoproteins that have differences in the nonreducing ends of the carbohydrate chains. In the Mr 134,000 subunit, there appear to be more exposed galactosyl or N-acetylgalactosaminyl (or both) residues, whereas the Mr 98,000 subunit appears to have a higher degree of sialylation. These labeling techniques provide new tools to examine the role of the carbohydrate moiety in insulin receptor function and turnover.
Collapse
|
research-article |
44 |
123 |
37
|
Takeda H, Matozaki T, Takada T, Noguchi T, Yamao T, Tsuda M, Ochi F, Fukunaga K, Inagaki K, Kasuga M. PI 3-kinase gamma and protein kinase C-zeta mediate RAS-independent activation of MAP kinase by a Gi protein-coupled receptor. EMBO J 1999; 18:386-95. [PMID: 9889195 PMCID: PMC1171133 DOI: 10.1093/emboj/18.2.386] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Receptors coupled to the inhibitory G protein Gi, such as that for lysophosphatidic acid (LPA), have been shown to activate MAP kinase through a RAS-dependent pathway. However, LPA (but not insulin) has now been shown to activate MAP kinase in a RAS-independent manner in CHO cells that overexpress a dominant-negative mutant of the guanine nucleotide exchange protein SOS (CHO-DeltaSOS cells). LPA also induced the activation of MAP kinase kinase (MEK), but not that of RAF1, in CHO-DeltaSOS cells. The RAS-independent activation of MAP kinase by LPA was blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) or by overexpression of a dominant-negative mutant of the gamma isoform of PI3K. Furthermore, LPA induced the activation of the atypical zeta isoform of protein kinase C (PKC-zeta) in CHO-DeltaSOS cells in a manner that was sensitive to wortmannin or to the dominant-negative mutant of PI3Kgamma, and overexpression of a dominant-negative mutant of PKC-zeta inhibited LPA-induced activation of MAP kinase. These observations indicate that Gi protein-coupled receptors induce activation of MEK and MAP kinase through a RAS-independent pathway that involves PI3Kgamma-dependent activation of atypical PKC-zeta.
Collapse
|
research-article |
26 |
122 |
38
|
Inagaki K, Yamao T, Noguchi T, Matozaki T, Fukunaga K, Takada T, Hosooka T, Akira S, Kasuga M. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J 2000; 19:6721-31. [PMID: 11118207 PMCID: PMC305898 DOI: 10.1093/emboj/19.24.6721] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transmembrane glycoprotein SHPS-1 binds the protein tyrosine phosphatase SHP-2 and serves as its substrate. Although SHPS-1 has been implicated in growth factor- and cell adhesion-induced signaling, its biological role has remained unknown. Fibroblasts homozygous for expression of an SHPS-1 mutant lacking most of the cytoplasmic region of this protein exhibited increased formation of actin stress fibers and focal adhesions. They spread more quickly on fibronectin than did wild-type cells, but they were defective in subsequent polarized extension and migration. The extent of adhesion-induced activation of Rho, but not that of Rac, was also markedly reduced in the mutant cells. Activation of the Ras-extracellular signal-regulated kinase signaling pathway and of c-Jun N-terminal kinases by growth factors was either unaffected or enhanced in the mutant fibroblasts. These results demonstrate that SHPS-1 plays crucial roles in integrin-mediated cytoskeletal reorganization, cell motility and the regulation of Rho, and that it also negatively modulates growth factor-induced activation of mitogen-activated protein kinases.
