26
|
van Zanden JE, Jager NM, Daha MR, Erasmus ME, Leuvenink HGD, Seelen MA. Complement Therapeutics in the Multi-Organ Donor: Do or Don't? Front Immunol 2019; 10:329. [PMID: 30873176 PMCID: PMC6400964 DOI: 10.3389/fimmu.2019.00329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, striking progress has been made in the field of organ transplantation, such as better surgical expertise and preservation techniques. Therefore, organ transplantation is nowadays considered a successful treatment in end-stage diseases of various organs, e.g. the kidney, liver, intestine, heart, and lungs. However, there are still barriers which prevent a lifelong survival of the donor graft in the recipient. Activation of the immune system is an important limiting factor in the transplantation process. As part of this pro-inflammatory environment, the complement system is triggered. Complement activation plays a key role in the transplantation process, as highlighted by the amount of studies in ischemia-reperfusion injury (IRI) and rejection. However, new insight have shown that complement is not only activated in the later stages of transplantation, but already commences in the donor. In deceased donors, complement activation is associated with deteriorated quality of deceased donor organs. Of importance, since most donor organs are derived from either brain-dead donors or deceased after circulatory death donors. The exact mechanisms and the role of the complement system in the pathophysiology of the deceased donor have been underexposed. This review provides an overview of the current knowledge on complement activation in the (multi-)organ donor. Targeting the complement system might be a promising therapeutic strategy to improve the quality of various donor organs. Therefore, we will discuss the complement therapeutics that already have been tested in the donor. Finally, we question whether complement therapeutics should be translated to the clinics and if all organs share the same potential complement targets, considering the physiological differences of each organ.
Collapse
|
27
|
Gaya da Costa M, Poppelaars F, van Kooten C, Mollnes TE, Tedesco F, Würzner R, Trouw LA, Truedsson L, Daha MR, Roos A, Seelen MA. Age and Sex-Associated Changes of Complement Activity and Complement Levels in a Healthy Caucasian Population. Front Immunol 2018; 9:2664. [PMID: 30515158 PMCID: PMC6255829 DOI: 10.3389/fimmu.2018.02664] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/29/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction: The complement system is essential for an adequate immune response. Much attention has been given to the role of complement in disease. However, to better understand complement in pathology, it is crucial to first analyze this system under different physiological conditions. The aim of the present study was therefore to investigate the inter-individual variation in complement activity and the influences of age and sex. Methods: Complement levels and functional activity were determined in 120 healthy volunteers, 60 women, 60 men, age range 20–69 year. Serum functional activity of the classical pathway (CP), lectin pathway activated by mannan (MBL-LP) and alternative pathway (AP) was measured in sera, using deposition of C5b-9 as readout. In addition, levels of C1q, MBL, MASP-1, MASP-2, ficolin-2, ficolin-3, C2, C4, C3, C5, C6, C7, C8, C9, factor B, factor D, properdin, C1-inhibitor and C4b-binding protein, were determined. Age- and sex-related differences were evaluated. Results: Significantly lower AP activity was found in females compared to males. Further analysis of the AP revealed lower C3 and properdin levels in females, while factor D concentrations were higher. MBL-LP activity was not influenced by sex, but MBL and ficolin-3 levels were significantly lower in females compared to males. There were no significant differences in CP activity or CP components between females and males, nevertheless females had significantly lower levels of the terminal components. The CP and AP activity was significantly higher in the elderly, in contrast to MBL-LP activity. Moreover, C1-inhibitor, C5, C8, and C9 increased with age in contrast to a decrease of factor D and C3 levels. In-depth analysis of the functional activity assays revealed that MBL-LP activity was predominantly dependent on MBL and MASP-2 concentration, whereas CP activity relied on C2, C1-inhibitor and C5 levels. AP activity was strongly and directly associated with levels of C3, factor B and C5. Conclusion: This study demonstrated significant sex and age-related differences in complement levels and functionality in the healthy population. Therefore, age and sex analysis should be taken into consideration when discussing complement-related pathologies and subsequent complement-targeted therapies.
Collapse
|
28
|
O'Flynn J, Kotimaa J, Faber-Krol R, Koekkoek K, Klar-Mohamad N, Koudijs A, Schwaeble WJ, Stover C, Daha MR, van Kooten C. Properdin binds independent of complement activation in an in vivo model of anti-glomerular basement membrane disease. Kidney Int 2018; 94:1141-1150. [PMID: 30322716 DOI: 10.1016/j.kint.2018.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 05/31/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
Abstract
Properdin is the only known positive regulator of complement activation by stabilizing the alternative pathway convertase through C3 binding, thus prolonging its half-life. Recent in vitro studies suggest that properdin may act as a specific pattern recognition molecule. To better understand the role of properdin in vivo, we used an experimental model of acute anti-glomerular basement membrane disease with wild-type, C3- and properdin knockout mice. The model exhibited severe proteinuria, acute neutrophil infiltration and activation, classical and alternative pathway activation, and progressive glomerular deposition of properdin, C3 and C9. Although the acute renal injury was likely due to acute neutrophil activation, we found properdin deposition in C3-knockout mice that was not associated with IgG. Thus, properdin may deposit in injured tissues in vivo independent of its main ligand C3.
