26
|
Reuter G, Boros Á, Tóth Z, Kapusinszky B, Delwart E, Pankovics P. Detection of a novel RNA virus with hepatitis E virus-like non-structural genome organization in amphibian, agile frog (Rana dalmatina) tadpoles. INFECTION GENETICS AND EVOLUTION 2018; 65:112-116. [PMID: 30053640 DOI: 10.1016/j.meegid.2018.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/15/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
In recent years, relatives (bastrovirus, hepelivirus) of hepeviruses (family Hepeviridae) have been reported in a variety of vertebrate hosts. Preliminary studies indicated that inter-viral family recombination events at the junction of the genomes that encodes non-structural (ORF1) and structural protein (ORF2) were implicated in the genesis of hepeviruses. Using viral metagenomics, next generation sequencing and RT-PCR techniques a genetically divergent hepevirus-like RNA virus was identified and characterized from agile frog (Rana dalmatina) tadpoles living in aquatic environment in three natural ponds (Mélymocsár, Lake Ilona and Lake Katlan) in the Pilis Mountains, in Hungary. The complete genome of the viral strain agile frog/RD6/2015/HUN (MH330682) is 7188 nt long including a 48-nt 5' and a 122-nt 3' non-coding region. Sequence analysis indicated that the agile frog/RD6/2015/HUN genome has potentially three non-overlapping ORFs. ORF1 (4740 nt/1579aa) has a hepevirus-like non-structural genome organization and encodes several hepevirus-like amino acid sequence motifs. The ORF2 is a potential capsid protein. The functions of the ORF3 were not predictable. The study virus was present in 18 (46%) of the 39 faecal specimen pools from agile frog tadpoles. The taxonomic position of this novel virus is presently unknown.
Collapse
|
27
|
Boros Á, Albert M, Pankovics P, Bíró H, Pesavento PA, Phan TG, Delwart E, Reuter G. Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary. Emerg Infect Dis 2018; 23:1982-1993. [PMID: 29148391 PMCID: PMC5708238 DOI: 10.3201/eid2312.170804] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A large, highly prolific swine farm in Hungary had a 2-year history of neurologic
disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of
posterior paraplegia and a high mortality rate. Affected pigs that were
necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3
was identified by reverse transcription PCR and in situ hybridization in brain
and spinal cord samples in 6 animals from this farm. Among tissues tested by
quantitative RT-PCR, the highest viral loads were detected in brain stem and
spinal cord. Similar porcine astrovirus type 3 was also detected in archived
brain and spinal cord samples from another 2 geographically distant farms. Viral
RNA was predominantly restricted to neurons, particularly in the brain stem,
cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally
undetectable in feces but present in respiratory samples, indicating a possible
respiratory infection. Astrovirus could cause common, neuroinvasive epidemic
disease.
Collapse
|
28
|
Pankovics P, Boros Á, Phan TG, Delwart E, Reuter G. A novel passerivirus (family Picornaviridae) in an outbreak of enteritis with high mortality in estrildid finches (Uraeginthus sp.). Arch Virol 2018; 163:1063-1071. [PMID: 29322272 DOI: 10.1007/s00705-017-3699-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/17/2017] [Indexed: 11/30/2022]
Abstract
An enteric outbreak with high mortality (34/52, 65.4%) was recorded in 2014 in home-reared estrildid finches (Estrildidae) in Hungary. A novel passerivirus was identified in a diseased violet-eared waxbill using viral metagenomics and confirmed by RT-(q)PCR. The complete genome of finch picornavirus strain waxbill/DB01/HUN/2014 (MF977321) showed the highest amino acid sequence identity of 38.9%, 61.6%, 69.6% in P1cap, 2Chel and 3CproDpol, respectively, to passerivirus A1 (GU182406). A high viral load (6.58 × 1010 genomic copies/ml) was measured in a cloacal specimen and in the tissues (spinal cord, lung, and the intestines) of two additional affected finches. In addition to intestinal symptoms (diarrhoea), the presence of extra-intestinal virus suggests a generalized infection in this fatal disease, for which the passerivirus might be a causative agent.