Collapse
|
research-article |
25 |
120 |
39
|
Kotani K, Carozzi AJ, Sakaue H, Hara K, Robinson LJ, Clark SF, Yonezawa K, James DE, Kasuga M. Requirement for phosphoinositide 3-kinase in insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. Biochem Biophys Res Commun 1995; 209:343-8. [PMID: 7726855 DOI: 10.1006/bbrc.1995.1509] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Insulin stimulates glucose transport in muscle and fat cells by inducing the redistribution of a specific glucose transporter, GLUT4, from intracellular vesicles to the cell surface. Phosphoinositide (PI) 3-kinase has been implicated as a key intermediate in insulin-stimulated glucose transport by studies that have examined the effects of wortmannin and LY294002, which are thought to be specific inhibitors of this enzyme. However, the specificity of these compounds for PI 3-kinase has recently been questioned. Epidermal growth factor, which activates mitogen-activated protein kinase in mouse 3T3-L1 adipocytes, has now been shown to have no effect on PI 3-kinase activity or GLUT4 translocation in these cells. Furthermore, microinjection of a dominant negative mutant of the 85-kDa subunit of PI 3-kinase, which lacks a binding site for the catalytic 110-kDa subunit, inhibited GLUT4 translocation induced by insulin in 3T3-L1 adipocytes; microinjection of the wild-type protein had no effect. These observations indicate that PI 3-kinase is necessary for insulin-induced GLUT4 translocation and glucose transport in adipocytes.
Collapse
|
|
30 |
119 |
40
|
Tsuda M, Matozaki T, Fukunaga K, Fujioka Y, Imamoto A, Noguchi T, Takada T, Yamao T, Takeda H, Ochi F, Yamamoto T, Kasuga M. Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Roles of Fak and Src family kinases. J Biol Chem 1998; 273:13223-9. [PMID: 9582366 DOI: 10.1074/jbc.273.21.13223] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SHPS-1 is a receptor-like glycoprotein that undergoes tyrosine phosphorylation and binds SHP-2, an Src homology 2 domain containing protein tyrosine phosphatase, in response to various mitogens. Cell adhesion to extracellular matrix proteins such as fibronectin and laminin also induced the tyrosine phosphorylation of SHPS-1 and its association with SHP-2. These responses were markedly reduced in cells overexpressing the Csk kinase or in cells that lack focal adhesion kinase or the Src family kinases Src or Fyn. However, unlike Src, focal adhesion kinase did not catalyze phosphorylation of the cytoplasmic domain of SHPS-1 in vitro. Overexpression of a catalytically inactive SHP-2 markedly inhibited activation of mitogen-activated protein (MAP) kinase in response to fibronectin stimulation without affecting the extent of tyrosine phosphorylation of focal adhesion kinase or its interaction with the docking protein Grb2. Overexpression of wild-type SHPS-1 did not enhance fibronectin-induced activation of MAP kinase. These results indicate that the binding of integrins to the extracellular matrix induces tyrosine phosphorylation of SHPS-1 and its association with SHP-2, and that such phosphorylation of SHPS-1 requires both focal adhesion kinase and an Src family kinase. In addition to its role in receptor tyrosine kinase-mediated MAP kinase activation, SHP-2 may play an important role, partly through its interaction with SHPS-1, in the activation of MAP kinase in response to the engagement of integrins by the extracellular matrix.
Collapse
|
|
27 |
117 |
41
|
Asakawa A, Inui A, Ueno N, Makino S, Fujino MA, Kasuga M. Urocortin reduces food intake and gastric emptying in lean and ob/ob obese mice. Gastroenterology 1999; 116:1287-92. [PMID: 10348810 DOI: 10.1016/s0016-5085(99)70491-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Gastric emptying plays an important role in regulating food intake. This study was designed to investigate whether intraperitoneally injected urocortin reduces gastric emptying, feeding, and body weight in lean and ob/ob obese mice. METHODS Food intake and body weight were measured after intraperitoneal injections of one of the following: urocortin, deamidated form of urocortin (urocortin OH), corticotropin-releasing factor (CRF), CRF6-33, cholecystokinin octapeptide (CCK-8), and leptin in 16-hour food-deprived animals. Gastric emptying was assessed 2, 4, or 8 hours after intraperitoneal injection. Repeated injections of urocortin were continued for 5 days in ob/ob mice. RESULTS Urocortin (0.003-3 nmol) dose-dependently and potently decreased food intake and body weight gain in lean mice. The ranking order of potency was urocortin > urocortin OH >/= CRF > CCK-8 > CRF6-33 > leptin. Gastric emptying was also potently reduced by urocortin with a similar ranking order of potency of urocortin > CRF > urocortin OH > CCK-8. Simultaneous administration of urocortin and CRF receptor antagonist, alpha-helical CRF9-41, blocked the effects of urocortin. Urocortin reduced food intake and body weight gain, as well as the rate of gastric emptying, in ob/ob mice, which was significantly faster than that of lean mice. Five daily injections of urocortin significantly lowered body weight and improved glycemic control in ob/ob mice. CONCLUSIONS The urocortin-induced decrease in food intake and body weight in lean and ob/ob mice is closely related to gastric emptying and opens new possibilities for the treatment of obesity.