Collapse
|
29
|
Kotimaa J, O’Flynn J, Faber-Krol R, Koekkoek K, Klar-Mohamad N, Koudijs A, Schwaeble WJ, Stover C, Daha MR, van Kooten C. Properdin binding independent of complement activation in an in vivo model of anti-GBM disease. Mol Immunol 2018. [DOI: 10.1016/j.molimm.2018.06.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Poppelaars F, Gaya da Costa M, Faria B, Berger SP, Assa S, Daha MR, Medina Pestana JO, van Son WJ, Franssen CFM, Seelen MA. Intradialytic Complement Activation Precedes the Development of Cardiovascular Events in Hemodialysis Patients. Front Immunol 2018; 9:2070. [PMID: 30271407 PMCID: PMC6146103 DOI: 10.3389/fimmu.2018.02070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Hemodialysis (HD) is a life-saving treatment for patients with end stage renal disease. However, HD patients have markedly increased rates of cardiovascular morbidity and mortality. Previously, a link between the complement system and cardiovascular events (CV-events) has been reported. In HD, systemic complement activation occurs due to blood-to-membrane interaction. We hypothesize that HD-induced complement activation together with inflammation and thrombosis are involved in the development of CV-events in these patients. Methods: HD patients were followed for the occurrence of CV-events during a maximum follow-up of 45 months. Plasma samples were collected from 55 patients at different time points during one HD session prior to follow-up. Plasma levels of mannose-binding lectin, properdin and C3d/C3 ratios were assessed by ELISA. In addition, levels of von Willebrand factor, TNF-α and IL-6/IL-10 ratios were determined. An ex-vivo model of HD was used to assess the effect of complement inhibition. Results: During median follow-up of 32 months, 17 participants developed CV-events. In the CV-event group, the C3d/C3-ratio sharply increased 30 min after the start of the HD session, while in the event-free group the ratio did not increase. In accordance, HD patients that developed a CV-event also had a sustained higher IL-6/IL-10-ratio during the first 60 min of the HD session, followed by a greater rise in TNF-α levels and von Willebrand factor at the end of the session. In the ex-vivo HD model, we found that complement activation contributed to the induction of TNF-α levels, IL-6/IL-10-ratio and levels of von Willebrand factor. Conclusions: In conclusion, these findings suggest that early intradialytic complement activation predominantly occurred in HD patients who develop a CV-event during follow-up. In addition, in these patients complement activation was accompanied by a pro-inflammatory and pro-thrombotic response. Experimental complement inhibition revealed that this reaction is secondary to complement activation. Therefore, our data suggests that HD-induced complement, inflammation and coagulation are involved in the increased CV risk of HD patients.
Collapse
|
31
|
Daha MR, Seelen M. Novel Approaches to Control of the Alternative Complement Pathway for the Treatment of C3 Glomerulopathies. J Am Soc Nephrol 2018; 29:2032-2033. [DOI: 10.1681/asn.2018050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
32
|
Alexander S, John GT, Korula A, Vijayakumar TS, David VG, Mohapatra A, Valson AT, Jacob S, Koshy PM, Rajan G, John EE, Matthai SM, Jeyaseelan L, Ponnusamy B, Cook T, Pusey C, Daha MR, Feehally J, Barratt J, Varughese S. Protocol and rationale for the first South Asian 5-year prospective longitudinal observational cohort study and biomarker evaluation investigating the clinical course and risk profile of IgA nephropathy: GRACE IgANI cohort. Wellcome Open Res 2018; 3:91. [PMID: 30345379 PMCID: PMC6148466 DOI: 10.12688/wellcomeopenres.14644.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 12/18/2022] Open
Abstract
Background: IgA nephropathy (IgAN) is the most common primary glomerulonephritis and an important cause of end-stage kidney disease. Unlike the slowly progressive course seen among Caucasian and East Asian subjects (actuarial survival 80-85% over 10 years), in India about 30-40% of patients have nephrotic syndrome and renal dysfunction at presentation and a 10-year renal survival of 35%, as reported from a retrospective registry. These observations cannot be entirely attributed to a lack of uniform screening protocols or late referral and attest to the probability that IgAN may not be the same disease in different parts of the world. Methods: We will prospectively recruit 200 patients with IgAN (the GRACE IgANI- Glomerular Research And Clinical Experiments- Ig A Nephropathy in Indians-cohort) and stratify them into low and high risk of progression based on published absolute renal risk scores. We will test the validity of this risk score in an unselected Indian IgAN population over a 5-year follow-up period. In parallel, we will undertake extensive exploratory serum, urine, renal and microbiome biomarker studies, firstly, to determine if the underlying pathogenic pathways are the same in Indian IgAN compared to those reported in Caucasian and East Asian IgAN. Secondly, we will systematically assess the value of measuring selected biomarkers and adding this data to traditional measures of risk in IgAN to predict kidney failure. We ultimately hope to generate a composite IgAN risk score specific for the Indian population. Ethics and data dissemination: Approval was obtained from the Institutional Review Board (Silver, Research and Ethics Committee) of the Christian Medical College, Vellore, India (Ref. No. IRB Min. No. 8962 [Other] dated 23.07.2014 and IRB Min. No. 9481 [Other] dated 24.06.2015). It is anticipated that results of this study will be presented at national and international meetings, with reports being published from late 2018.