Collapse
|
29
|
Boros Á, Pankovics P, Simmonds P, Kiss T, Phan TG, Delwart E, Reuter G. Genomic analysis of a novel picornavirus from a migratory waterfowl, greater white-fronted goose (Anser albifrons). Arch Virol 2017; 163:1087-1090. [PMID: 29288473 DOI: 10.1007/s00705-017-3696-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022]
Abstract
The complete genome of goose picornavirus 1 (GPV-1) strain goose/NLSZK2/HUN/2013 (MF358731) was determined by RT-PCR and next-generation sequencing from a cloacal sample of a migratory waterfowl, greater white-fronted goose (Anser albifrons) in Hungary. The genome of GPV-1 shows an L-3-3-4 organization pattern with a 5'-terminal origin of replication (ORI) region, a type-IV IRES, and an Hbox/NC-type 2A protein. This virus showed the highest overall sequence identity to the members of the genus Kobuvirus, although the phylogenetic position of GPV-1 is different in the analyzed P1, 2C and 3CD phylogenetic trees, which further increases the diversity of known avian picornaviruses.
Collapse
|
30
|
Reuter G, Boros Á, Földvári G, Szekeres S, Mátics R, Kapusinszky B, Delwart E, Pankovics P. Dicipivirus (family Picornaviridae) in wild Northern white-breasted hedgehog (Erinaceus roumanicus). Arch Virol 2017; 163:175-181. [PMID: 28940090 DOI: 10.1007/s00705-017-3565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022]
Abstract
Using random amplification and high-throughput sequencing technology a novel picornavirus with dicistronic genome organization and genetically related to canine picodicistrovirus (genus Dicipivirus, family Picornaviridae) was identified and characterized in Northern white-breasted hedgehogs. Hedgehog dicipivirus (hedgehog/H14/2015/HUN, MF188967) was detected in 15 (75%) of 20 faecal specimens by RT-PCR with high viral loads (up to 8.2x108 genomic copies/ml faeces). Hedgehog dicipivirus RNA was also identified in blood, ear skin, abdominal muscle and liver tissues. While the general dicistronic genome organization of hedgehog/H14/2015/HUN is similar to canine picodicistrovirus (5'UTR-P1-IGR-P2/P3-3UTR) there are some unique genome characteristics within the untranslated regions, especially in the functional IRES elements. This study reports the putative second member of the genus Dicipivirus, in a novel host species.
Collapse
|
31
|
Pankovics P, Boros Á, Mátics R, Kapusinszky B, Delwart E, Reuter G. Ljungan/Sebokele-like picornavirus in birds of prey, common kestrel (Falco tinnunculus) and red-footed falcon (F. vespertinus). INFECTION GENETICS AND EVOLUTION 2017; 55:14-19. [PMID: 28843546 DOI: 10.1016/j.meegid.2017.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023]
Abstract
Ljungan and Sebokele viruses are thought to be rodent-borne (picorna)viruses in the genus Parechovirus. Using random amplification and next generation sequencing method a novel Ljungan/Sebokele-like picornavirus was identified in birds of prey. Viral RNA was detected in total of 1 (9%) of the 11 and 2 (28.6%) of the 7 faecal samples from common kestrels and red-footed falcons in Hungary, respectively. High faecal viral RNA load (4.77×106 genomic copies/ml) measured by qPCR. The complete genome of picornavirus strain falcon/HA18_080/2014/HUN (KY645497) is 7964-nucleotide (nt) long including a 867-nt 5'end and a 101-nt 3'end (excluding the poly(A)-tail). Falcon/HA18_080/2014/HUN has type-II IRES related to hunnivirus IRES, encodes a polyprotein lacking a leader protein, a VP0 maturation cleavage site and it predicted to encode three 2A proteins (2A1NPG↓P, 2A2NPG↓P and 2A3H-Box/NC), two of them end with 'ribosome-skipping' sites (DxExNPG↓P). Sequence analyses indicated that the ORF1 (6996nt) polyprotein (2331 amino acid - aa) of falcon/HA18_080/2014/HUN shares the highest aa identity, 59% and 57%, to the corresponding polyproteins of Ljungan and Sebokele viruses. This study reports the identification and complete genome characterization of a novel Ljungan/Sebokele-like picornavirus in faeces of birds of prey which suggests that the genetic diversity and the potential host species spectrum of Ljungan/Sebokele-like viruses in genus Parechovirus are wider than previously thought.