Collapse
|
|
26 |
115 |
42
|
Ito Y, Zheng J, Imanishi Y, Yonezawa K, Kasuga M. Protein-free cell culture on an artificial substrate with covalently immobilized insulin. Proc Natl Acad Sci U S A 1996; 93:3598-601. [PMID: 8622981 PMCID: PMC39656 DOI: 10.1073/pnas.93.8.3598] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Insulin was immobilized on a surface-hydrolyzed poly(methyl methacrylate) film. Chinese hamster ovary cells overexpressing human insulin receptors were cultured on the film in the absence of serum or soluble proteins. Small amounts of immobilized insulin (1-10% of the required amount of free insulin) were sufficient to stimulate cell proliferation. In addition, the maximal mitogenic effect of immobilized insulin was greater than that of free insulin. Immobilized insulin activated the insulin receptor and downstream signaling proteins, and this activation persisted for longer periods than that obtained with free insulin, probably explaining the greater mitogenic effect of the immobilized insulin. Finally the immobilized-insulin film was usable repeatedly without marked loss of activity.
Collapse
|
research-article |
29 |
108 |
43
|
Noguchi T, Matozaki T, Inagaki K, Tsuda M, Fukunaga K, Kitamura Y, Kitamura T, Shii K, Yamanashi Y, Kasuga M. Tyrosine phosphorylation of p62(Dok) induced by cell adhesion and insulin: possible role in cell migration. EMBO J 1999; 18:1748-60. [PMID: 10202139 PMCID: PMC1171261 DOI: 10.1093/emboj/18.7.1748] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dok, a 62-kDa Ras GTPase-activating protein (rasGAP)-associated phosphotyrosyl protein, is thought to act as a multiple docking protein downstream of receptor or non-receptor tyrosine kinases. Cell adhesion to extracellular matrix proteins induced marked tyrosine phosphorylation of Dok. This adhesion-dependent phosphorylation of Dok was mediated, at least in part, by Src family tyrosine kinases. The maximal insulin-induced tyrosine phosphorylation of Dok required a Src family kinase. A mutant Dok (DokDeltaPH) that lacked its pleckstrin homology domain failed to undergo tyrosine phosphorylation in response to cell adhesion or insulin. Furthermore, unlike the wild-type protein, DokDeltaPH did not localize to subcellular membrane components. Insulin promoted the association of tyrosine-phosphorylated Dok with the adapter protein NCK and rasGAP. In contrast, a mutant Dok (DokY361F), in which Tyr361 was replaced by phenylalanine, failed to bind NCK but partially retained the ability to bind rasGAP in response to insulin. Overexpression of wild-type Dok, but not that of DokDeltaPH or DokY361F, enhanced the cell migratory response to insulin without affecting insulin activation of mitogen-activated protein kinase. These results identify Dok as a signal transducer that potentially links, through its interaction with NCK or rasGAP, cell adhesion and insulin receptors to the machinery that controls cell motility.