Collapse
|
33
|
Castellano G, Franzin R, Stasi A, Divella C, Sallustio F, Pontrelli P, Lucarelli G, Battaglia M, Staffieri F, Crovace A, Stallone G, Seelen M, Daha MR, Grandaliano G, Gesualdo L. Complement Activation During Ischemia/Reperfusion Injury Induces Pericyte-to-Myofibroblast Transdifferentiation Regulating Peritubular Capillary Lumen Reduction Through pERK Signaling. Front Immunol 2018; 9:1002. [PMID: 29875766 PMCID: PMC5974049 DOI: 10.3389/fimmu.2018.01002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
Pericytes are one of the principal sources of scar-forming myofibroblasts in chronic kidneys disease. However, the modulation of pericyte-to-myofibroblast transdifferentiation (PMT) in the early phases of acute kidney injury is poorly understood. Here, we investigated the role of complement in inducing PMT after transplantation. Using a swine model of renal ischemia/reperfusion (I/R) injury, we found the occurrence of PMT after 24 h of I/R injury as demonstrated by reduction of PDGFRβ+/NG2+ cells with increase in myofibroblasts marker αSMA. In addition, PMT was associated with significant reduction in peritubular capillary luminal diameter. Treatment by C1-inhibitor (C1-INH) significantly preserved the phenotype of pericytes maintaining microvascular density and capillary lumen area at tubulointerstitial level. In vitro, C5a transdifferentiated human pericytes in myofibroblasts, with increased αSMA expression in stress fibers, collagen I production, and decreased antifibrotic protein Id2. The C5a-induced PMT was driven by extracellular signal-regulated kinases phosphorylation leading to increase in collagen I release that required both non-canonical and canonical TGFβ pathways. These results showed that pericytes are a pivotal target of complement activation leading to a profibrotic maladaptive cellular response. Our studies suggest that C1-INH may be a potential therapeutic strategy to counteract the development of PMT and capillary lumen reduction in I/R injury.
Collapse
|
34
|
Lorés-Motta L, Paun CC, Corominas J, Pauper M, Geerlings MJ, Altay L, Schick T, Daha MR, Fauser S, Hoyng CB, den Hollander AI, de Jong EK. Genome-Wide Association Study Reveals Variants in CFH and CFHR4 Associated with Systemic Complement Activation: Implications in Age-Related Macular Degeneration. Ophthalmology 2018; 125:1064-1074. [PMID: 29398083 DOI: 10.1016/j.ophtha.2017.12.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 12/13/2017] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To identify genetic variants associated with complement activation, which may help to select age-related macular degeneration (AMD) patients for complement-inhibiting therapies. DESIGN Genome-wide association study (GWAS) followed by replication and meta-analysis. PARTICIPANTS AMD patients and controls (n = 2245). METHODS A GWAS on serum C3d-to-C3 ratio was performed in 1548 AMD patients and controls. For replication and meta-analysis, 697 additional individuals were genotyped. A model for complement activation including genetic and non-genetic factors was built, and the variance explained was estimated. Haplotype analysis was performed for 8 SNPs across the CFH/CFHR locus. Association with AMD was performed for the variants and haplotypes found to influence complement activation. MAIN OUTCOME MEASURES Normalized C3d/C3 ratio as a measure of systemic complement activation. RESULTS Complement activation was associated independently with rs3753396 located in CFH (Pdiscovery = 1.09 × 10-15; Pmeta = 3.66 × 10-21; β = 0.141; standard error [SE] = 0.015) and rs6685931 located in CFHR4 (Pdiscovery = 8.18 × 10-7; Pmeta = 6.32 × 10-8; β = 0.054; SE = 0.010). A model including age, AMD disease status, body mass index, triglycerides, rs3753396, rs6685931, and previously identified SNPs explained 18.7% of the variability in complement activation. Haplotype analysis revealed 3 haplotypes (H1-2 and H6 containing rs6685931 and H3 containing rs3753396) associated with complement activation. Haplotypes H3 and H6 conferred stronger effects on complement activation compared with the single variants (P = 2.53 × 10-14; β = 0.183; SE = 0.024; and P = 4.28 × 10-4; β = 0.144; SE = 0.041; respectively). Association analyses with AMD revealed that SNP rs6685931 and haplotype H1-2 containing rs6685931 were associated with a risk for AMD development, whereas SNP rs3753396 and haplotypes H3 and H6 were not. CONCLUSIONS The SNP rs3753396 in CFH and SNP rs6685931 in CFHR4 are associated with systemic complement activation levels. The SNP rs6685931 in CFHR4 and its linked haplotype H1-2 also conferred a risk for AMD development, and therefore could be used to identify AMD patients who would benefit most from complement-inhibiting therapies.