Collapse
|
32
|
Boros Á, Pankovics P, Mátics R, Adonyi Á, Bolba N, Phan TG, Delwart E, Reuter G. Genome characterization of a novel megrivirus-related avian picornavirus from a carnivorous wild bird, western marsh harrier (Circus aeruginosus). Arch Virol 2017; 162:2781-2789. [PMID: 28500443 DOI: 10.1007/s00705-017-3403-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/04/2017] [Indexed: 11/29/2022]
Abstract
In this study, the complete genome of a novel picornavirus called harrier picornavirus 1 (HaPV-1) strain harrier/MR-01/HUN/2014 (KY488458) was sequenced and analysed from a cloacal sample of a threatened, carnivorous wild bird, western marsh harrier (Circus aeruginosus). HaPV-1 was detectable from 2 of the 3 samples from harriers. HaPV-1 is phylogenetically related to megriviruses (genus Megrivirus) from domestic chicken, turkey and duck, showing a similar genome organization pattern; it also has an avian picornavirus-like "Unit A" motif in the 3' UTR. Unlike the type-IV internal ribosomal entry site (IRES) of megriviruses, HaPV-1 is predicted to contain a type-II-like IRES, suggesting modular exchange of IRES elements between picornavirus genomes.
Collapse
|
33
|
Boros Á, Pankovics P, Kőmíves S, Liptai Z, Dobner S, Ujhelyi E, Várallyay G, Zsidegh P, Bolba N, Reuter G. Co-infection with coxsackievirus A5 and norovirus GII.4 could have been the trigger of the first episode of severe acute encephalopathy in a six-year-old child with the intermittent form of maple syrup urine disease (MSUD). Arch Virol 2017; 162:1757-1763. [PMID: 28243803 DOI: 10.1007/s00705-017-3299-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/10/2017] [Indexed: 11/27/2022]
Abstract
In this case study, a co-infection with coxsackievirus A5 (family Picornaviridae) and norovirus GII.4 (family Caliciviridae) was detected by RT-PCR in a faecal sample from a six-year-old girl with symptoms of severe acute encephalopathy subsequently diagnosed as the intermittent form of maple syrup urine disease (MSUD). The two co-infecting viruses, which had been detected previously, appeared to have triggered the underlying metabolic disorder. Here, we describe the genotyping of the viruses, as well as the chronological course, laboratory test results, and clinical presentation of this case, which included recurrent vomiting without diarrhoea, metabolic acidosis, unconsciousness, seizure and circulatory collapse, but with a positive final outcome.
Collapse
|
34
|
Pankovics P, Boros Á, Tóth Z, Phan TG, Delwart E, Reuter G. Genetic characterization of a second novel picornavirus from an amphibian host, smooth newt (Lissotriton vulgaris). Arch Virol 2016; 162:1043-1050. [PMID: 28005212 DOI: 10.1007/s00705-016-3198-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
In this study, a novel picornavirus was identified in faecal samples from smooth newts (Lissotriton vulgaris). The complete genome of picornavirus strain newt/II-5-Pilis/2014/HUN (KX463670) is 7755 nt long with type-IV IRES and has 39.6% aa sequence identity in the protein P1 to the corresponding protein of bat picornavirus (KJ641686, unassigned) and 42.7% and 53.5% aa sequence identity in the 2C and 3CD protein, respectively, to oscivirus (GU182410, genus Oscivirus). Interestingly, the L-protein of newt/II-5-Pilis/2014/HUN has conserved aa motifs that are similar to those found in phosphatase-1 catalytic (PP1C) subunit binding region (pfam10488) proteins. This second amphibian-origin picornavirus could represent a novel species and could be a founding member of a potential novel picornavirus genus.