Collapse
|
research-article |
26 |
104 |
44
|
Kadowaki T, Koyasu S, Nishida E, Sakai H, Takaku F, Yahara I, Kasuga M. Insulin-like growth factors, insulin, and epidermal growth factor cause rapid cytoskeletal reorganization in KB cells. Clarification of the roles of type I insulin-like growth factor receptors and insulin receptors. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66689-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
39 |
102 |
45
|
Kasuga M, Fujita-Yamaguchi Y, Blithe DL, White MF, Kahn CR. Characterization of the insulin receptor kinase purified from human placental membranes. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44373-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
42 |
99 |
46
|
Haring HU, Kasuga M, White MF, Crettaz M, Kahn CR. Phosphorylation and dephosphorylation of the insulin receptor: evidence against an intrinsic phosphatase activity. Biochemistry 1984; 23:3298-306. [PMID: 6087892 DOI: 10.1021/bi00309a028] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have studied the reversibility of insulin receptor phosphorylation to establish the relation between this autophosphorylation reaction and the initiation of insulin action and between dephosphorylation and the termination of insulin effects in cells. In cultured Fao hepatoma cells labeled with 32PO4(3-), insulin increased 5-fold the phosphorylation of the beta-subunit of the insulin receptor at serine, threonine, and tyrosine residues. Addition of anti-insulin antiserum to cells incubated with insulin caused dissociation of insulin from the receptor and concurrent dephosphorylation of the beta-subunit. 32PO4(3-) associated with the insulin-stimulated receptor could be decreased by the addition of sodium phosphate to the medium but with a slower time course. Insulin stimulated phosphorylation of insulin receptor purified partially on immobilized wheat germ agglutinin. This reaction utilized [gamma-32P] ATP and occurred exclusively on tyrosine residues. Addition of unlabeled ATP caused a decrease in the amount of PO4(3-) associated with the receptor. Insulin-stimulated phosphorylation was also observed if the receptors were further purified by immunoprecipitation with anti-insulin receptor antibody prior to the phosphorylation reaction; however, addition of unlabeled ATP to this system did not chase the labeled 32PO4(3-) from the beta-subunit. These data are consistent with the notion that phosphorylation and dephosphorylation of the insulin receptor parallel the onset and termination of insulin action. Phosphatase activity involved in the dephosphorylation of the insulin receptor appears to be a glycoprotein because it was retained after partial purification of the receptor on wheat germ agglutinin-agarose; however, this phosphatase activity is distinct from the insulin receptor because it was not retained after immunoprecipitation of the receptor with anti-insulin receptor antibodies.
Collapse
|
|
41 |
99 |
47
|
Nakajima M, Inui A, Asakawa A, Momose K, Ueno N, Teranishi A, Baba S, Kasuga M. Neuropeptide Y produces anxiety via Y2-type receptors. Peptides 1998; 19:359-63. [PMID: 9493869 DOI: 10.1016/s0196-9781(97)00298-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, the effects of intracerebroventricular (ICV) NPY, [Leu31, Pro34]NPY and NPY13-36 have been evaluated with respect to anxiety in mice in the elevated plus maze. NPY had opposing effects on behavior, depending on the doses used. NPY decreased the normal preference for the closed arms of the maze at 0.7 nmol, indicating an anxiolytic effect; however, at 7 pmol NPY further increased the preference for the closed arm, indicating an anxiogenic effect. [Leu31, Pro34]NPY, a Y1-type receptor agonist, significantly reduced the preference for the closed arms at 70 pmol. NPY13-36, a Y2-type receptor agonist, significantly intensified the preference at 20 pmol. It has been demonstrated that NPY produces not only an anxiolytic effect via Y1-type receptors, but also an anxiogenic effect via Y2-type receptors. The time course of these NPY actions are quite different and the anxiogenic effect was observed only shortly after ICV NPY injection.