Collapse
|
35
|
Poppelaars F, Faria B, Gaya da Costa M, Franssen CFM, van Son WJ, Berger SP, Daha MR, Seelen MA. The Complement System in Dialysis: A Forgotten Story? Front Immunol 2018; 9:71. [PMID: 29422906 PMCID: PMC5788899 DOI: 10.3389/fimmu.2018.00071] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022] Open
Abstract
Significant advances have lead to a greater understanding of the role of the complement system within nephrology. The success of the first clinically approved complement inhibitor has created renewed appreciation of complement-targeting therapeutics. Several clinical trials are currently underway to evaluate the therapeutic potential of complement inhibition in renal diseases and kidney transplantation. Although, complement has been known to be activated during dialysis for over four decades, this area of research has been neglected in recent years. Despite significant progress in biocompatibility of hemodialysis (HD) membranes and peritoneal dialysis (PD) fluids, complement activation remains an undesired effect and relevant issue. Short-term effects of complement activation include promoting inflammation and coagulation. In addition, long-term complications of dialysis, such as infection, fibrosis and cardiovascular events, are linked to the complement system. These results suggest that interventions targeting the complement system in dialysis could improve biocompatibility, dialysis efficacy, and long-term outcome. Combined with the clinical availability to safely target complement in patients, the question is not if we should inhibit complement in dialysis, but when and how. The purpose of this review is to summarize previous findings and provide a comprehensive overview of the role of the complement system in both HD and PD.
Collapse
|
36
|
Dixon KO, O'Flynn J, Klar-Mohamad N, Daha MR, van Kooten C. Properdin and factor H production by human dendritic cells modulates their T-cell stimulatory capacity and is regulated by IFN-γ. Eur J Immunol 2017; 47:470-480. [PMID: 28105653 PMCID: PMC5363362 DOI: 10.1002/eji.201646703] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) and complement are both key members of the innate and adaptive immune response. Recent experimental mouse models have shown that production of alternative pathway (AP) components by DCs strongly affects their ability to activate and regulate T-cell responses. In this study we investigated the production and regulation of properdin (fP) and factor H (fH) both integral regulators of the AP, by DCs and tolerogenic DCs (tolDCs). Both fP and fH were produced by DCs, with significantly higher levels of both AP components produced by tolDCs. Upon activation with IFN-γ both cells increased fH production, while simultaneously decreasing production of fP. IL-27, a member of the IL-12 family, increased fH, but production of fP remained unaffected. The functional capacity of fP and fH produced by DCs and tolDCs was confirmed by their ability to bind C3b. Inhibition of fH production by DCs resulted in a greater ability to induce allogenic CD4+ T-cell proliferation. In contrast, inhibition of fP production led to a significantly reduced allostimulatory capacity. In summary, this study shows that production of fP and fH by DCs, differentially regulates their immunogenicity, and that the local cytokine environment can profoundly affect the production of fP and fH.
Collapse
|
37
|
Jager NM, Poppelaars F, Daha MR, Seelen MA. Complement in renal transplantation: The road to translation. Mol Immunol 2017; 89:22-35. [PMID: 28558950 DOI: 10.1016/j.molimm.2017.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
Renal transplantation is the treatment of choice for patients with end-stage renal disease. The vital role of the complement system in renal transplantation is widely recognized. This review discusses the role of complement in the different phases of renal transplantation: in the donor, during preservation, in reperfusion and at the time of rejection. Here we examine the current literature to determine the importance of both local and systemic complement production and how complement activation contributes to the pathogenesis of renal transplant injury. In addition, we dissect the complement pathways involved in the different phases of renal transplantation. We also review the therapeutic strategies that have been tested to inhibit complement during the kidney transplantation. Several clinical trials are currently underway to evaluate the therapeutic potential of complement inhibition for the treatment of brain death-induced renal injury, renal ischemia-reperfusion injury and acute rejection. We conclude that it is expected that in the near future, complement-targeted therapeutics will be used clinically in renal transplantation. This will hopefully result in improved renal graft function and increased graft survival.
Collapse
|
38
|
Poppelaars F, van Werkhoven MB, Kotimaa J, Veldhuis ZJ, Ausema A, Broeren SGM, Damman J, Hempel JC, Leuvenink HGD, Daha MR, van Son WJ, van Kooten C, van Os RP, Hillebrands JL, Seelen MA. Critical role for complement receptor C5aR2 in the pathogenesis of renal ischemia-reperfusion injury. FASEB J 2017; 31:3193-3204. [PMID: 28396344 DOI: 10.1096/fj.201601218r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/27/2017] [Indexed: 01/15/2023]
Abstract
The complement system, and specifically C5a, is involved in renal ischemia-reperfusion (IR) injury. The 2 receptors for complement anaphylatoxin C5a (C5aR1 and C5aR2) are expressed on leukocytes as well as on renal epithelium. Extensive evidence shows that C5aR1 inhibition protects kidneys from IR injury; however, the role of C5aR2 in IR injury is less clear as initial studies proposed the hypothesis that C5aR2 functions as a decoy receptor. By Using wild-type, C5aR1-/-, and C5aR2-/- mice in a model of renal IR injury, we found that a deficiency of either of these receptors protected mice from renal IR injury. Surprisingly, C5aR2-/- mice were most protected and had lower creatinine levels and reduced acute tubular necrosis. Next, an in vivo migration study demonstrated that leukocyte chemotaxis was unaffected in C5aR2-/- mice, whereas neutrophil activation was reduced by C5aR2 deficiency. To further investigate the contribution of renal cell-expressed C5aR2 vs leukocyte-expressed C5aR2 to renal IR injury, bone marrow chimeras were created. Our data show that both renal cell-expressed C5aR2 and leukocyte-expressed C5aR2 mediate IR-induced renal dysfunction. These studies reveal the importance of C5aR2 in renal IR injury. They further show that C5aR2 is a functional receptor, rather than a decoy receptor, and may provide a new target for intervention.-Poppelaars, F., van Werkhoven, M. B., Kotimaa, J., Veldhuis, Z. J., Ausema, A., Broeren, S. G. M., Damman, J., Hempel, J. C., Leuvenink, H. G. D., Daha, M. R., van Son, W. J., van Kooten, C., van Os, R. P., Hillebrands, J.-L., Seelen, M. A. Critical role for complement receptor C5aR2 in the pathogenesis of renal ischemia-reperfusion injury.