Collapse
|
35
|
Reuter G, Boros Á, Mátics R, Kapusinszky B, Delwart E, Pankovics P. A novel avian-like hepatitis E virus in wild aquatic bird, little egret (Egretta garzetta), in Hungary. INFECTION GENETICS AND EVOLUTION 2016; 46:74-77. [PMID: 27876615 DOI: 10.1016/j.meegid.2016.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
Abstract
Hepatitis E virus (HEV), family Hepeviridae, has public health concerns because of its zoonotic potential; however, the host species spectrum, animal to animal transmissions, the natural chain of hepevirus infections and the genetic diversity of HEV in wildlife especially in birds are less known. Using random amplification and next generation sequencing technology a genetically divergent avian HEV was serendipitously identified in wild bird in Hungary. HEV RNA was detected with high faecal viral load (1.33×108genomiccopies/ml) measured by real-time PCR in faecal sample from a little egret (Egretta garzetta). The complete genome of HEV strain little egret/kocsag02/2014/HUN (KX589065) is 6660-nt long including a 18-nt 5' end and a 103-nt 3' end (excluding the poly(A)-tail). Sequence analyses indicated that the ORF1 (4554nt/1517aa), ORF2 (1728nt/593aa) and ORF3 (339nt/112aa) encoded proteins of little egret/kocsag02/2014/HUN shared the highest identity (62.8%, 71% and 61.5%) to the corresponding proteins of genotype 1 avian (chicken) HEV in species Orthohepevirus B, respectively. This study reports the identification and complete genome characterization of a novel orthohepevirus distantly related to avian (chicken) HEVs at the first time in wild bird. It is important to recognize all potential hosts, reservoirs and spreaders in nature and to reconstruct the phylogenetic history of hepeviruses. Birds could be an important reservoir of HEV generally and could be infected with genetically highly divergent strains of HEV.
Collapse
|
36
|
Molnár K, Józsa G, Oberritter Z, Cholnoky E, Pankovics P, Reuter G, Tornóczky E. [An unusual cause of the hand cyst: finger dirofilariasis]. Orv Hetil 2016; 157:1571-1574. [PMID: 27667297 DOI: 10.1556/650.2016.30554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dirofilariasis is a zoonosis affecting dogs and cats. It can be transmitted to human by mosquito bites. Because of the local inflammation caused by the parasite, a lump may develop. The authors present a case of a 13-year-old boy, who was diagnosed with dirofilariasis in association with a cyst located on the middle finger of the right hand. During physical examination, a lump on the extensor surface of the middle phalanx of the right middle finger was found. Soft tissue ultrasound was performed, which indicated the presence of a worm in the cyst. The cyst was surgically removed under local anesthesia and with parasitology test Dirofilaria repens infection was confirmed. The child had no complains or symptoms during recovery after the surgery. A solitary growth developing on the fingers of the hand often presents a differential diagnostic problem. Ultrasound can be greatly helpful in the preoperative diagnosis. Orv. Hetil., 2016, 157(39), 1571-1574.
Collapse
|
37
|
Reuter G, Pankovics P, Boros Á. Saliviruses-the first knowledge about a newly discovered human picornavirus. Rev Med Virol 2016; 27. [PMID: 27641729 DOI: 10.1002/rmv.1904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023]
Abstract
The salivirus, first discovered in the year 2009, is a member of the large and growing family Picornaviridae. At present, the genus Salivirus contains 1 species Salivirus A and 2 genotypes, Salivirus A1 and Salivirus A2. Salivirus has been identified in humans and chimpanzees and may cause acute gastroenteritis in humans, having been detected in 0% to 8.7% of fecal samples collected from gastroenteritis in different human populations. Salivirus is ubiquitous in wastewater of human origin and river water specimens worldwide and represents a potential indicator human RNA virus for monitoring of environmental samples. This review summarizes the current knowledge on saliviruses including discovery, taxonomy, genome structure, and genetic diversity; covers all aspects of infection including epidemiology, molecular epidemiology, clinical feature, host species, environmental characteristics, and laboratory diagnosis; and gives a summary of possible future perspectives.
Collapse
|
38
|
Reuter G, Boros Á, Mátics R, Kapusinszky B, Delwart E, Pankovics P. Divergent hepatitis E virus in birds of prey, common kestrel (Falco tinnunculus) and red-footed falcon (F. vespertinus), Hungary. INFECTION GENETICS AND EVOLUTION 2016; 43:343-6. [PMID: 27282471 DOI: 10.1016/j.meegid.2016.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/25/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Hepatitis E virus (HEV), family Hepeviridae, has raised considerable public health concerns because of its zoonotic potential; however, the animal to animal transmissions and the natural chain of hepevirus infections in wildlife are less known. Using random amplification and next generation sequencing technology a novel HEV in birds of prey was serendipitously identified in Hungary. HEV RNA was detected in total of 2 (18%) of the 11 and 1 (14%) of the 7 faecal samples from common kestrels and red-footed falcons, respectively. High faecal viral load (2.03×10(8) genomic copies/ml) measured by qPCR. The complete genome of strain kestrel/MR22/2014/HUN (KU670940) HEV is 7033-nt long including a 35-nt 5'end and a 63-nt 3'end (excluding the poly(A)-tail). Sequence analyses indicated that the ORF1 (4920nt/639 aa), ORF2 (1989nt/662 aa) and ORF3 (360nt/119aa) proteins of kestrel/MR22/2014/HUN shared the highest identity (58.1%, 66.8% and 28.5%) to the corresponding proteins of ferret, rat and human genotype 4 Orthohepeviruses, respectively. Interestingly, the ORF3 protein is potentially initiated with leucine (L) using an alternate, non-AUG (UUG) start codon. This study reports the identification and complete genome characterization of a novel Orthohepevirus species related to mammalian HEVs in birds of prey. It is important to recognize all potential hosts, reservoirs and spreaders in nature and to reconstruct the phylogenetic history of hepeviruses.