Collapse
|
|
27 |
98 |
48
|
Takada T, Matozaki T, Takeda H, Fukunaga K, Noguchi T, Fujioka Y, Okazaki I, Tsuda M, Yamao T, Ochi F, Kasuga M. Roles of the complex formation of SHPS-1 with SHP-2 in insulin-stimulated mitogen-activated protein kinase activation. J Biol Chem 1998; 273:9234-42. [PMID: 9535915 DOI: 10.1074/jbc.273.15.9234] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHPS-1 is a receptor-like protein that undergoes tyrosine phosphorylation and binds SHP-2, an SH2 domain-containing protein tyrosine phosphatase, in response to insulin and other mitogens. The overexpression of wild-type SHPS-1, but not of a mutant SHPS-1 in which all four tyrosine residues in its cytoplasmic region were mutated to phenylalanine, markedly enhanced insulin-induced activation of mitogen-activated protein kinase in Chinese hamster ovary cells that overexpress the human insulin receptor. Mutation of each tyrosine residue individually revealed that the major sites of tyrosine phosphorylation of SHPS-1 in response to insulin are Tyr449 and Tyr473. In addition, mutation of either Tyr449 or Tyr473 abolished the insulin-induced tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Surface plasmon resonance analysis showed that glutathione S-transferase fusion proteins containing the NH2-terminal or COOH-terminal SH2 domains of SHP-2 bound preferentially to phosphotyrosyl peptides corresponding to the sequences surrounding Tyr449 or Tyr473, respectively, of SHPS-1. Furthermore, phosphotyrosyl peptides containing Tyr449 or Tyr473 were effective substrates for the phosphatase activity of recombinant SHP-2 in vitro. Together, these results suggest that insulin may induce phosphorylation of SHPS-1 at Tyr449 and Tyr473, to which SHP-2 then binds through its NH2-terminal and COOH-terminal SH2 domains, respectively. SHPS-1 may play a crucial role both in the recruitment of SHP-2 from the cytosol to a site near the plasma membrane and in increasing its catalytic activity, thereby positively regulating the RAS-mitogen-activated protein kinase signaling cascade in response to insulin.
Collapse
|
|
27 |
96 |
49
|
Hedo JA, Kahn CR, Hayashi M, Yamada KM, Kasuga M. Biosynthesis and glycosylation of the insulin receptor. Evidence for a single polypeptide precursor of the two major subunits. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44600-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
42 |
95 |
50
|
Kawanishi M, Tamori Y, Okazawa H, Araki S, Shinoda H, Kasuga M. Role of SNAP23 in insulin-induced translocation of GLUT4 in 3T3-L1 adipocytes. Mediation of complex formation between syntaxin4 and VAMP2. J Biol Chem 2000; 275:8240-7. [PMID: 10713150 DOI: 10.1074/jbc.275.11.8240] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both syntaxin4 and VAMP2 are implicated in insulin regulation of glucose transporter-4 (GLUT4) trafficking in adipocytes as target (t) soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) and vesicle (v)-SNARE proteins, respectively, which mediate fusion of GLUT4-containing vesicles with the plasma membrane. Synaptosome-associated 23-kDa protein (SNAP23) is a widely expressed isoform of SNAP25, the principal t-SNARE of neuronal cells, and colocalizes with syntaxin4 in the plasma membrane of 3T3-L1 adipocytes. In the present study, two SNAP23 mutants, SNAP23-DeltaC8 (amino acids 1 to 202) and SNAP23-DeltaC49 (amino acids 1 to 161), were generated to determine whether SNAP23 is required for insulin-induced translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes. Wild-type SNAP23 (SNAP23-WT) promoted the interaction between syntaxin4 and VAMP2 both in vitro and in vivo. Although SNAP23-DeltaC49 bound to neither syntaxin4 nor VAMP2, the SNAP23-DeltaC8 mutant bound to syntaxin4 but not to VAMP2. In addition, although SNAP23-DeltaC8 bound to syntaxin4, it did not mediate the interaction between syntaxin4 and VAMP2. Moreover, overexpression of SNAP23-DeltaC8 in 3T3-L1 adipocytes by adenovirus-mediated gene transfer inhibited insulin-induced translocation of GLUT4 but not that of GLUT1. In contrast, overexpression of neither SNAP23-WT nor SNAP23-DeltaC49 in 3T3-L1 adipocytes affected the translocation of GLUT4 or GLUT1. Together, these results demonstrate that SNAP23 contributes to insulin-dependent trafficking of GLUT4 to the plasma membrane in 3T3-L1 adipocytes by mediating the interaction between t-SNARE (syntaxin4) and v-SNARE (VAMP2).
Collapse
|
|
25 |
94 |