Collapse
|
39
|
Talsma DT, Daha MR, van den Born J. The bittersweet taste of tubulo-interstitial glycans. Nephrol Dial Transplant 2017; 32:611-619. [PMID: 28407128 DOI: 10.1093/ndt/gfw371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023] Open
Abstract
Recently, interesting work was published by Farrar et al. [1] showing the interaction of fucosylated glycoproteins on stressed tubular epithelial cells with collectin-11 leading to complement activation via the lectin route of complement. This elegant work stimulated us to evaluate the dark side (bittersweet taste) of tubulo-interstitial glycans in kidney tissue damage. As will be discussed, glycans not only initiate tubular complement activation but also orchestrate tubulo-interstitial leucocyte recruitment and growth factor responses. In this review we restrict ourselves to tubulo-interstitial damage mainly by proteinuria, ischaemia-reperfusion injury and transplantation, and we discuss the involvement of endothelial and tubular glycans in atypical and Escherichia coli-mediated haemolytic uraemic syndrome. As will be seen, fucosylated, mannosylated, galactosylated and sialylated oligosaccharide structures along with glycosaminoglycans comprise the most important glycans related to kidney injury pathways. Up to now, therapeutic interventions in these glycan-mediated injury pathways are underexplored and warrant further research.
Collapse
|
40
|
Hempel JC, Poppelaars F, Gaya da Costa M, Franssen CFM, de Vlaam TPG, Daha MR, Berger SP, Seelen MAJ, Gaillard CAJM. Distinct in vitro Complement Activation by Various Intravenous Iron Preparations. Am J Nephrol 2016; 45:49-59. [PMID: 27889746 DOI: 10.1159/000451060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/17/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Intravenous (IV) iron preparations are widely used in the treatment of anemia in patients undergoing hemodialysis (HD). All IV iron preparations carry a risk of causing hypersensitivity reactions. However, the pathophysiological mechanism is poorly understood. We hypothesize that a relevant number of these reactions are mediated by complement activation, resulting in a pseudo-anaphylactic clinical picture known as complement activation-related pseudo allergy (CARPA). METHODS First, the in-vitro complement-activating capacity was determined for 5 commonly used IV iron preparations using functional complement assays for the 3 pathways. Additionally, the preparations were tested in an ex-vivo model using the whole blood of healthy volunteers and HD patients. Lastly, in-vivo complement activation was tested for one preparation in HD patients. RESULTS In the in-vitro assays, iron dextran, and ferric carboxymaltose caused complement activation, which was only possible under alternative pathway conditions. Iron sucrose may interact with complement proteins, but did not activate complement in-vitro. In the ex-vivo assay, iron dextran significantly induced complement activation in the blood of healthy volunteers and HD patients. Furthermore, in the ex-vivo assay, ferric carboxymaltose and iron sucrose only caused significant complement activation in the blood of HD patients. No in-vitro or ex-vivo complement activation was found for ferumoxytol and iron isomaltoside. IV iron therapy with ferric carboxymaltose in HD patients did not lead to significant in-vivo complement activation. CONCLUSION This study provides evidence that iron dextran and ferric carboxymaltose have complement-activating capacities in-vitro, and hypersensitivity reactions to these drugs could be CARPA-mediated.