Collapse
|
39
|
Reuter G, Boros Á, Pál J, Kapusinszky B, Delwart E, Pankovics P. Detection and genome analysis of a novel (dima)rhabdovirus (Riverside virus) from Ochlerotatus sp. mosquitoes in Central Europe. INFECTION GENETICS AND EVOLUTION 2016; 39:336-341. [PMID: 26883377 DOI: 10.1016/j.meegid.2016.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/15/2016] [Accepted: 02/10/2016] [Indexed: 11/19/2022]
Abstract
During an investigation for potential arboviruses present in mosquitoes in Hungary (Central Europe) three highly similar virus strains of a novel rhabdovirus (family Rhabdoviridae) called Riverside virus (RISV, KU248085-KU248087) were detected and genetically characterized from Ochlerotatus sp. mosquito pools collected from 3 geographical locations using viral metagenomic and RT-PCR methods. The ssRNA(-) genome of RISVs follows the general genome layout of rhabdoviruses (3'-N-P-M-G-L-5') with two alternatives, small ORFs in the P and G genes (Px and Gx). The genome of RISVs contains some unusual features such as the large P proteins, the short M proteins with the absence of N-terminal region together with the undetectable "Late budding" motif and the overlap of P and M genes. The unusually long 3' UTRs of the M genes of RISVs probably contain a remnant transcription termination signal which is suggesting the presence of an ancestral gene. The phylogenetic analysis and sequence comparisons show that the closest known relative of RISVs is the recently identified partially sequenced mosquito-borne rhabdovirus, North Creek virus (NOCRV), from Australia. The RISVs and NOCRV form a distinct, basally rooted lineage in the dimarhabdovirus supergroup. The host species range of RISVs is currently unknown, although the presence of these viruses especially in Ochlerotatus sp. mosquitoes which are known to be fierce biting pests of humans and warm-blooded animals and abundant and widespread in Hungary could hold some potential medical and/or veterinary risks.
Collapse
|
40
|
Pankovics P, Boros Á, Bíró H, Horváth KB, Phan TG, Delwart E, Reuter G. Novel picornavirus in domestic rabbits (Oryctolagus cuniculus var. domestica). INFECTION GENETICS AND EVOLUTION 2015; 37:117-22. [PMID: 26588888 PMCID: PMC7172602 DOI: 10.1016/j.meegid.2015.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 11/14/2015] [Indexed: 12/12/2022]
Abstract
Picornaviruses (family Picornaviridae) are small, non-enveloped viruses with positive sense, single-stranded RNA genomes. The numbers of the novel picornavirus species and genera are continuously increasing. Picornaviruses infect numerous vertebrate species from fish to mammals, but have not been identified in a member of the Lagomorpha order (pikas, hares and rabbits). In this study, a novel picornavirus was identified in 16 (28.6%) out of 56 faecal samples collected from clinically healthy rabbits (Oryctolagus cuniculus var. domestica) in two (one commercial and one family farms) of four rabbit farms in Hungary. The 8364 nucleotide (2486 amino acid) long complete genome sequence of strain Rabbit01/2013/HUN (KT325852) has typical picornavirus genome organization with type-V IRES at the 5'UTR, encodes a leader (L) and a single 2A(H-box/NC) proteins, contains a hepatitis-A-virus-like cis-acting replication element (CRE) in the 2A, but it does not contain the sequence forming a "barbell-like" secondary structure in the 3'UTR. Rabbit01/2013/HUN has 52.9%, 52% and 57.2% amino acid identity to corresponding proteins of species Aichivirus A (genus Kobuvirus): to murine Kobuvirus (JF755427) in P1, to canine Kobuvirus (JN387133) in P2 and to feline Kobuvirus (KF831027) in P3, respectively. The sequence and phylogenetic analysis indicated that Rabbit01/2013/HUN represents a novel picornavirus species possibly in genus Kobuvirus. This is the first report of detection of picornavirus in rabbit. Further study is needed to clarify whether this novel picornavirus plays a part in any diseases in domestic or wild rabbits.