Collapse
|
41
|
Poppelaars F, Gaya da Costa M, Berger SP, Assa S, Meter-Arkema AH, Daha MR, van Son WJ, Franssen CFM, Seelen MAJ. Erratum to: Strong predictive value of mannose-binding lectin levels for cardiovascular risk of hemodialysis patients. J Transl Med 2016; 14:245. [PMID: 27557787 PMCID: PMC4997692 DOI: 10.1186/s12967-016-1004-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Poppelaars F, Gaya da Costa M, Berger SP, Assa S, Meter-Arkema AH, Daha MR, van Son WJ, Franssen CFM, Seelen MAJ. Strong predictive value of mannose-binding lectin levels for cardiovascular risk of hemodialysis patients. J Transl Med 2016; 14:236. [PMID: 27495980 PMCID: PMC4974702 DOI: 10.1186/s12967-016-0995-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/28/2016] [Indexed: 01/10/2023] Open
Abstract
Background Hemodialysis patients have higher rates of cardiovascular morbidity and mortality compared to the general population. Mannose-binding lectin (MBL) plays an important role in the development of cardiovascular disease. In addition, hemodialysis alters MBL concentration and functional activity. The present study determines the predictive value of MBL levels for future cardiac events (C-event), cardiovascular events (CV-event) and all-cause mortality in HD patients. Methods We conducted a prospective study of 107 patients on maintenance hemodialysis. Plasma MBL, properdin, C3d and sC5b-9 was measured before and after one dialysis session. The association with future C-events, CV-events, and all-cause mortality was evaluated using Cox regression models. Results During median follow-up of 27 months, 36 participants developed 21 C-events and 36 CV-events, whereas 37 patients died. The incidence of C-events and CV-events was significantly higher in patients with low MBL levels (<319 ng/mL, lower quartile). In fully adjusted models, low MBL level was independently associated with increased CV-events (hazard ratio 3.98; 95 % CI 1.88–8.24; P < 0.001) and C-events (hazard ratio 3.96; 95 % CI 1.49–10.54; P = 0.006). No association was found between low MBL levels and all-cause mortality. Furthermore, MBL substantially improved risk prediction for CV-events beyond currently used clinical markers. Conclusions Low MBL levels are associated with a higher risk for future C-events and CV-events. Therefore, MBL levels may help to identify hemodialysis patients who are at risk to develop cardiovascular disease. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0995-5) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Saksens NTM, Geerlings MJ, Bakker B, Schick T, Daha MR, Fauser S, Boon CJF, de Jong EK, Hoyng CB, den Hollander AI. Rare Genetic Variants Associated With Development of Age-Related Macular Degeneration. JAMA Ophthalmol 2016; 134:287-93. [PMID: 26767664 DOI: 10.1001/jamaophthalmol.2015.5592] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Rare variants in the complement genes CFH, CFI, C9, and C3 have been found to be highly associated with age-related macular degeneration (AMD); however, the effect on clinical characteristics and familial segregation by these variants is lacking. OBJECTIVES To determine the contribution of rare CFH Arg1210Cys, CFI Gly119Arg, C9 Pro167Ser, and C3 Lys155Gln variants in the development of AMD in 22 multiplex families and to describe clinical differences in carriers vs noncarriers in these families and a large case-control cohort. DESIGN, SETTING, AND PARTICIPANTS This retrospective case-control study included 114 affected and 60 unaffected members of 22 multiplex families with AMD as well as 1589 unrelated patients with AMD and 1386 unrelated control individuals enrolled in the European Genetic Database (EUGENDA). Patients were recruited from March 29, 2006, to April 26, 2013, and data were collected from April 20, 2012, to May 7, 2014. All participants underwent an extensive ophthalmic examination and completed a questionnaire. Venous blood samples were obtained from all participants for genetic analysis, including whole-exome sequencing and measurements of complement activation. Data were analyzed from September 23, 2014, to November 4, 2015. MAIN OUTCOMES AND MEASURES Differences between carriers and noncarriers of rare variants in age at onset of symptoms, the family history of AMD, complement activation levels (C3d:C3 ratio), the presence of reticular pseudodrusen, and AMD phenotype. RESULTS Among the 114 affected and 60 unaffected members of 22 multiplex families with AMD and the 1598 unrelated patients with AMD and 1386 controls in the EUGENDA cohort who underwent analysis, the presence of the CFI Gly119Arg, C9 Pro167Ser, or C3 Lys155Gln variant was confirmed in 18 individuals in 5 families but did not completely segregate with the disease. In the case-control cohort, the 91 affected carriers of these variants were younger at symptom onset (mean [SD] age, 67.4 [8.5] vs 71.3 [8.9] years; P = .01) and more often reported a positive family history (35 of 79 [44.3%] vs 367 of 1201 [30.6%]; P = .008) compared with the 1498 noncarriers. Patients with advanced atrophic AMD carried these rare variants more frequently than patients with neovascular AMD (11 of 93 [11.8%] vs 40 of 835 [4.8%]; P = .04). CONCLUSIONS AND RELEVANCE Previously reported rare variants do not completely segregate within families with AMD. However, patients carrying these rare variants differ clinically from noncarriers by an earlier age at symptom onset, higher prevalence of a positive family history, and AMD phenotype. These results suggest that genetic tests for AMD might be designed to detect common and rare genetic variants, especially in families, because rare variants contribute to the age at onset and progression of the disease.
Collapse
|
44
|
Sahutoglu T, Basturk T, Sakaci T, Koc Y, Ahbap E, Sevinc M, Kara E, Akgol C, Caglayan FB, Unsal A, Daha MR. Can eculizumab be discontinued in aHUS?: Case report and review of the literature. Medicine (Baltimore) 2016; 95:e4330. [PMID: 27495036 PMCID: PMC4979790 DOI: 10.1097/md.0000000000004330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The management of atypical hemolytic uremic syndrome (aHUS) has evolved into better control of thrombotic microangiopathy (TMA) and recovery of renal functions since the recent introduction of the terminal complement cascade blocker, eculizumab, into clinical use. Better characterization of genotype-phenotype relations has become possible with genetic and clinical studies. However, these advances brought up some important issues, such as the possibility and timing of discontinuation of eculizumab and strategy of follow-up that need to be enlightened. CASE SUMMARY One of our aHUS cases with a novel complement factor H mutation, who developed unusual laboratory findings (thrombocytopenia and mild creatinine elevation without other features of TMA) following discontinuation of eculizumab was presented. Literature and case reports relevant to discontinuation of eculizumab in aHUS patients were reviewed. CONCLUSION Limited experience suggests that the risk of recurrence of TMA following discontinuation of eculizumab is relatively low for patients with MCP mutations, homozygous CFHR3/R1 deletions, anti-CFH antibodies, CFI mutations, and no identifiable mutations, whereas there is a major risk for patients with CFH mutations. Early detection of TMA recurrence and prompt retreatment with eculizumab seem to be efficient in controlling of TMA and restoration of kidney functions.
Collapse
|
45
|
Kotimaa J, Klar-Mohammad N, Gueler F, Schilders G, Jansen A, Rutjes H, Daha MR, van Kooten C. Sex matters: Systemic complement activity of female C57BL/6J and BALB/cJ mice is limited by serum terminal pathway components. Mol Immunol 2016; 76:13-21. [PMID: 27337595 DOI: 10.1016/j.molimm.2016.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023]
Abstract
Experimental mouse models have been extensively used to elucidate the role of the complement system in different diseases and injuries. Contribution of gender has revealed an intriguing gender specific difference; female mice often show protection against most complement driven injuries such as ischemia/reperfusion injury, graft rejection and sepsis. Interestingly, early studies to the mouse complement system revealed that female mice have very low total complement activity (CH50), which is related to androgen regulation of hepatic complement synthesis. Here, our aim was to understand at which level the female specific differences in mouse complement resides. We have used recently developed complement assays to study the functional activities of female and male mice at the level of C3 and C9 activation, and furthermore assayed key complement factor levels in serum of age-matched female and male C57BL/6 mice. Our results show that the female mice have normal complement cascade functionality at the level of C3 activation, which was supported by determinations of early complement factors. However, all pathways are strongly reduced at the level of C9 activation, suggesting a terminal pathway specific difference. This was in line with C6 and C9 measurements, showing strongly decreased levels in females. Furthermore, similar gender differences were also found in BALB/cJ mice, but not in CD-1 mice. Our results clearly demonstrate that the complement system in females of frequently used mouse strains is restricted by the terminal pathway components and that the perceived female specific protection against experimental disease and injury might be in part explained by the inability promote inflammation through C5b-9.
Collapse
|
46
|
Saksens NTM, Lechanteur YTE, Verbakel SK, Groenewoud JMM, Daha MR, Schick T, Fauser S, Boon CJF, Hoyng CB, den Hollander AI. Analysis of Risk Alleles and Complement Activation Levels in Familial and Non-Familial Age-Related Macular Degeneration. PLoS One 2016; 11:e0144367. [PMID: 27258093 PMCID: PMC4892537 DOI: 10.1371/journal.pone.0144367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/29/2016] [Indexed: 11/19/2022] Open
Abstract
AIMS Age-related macular degeneration (AMD) is a multifactorial disease, in which complement-mediated inflammation plays a pivotal role. A positive family history is an important risk factor for developing AMD. Certain lifestyle factors are shown to be significantly associated with AMD in non-familial cases, but not in familial cases. This study aimed to investigate whether the contribution of common genetic variants and complement activation levels differs between familial and sporadic cases with AMD. METHODS AND RESULTS 1216 AMD patients (281 familial and 935 sporadic) and 1043 controls (143 unaffected members with a family history of AMD and 900 unrelated controls without a family history of AMD) were included in this study. Ophthalmic examinations were performed, and lifestyle and family history were documented with a questionnaire. Nine single nucleotide polymorphisms (SNPs) known to be associated with AMD were genotyped, and serum concentrations of complement components C3 and C3d were measured. Associations were assessed in familial and sporadic individuals. The association with risk alleles of the age-related maculopathy susceptibility 2 (ARMS2) gene was significantly stronger in sporadic AMD patients compared to familial cases (p = 0.017 for all AMD stages and p = 0.003 for advanced AMD, respectively). ARMS2 risk alleles had the largest effect in sporadic cases but were not significantly associated with AMD in densely affected families. The C3d/C3 ratio was a significant risk factor for AMD in sporadic cases and may also be associated with familial cases. In patients with a densely affected family this effect was particularly strong with ORs of 5.37 and 4.99 for all AMD and advanced AMD respectively. CONCLUSION This study suggests that in familial AMD patients, the common genetic risk variant in ARMS2 is less important compared to sporadic AMD. In contrast, factors leading to increased complement activation appear to play a larger role in patients with a positive family history compared to sporadic patients. A better understanding of the different contributions of risk factors in familial compared to non-familial AMD will aid the development of reliable prediction models for AMD, and may provide individuals with more accurate information regarding their individual risk for AMD. This information is especially important for individuals who have a positive family history for AMD.