Collapse
|
41
|
Pankovics P, Boros Á, Reuter G. Novel 5′/3′RACE Method for Amplification and Determination of Single-Stranded RNAs Through Double-Stranded RNA (dsRNA) Intermediates. Mol Biotechnol 2015; 57:974-81. [DOI: 10.1007/s12033-015-9889-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Horváth KB, Pankovics P, Kálmán E, Kádár Z, Battyáni Z, Lengyel Z, Reuter G. Epidemiological, Clinicopathological and Virological Features of Merkel Cell Carcinomas in Medical Center of University of Pécs, Hungary (2007-2012). Pathol Oncol Res 2015; 22:71-7. [PMID: 26306468 DOI: 10.1007/s12253-015-9974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive skin tumour. In 2008, a Merkel cell polyomavirus (MC) was identified in MCCs as a potential etiological factor of MCC. The aims of this retrospective study were to investigate the epidemiological, clinicopathological and virological features of MCCs. Between 2007 and 2012, 11 patients had been diagnosed with MCC by histological methods in University of Pécs, Hungary. In eight MCC cases MC was tested by PCR (in primary skin lesions, lymph nodes/cutan metastases, MCC neighboring carcinomas). Clinicopathological characteristics (age, histological pattern, lymphovascular invasion, co-morbidities) of MC-positive and MC-negative cases were compared. MC was detected in three (37.5%) out of eight patients' primary tumour or metastasis. The average age was 73.8 (64.3 in MC-positive group). Except the youngest, 55 year-old patient (the primary tumour appeared on his leg), all tumours were found at the head and neck region. Immunosuppression (steroid therapy, chronic lymphoid leukaemia, chronic obstructive pulmonary disease) and/or old age were characteristic for all cases. Histological pattern was different in MC-positive and in MC-negative groups: MCCs with MC showed more homogeneous histological pattern, lack of lymphovascular invasion and were associated with better prognosis (mortality rate: 33% versus 80%). MCC associated with oncogenic virus is a newly recognized clinical entity. However, MC could not be detected in all histologically proven MCCs. The well-defined selection of patients/disease groups and better characterization of differences between MC-positive and negative cases is an important step towards the recognition of the etiology and pathogenesis of all MCCs.
Collapse
|
43
|
Reuter G, Boros Á, Tóth Z, Gia Phan T, Delwart E, Pankovics P. A highly divergent picornavirus in an amphibian, the smooth newt (Lissotriton vulgaris). J Gen Virol 2015; 96:2607-2613. [PMID: 26018961 DOI: 10.1099/vir.0.000198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetically highly divergent picornavirus (Newt/2013/HUN, KP770140) was detected using viral metagenomics in faecal samples of free-living smooth newts (Lissotriton vulgaris). Newt picornavirus was identified by reverse transcription-polymerase chain reaction (RT-PCR) in six (25 %) of the 24 samples originating from individuals caught in two out of the six investigated natural ponds in Hungary. The first picornavirus in amphibians expands the host range of members of the Picornaviridae, and opens a new research field in picornavirus evolution in lower vertebrates. Newt picornavirus represents a novel species in a novel genus within the family Picornaviridae, provisionally named genus Ampivirus (amphibian picornavirus).
Collapse
|
44
|
Boros Á, Fenyvesi H, Pankovics P, Biró H, Phan TG, Delwart E, Reuter G. Secondary structure analysis of swine pasivirus (family Picornaviridae) RNA reveals a type-IV IRES and a parechovirus-like 3' UTR organization. Arch Virol 2015; 160:1363-6. [PMID: 25716922 DOI: 10.1007/s00705-015-2371-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
Abstract
The potential RNA structures of the 5' and 3' untranslated regions (UTRs) and cis-acting replication elements (CREs) of a novel pasivirus (PaV) genotype (family Picornaviridae) were analysed. PaV-A3 (KM259923) was identified in a faecal sample from a domestic pig in Hungary with posterior paraplegia of unknown etiology. Based on likely structural features of the 5' UTR, the pasiviruses were inferred to possess Hepacivirus/Pestivirus-like type-IV IRES. The pasivirus CRE was mapped to the 2B genome region, similar to Ljungan virus. The secondary RNA structure of the pasivirus 3' UTR was structurally similar to that of human parechoviruses. The genome, CRE, and 3' UTR of pasiviruses provide further evidence of the common origin of the members of the genera Parechovirus and Pasivirus, although their different 5' UTR IRES types suggest that a recombination event occurred during the divergence these viruses.
Collapse
|
45
|
Boros Á, Pankovics P, Adonyi Á, Phan TG, Delwart E, Reuter G. Genome characterization of a novel chicken picornavirus distantly related to the members of genus Avihepatovirus with a single 2A protein and a megrivirus-like 3' UTR. INFECTION GENETICS AND EVOLUTION 2014; 28:333-8. [PMID: 25445649 DOI: 10.1016/j.meegid.2014.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022]
Abstract
The members of the genus Avihepatovirus and related picornaviruses ("Aalivius") of ducks, turkey and chickens possess identical 2A peptide composition including three functionally unrelated 2A peptides which is a characteristic genome feature of these monophyletic avian picornaviruses. The complete genome of a novel picornavirus provisionally named Orivirus A1 (KM203656) from a cloacal sample of a 4-week-old diarrheic chicken (Gallus gallus domesticus) distantly related to members of genus Avihepatovirus was characterized. The study strain contains a type-II-like IRES, a single 2A protein of unknown function unrelated to the 2A proteins of avihepatoviruses and a long 3' untranslated region (UTR) with multiple repeated sequence motifs followed by an AUG-rich region. The repeated sequences of the 3' UTR show significant identity to the "Unit A" sequences of the phylogenetically distant megriviruses. The presence of a novel single 2A and the megrivirus-like "Unit A" motifs suggest multiple recombination events in the evolution of this novel picornavirus.
Collapse
|
46
|
Boros Á, Pankovics P, Reuter G. Avian picornaviruses: molecular evolution, genome diversity and unusual genome features of a rapidly expanding group of viruses in birds. INFECTION GENETICS AND EVOLUTION 2014; 28:151-66. [PMID: 25278047 DOI: 10.1016/j.meegid.2014.09.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 12/29/2022]
Abstract
Picornaviridae is one of the most diverse families of viruses infecting vertebrate species. In contrast to the relative small number of mammal species compared to other vertebrates, the abundance of mammal-infecting picornaviruses was significantly overrepresented among the presently known picornaviruses. Therefore most of the current knowledge about the genome diversity/organization patterns and common genome features were based on the analysis of mammal-infecting picornaviruses. Beside the well known reservoir role of birds in case of several emerging viral pathogens, little is known about the diversity of picornaviruses circulating among birds, although in the last decade the number of known avian picornavirus species with complete genome was increased from one to at least 15. However, little is known about the geographic distribution, host spectrum or pathogenic potential of the recently described picornaviruses of birds. Despite the low number of known avian picornaviruses, the phylogenetic and genome organization diversity of these viruses were remarkable. Beside the common L-4-3-4 and 4-3-4 genome layouts unusual genome patterns (3-4-4; 3-5-4, 3-6-4; 3-8-4) with variable, multicistronic 2A genome regions were found among avian picornaviruses. The phylogenetic and genomic analysis revealed the presence of several conserved structures at the untranslated regions among phylogenetically distant avian and non-avian picornaviruses as well as at least five different avian picornavirus phylogenetic clusters located in every main picornavirus lineage with characteristic genome layouts which suggests the complex evolution history of these viruses. Based on the remarkable genetic diversity of the few known avian picornaviruses, the emergence of further divergent picornaviruses causing challenges in the current taxonomy and also in the understanding of the evolution and genome organization of picornaviruses will be strongly expected. In this review we would like to summarize the current knowledge about the taxonomy, pathogenic potential, phylogenetic/genomic diversity and evolutional relationship of avian picornaviruses.