Collapse
|
47
|
Paun CC, Lechanteur YTE, Groenewoud JMM, Altay L, Schick T, Daha MR, Fauser S, Hoyng CB, den Hollander AI, de Jong EK. A Novel Complotype Combination Associates with Age-Related Macular Degeneration and High Complement Activation Levels in vivo. Sci Rep 2016; 6:26568. [PMID: 27241480 PMCID: PMC4886525 DOI: 10.1038/srep26568] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 01/13/2023] Open
Abstract
The complement system is the first line of defense against foreign intruders, and deregulation of this system has been described in multiple diseases. In age-related macular degeneration (AMD), patients have higher complement activation levels compared to controls. Recently, a combination of three single nucleotide polymorphisms (SNPs) in genes of the complement system, referred to as a complotype, has been described to increase complement activation in vitro. Here we describe a novel complotype composed of CFB (rs4151667)-CFB (rs641153)-CFH (rs800292), which is strongly associated with both AMD disease status (p = 5.84*10−13) and complement activation levels in vivo (p = 8.31*10−9). The most frequent genotype combination of this complotype was associated with the highest complement activation levels in both patients and controls. These findings are relevant in the context of complement-lowering treatments for AMD that are currently under development. Patients with a genetic predisposition to higher complement activation levels will potentially benefit the most of such treatments.
Collapse
|
48
|
Poppelaars F, Gaya da Costa M, Berger SP, Assa S, Meter-Arkema AH, Daha MR, Van Son WJ, Franssen CFM, Seelen MAJ. SP468LOW MANNOSE-BINDING LECTINLEVELS PREDICT CARDIOVASCULAR DISEASE IN HEMODIALYSIS PATIENTS. Nephrol Dial Transplant 2016. [DOI: 10.1093/ndt/gfw172.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Poppelaars F, Damman J, de Vrij EL, Burgerhof JGM, Saye J, Daha MR, Leuvenink HG, Uknis ME, Seelen MAJ. New insight into the effects of heparinoids on complement inhibition by C1-inhibitor. Clin Exp Immunol 2016; 184:378-88. [PMID: 26874675 DOI: 10.1111/cei.12777] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 01/22/2023] Open
Abstract
Complement activation is of major importance in numerous pathological conditions. Therefore, targeted complement inhibition is a promising therapeutic strategy. C1-esterase inhibitor (C1-INH) controls activation of the classical pathway (CP) and the lectin pathway (LP). However, conflicting data exist on inhibition of the alternative pathway (AP) by C1-INH. The inhibitory capacity of C1-INH for the CP is potentiated by heparin and other glycosaminoglycans, but no data exist for the LP and AP. The current study investigates the effects of C1-INH in the presence or absence of different clinically used heparinoids on the CP, LP and AP. Furthermore, the combined effects of heparinoids and C1-INH on coagulation were investigated. C1-INH, heparinoids or combinations were analysed in a dose-dependent fashion in the presence of pooled serum. Functional complement activities were measured simultaneously using the Wielisa(®) -kit. The activated partial thrombin time was determined using an automated coagulation analyser. The results showed that all three complement pathways were inhibited significantly by C1-INH or heparinoids. Next to their individual effects on complement activation, heparinoids also enhanced the inhibitory capacity of C1-INH significantly on the CP and LP. For the AP, significant potentiation of C1-INH by heparinoids was found; however, this was restricted to certain concentration ranges. At low concentrations the effect on blood coagulation by combining heparinoids with C1-INH was minimal. In conclusion, our study shows significant potentiating effects of heparinoids on the inhibition of all complement pathways by C1-INH. Therefore, their combined use is a promising and a potentially cost-effective treatment option for complement-mediated diseases.
Collapse
|
50
|
O'Flynn J, van der Pol P, Dixon KO, Prohászka Z, Daha MR, van Kooten C. Monomeric C-reactive protein inhibits renal cell-directed complement activation mediated by properdin. Am J Physiol Renal Physiol 2016; 310:F1308-16. [PMID: 26984957 DOI: 10.1152/ajprenal.00645.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/11/2016] [Indexed: 01/08/2023] Open
Abstract
Previous studies have shown that complement activation on renal tubular cells is involved in the induction of interstitial fibrosis and cellular injury. Evidence suggests that the tubular cell damage is initiated by the alternative pathway (AP) of complement with properdin having an instrumental role. Properdin is a positive regulator of the AP, which can bind necrotic cells as well as viable proximal tubular epithelial cells (PTECs), inducing complement activation. Various studies have indicated that in the circulation there is an unidentified inhibitor of properdin. We investigated the ability of C-reactive protein (CRP), both in its monomeric (mCRP) and pentameric (pCRP) form, to inhibit AP activation and injury in vitro on renal tubular cells by fluorescent microscopy, ELISA, and flow cytometry. We demonstrated that preincubation of properdin with normal human serum inhibits properdin binding to viable PTECs. We identified mCRP as a factor able to bind to properdin in solution, thereby inhibiting its binding to PTECs. In contrast, pCRP exhibited no such binding and inhibitory effect. Furthermore, mCRP was able to inhibit properdin-directed C3 and C5b-9 deposition on viable PTECs. The inhibitory ability of mCRP was not unique for viable cells but also demonstrated for binding to necrotic Jurkat cells, a target for properdin binding and complement activation. In summary, mCRP is an inhibitor of properdin in both binding to necrotic cells and viable renal cells, regulating complement activation on the cell surface. We propose that mCRP limits amplification of tissue injury by controlling properdin-directed complement activation by damaged tissue and cells.
Collapse
|