Collapse
|
47
|
Pankovics P, Boros Á, Kiss T, Reuter G. Identification and complete genome analysis of kobuvirus in faecal samples of European roller (Coracias garrulus): for the first time in a bird. Arch Virol 2014; 160:345-51. [PMID: 25195063 DOI: 10.1007/s00705-014-2228-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/31/2014] [Indexed: 12/11/2022]
Abstract
The genus Kobuvirus (Picornaviridae) consists of three species, Aichivirus A (e.g., Aichi virus, which infects humans), Aichivirus B and Aichivirus C. Kobuvirus have not been detected in non-mammal species including birds. In this study, a novel kobuvirus was identified in 3 (17 %) out of 18 faecal samples collected from European rollers (Coracias garrulus) in Hungary. The complete genome sequence of strain SZAL6-KoV/2011/HUN (KJ934637), which was determined using a novel 5'/3' RACE method (dsRNA-RACE) involving a double-stranded (ds)RNA intermediate, has a type-V IRES at the 5' end and a cis-acting element (CRE) in the 3C gene and encodes L and 2A(H-box/NC) proteins, but it does not contain the sequence forming a "barbell-like" secondary RNA structure in the 3'UTR. SZAL6-KoV/2011/HUN has 72 %, 73 %, and 81 % amino acid sequence identity to the P1, P2, and P3 protein, respectively, of Aichi virus. Evolutionary analysis showed that SZAL6-KoV/2011/HUN shares a common ancestor with other kobuviruses but belongs to a more ancient lineage in the species Aichivirus A. Investigation of the known kobuviruses in different animals and discovery of novel kobuviruses in potential host species helps to clarify the evolutionary connection and zoonotic potential of kobuviruses.
Collapse
|
48
|
Reuter G, Maza N, Pankovics P, Boros Á. Non-primate hepacivirus infection with apparent hepatitis in a horse - Short communication. Acta Vet Hung 2014; 62:422-7. [PMID: 25038950 DOI: 10.1556/avet.2014.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Non-primate hepacivirus (NPHV) is a recently identified hepacivirus (family Flaviviridae) in dog and horse; however, the disease associations remain unknown. This study reports the detection of natural NPHV infection in a horse with apparent hepatitis, liver damage and high-level viraemia. NPHV could be hepatotropic and associated with hepatitis in horses.
Collapse
|
49
|
Reuter G, Pankovics P, Gyöngyi Z, Delwart E, Boros A. Novel dicistrovirus from bat guano. Arch Virol 2014; 159:3453-6. [PMID: 25168044 DOI: 10.1007/s00705-014-2212-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/24/2014] [Indexed: 11/28/2022]
Abstract
A novel dicistrovirus (strain NB-1/2011/HUN, KJ802403) genome was detected from guano collected from an insectivorous bat (species Pipistrellus pipistrellus) in Hungary, using viral metagenomics. The complete genome of NB-1 is 9136 nt in length, excluding the poly(A) tail. NB-1 has a genome organization typical of a dicistrovirus with multiple 3B(VPg) and a cripavirus-like intergenic region (IGR)-IRES. NB-1 shares only 41 % average amino acid sequence identity with capsid proteins of Himetobi P virus, indicating a potential novel species in the genus Cripavirus, family Dicistroviridae.
Collapse
|
50
|
Reuter G, Boros A, Kiss T, Delwart E, Pankovics P. Complete genome characterization of mosavirus (family Picornaviridae) identified in droppings of a European roller (Coracias garrulus) in Hungary. Arch Virol 2014; 159:2723-9. [PMID: 24824348 DOI: 10.1007/s00705-014-2113-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/30/2014] [Indexed: 12/27/2022]
Abstract
Mosavirus (mosavirus A1, M-7/2010/USA, JF973687), a novel picornavirus, was found in a canyon mouse (Peromyscus crinitus) in the USA in 2010. It represents a novel species (Mosavirus A) in a novel genus (Mosavirus) in the family Picornaviridae. In this study, the first complete genome sequence of another mosavirus, SZAL6-MoV/2011/HUN (KF958461), was determined from one out of 18 fecal samples from an Afro-Palearctic migratory bird, the European roller (Coracias garrulus). The complete genome of SZAL6-MoV/2011/HUN is 8385 nt long (from poly(C) tract to poly(A) tail), contains a 646-nt-long 5'UTR that forms a type II IRES, and encodes a potential 2550-aa-long polyprotein precursor including an aphthovirus-like L(pro)-proteinase, a small aphthovirus-like 2A(NPG↓P), and two 3B(VPg) proteins. SZAL6-MoV/2011/HUN has 67 %, 74 %, and 76 % aa sequence identity in the P1, P2, and P3 region, respectively, to M-7/2010/USA and represents a second mosavirus type, mosavirus A2.
Collapse
|