26
|
Li X, Albrecht FE, Xu J, Robillard JE, Eisner GM, Jose PA. [Regulation of NHE3 by D1 dopamine receptor during development of spontaneously hypertensive rats]. ZHONGHUA YI XUE ZA ZHI 2001; 81:549-52. [PMID: 11809121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
OBJECTIVE To determine if spontaneous hypertension is secondary to defective interaction among dopamine receptor, G protein, and Na(+)/H(+) exchanger 3 (NHE3). METHODS The inhibitory effect of a D(1) dopamine agonist upon NHE3 activity and its impact upon G(s)alpha/NHE3 binding in renal brush border membrane (BBM) of spontaneously hypertensive rats (SHRs) 2 - 3 weeks before and 12 weeks after the establishment of hypertension were examined. In order to avoid the confounding influence of second messenger on D(1) receptor/NHE3 interaction, study was made in BBM devoid of cytoplasmic component. RESULTS NHE3 activity increased with age in Wister-Kyoto (WKY) rats but not in SHRS. D1 receptor expression did change with age in both WKY rats and SHRs. The inhibitory effect of a D(1)-like agonist on NHE3 activity increased with age in WKY rats but not in SHRs. In WKY rats, another D(1)-like agonist, fedoldopam, increased G(s)alpha/NHE3 binding to the same extent in 2 week old and adult rats, but decreased the amount of G(s)(alpha)bound to NHE3 in 2 week old SHRs. CONCLUSION The decrease of inhibitory effect of D(1)-like agonist upon NHE3 activity in SHRs precedes the development of hypertension. Spontaneous hypertension may be caused, in part, by a decreased interaction between G(s)alpha and NHE3 in BBM secondary to D(1)-like receptor function.
Collapse
|
27
|
D'Souza UM, Wang W, Gao DQ, Kanda S, Lee G, Junn E, Hwang CK, Jose PA, Mouradian MM. Characterization of the 5' flanking region of the rat D(3) dopamine receptor gene. J Neurochem 2001; 76:1736-44. [PMID: 11259491 DOI: 10.1046/j.1471-4159.2001.00155.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The D(3) dopamine receptor has a restricted regional distribution in brain and is regulated by dopaminergic agents. Additionally, the D(3) gene is implicated in the pathogenesis of several neuropsychiatric disorders or in their response to pharmacological agents. Elucidating its transcription control mechanisms is therefore of interest in order to explain these biological features of the D(3) gene. In this study, the 5' flanking region of the rat D(3) gene was characterized by isolating the 5' end of its cDNA as well as 4.6 kb of genomic sequence. Analysis of this region revealed the presence of two new exons 196-bp and 120-bp long, separated by an 855-bp intron, located several kilobases upstream of the previously published coding exons. Thus, current evidence indicates that the rat D(3) gene is organized into eight exons. Transcription initiation site was determined by primer extension analysis and repeated rounds of 5' RACE and was found to localize at a pyrimidine-rich consensus 'initiator' sequence, similar to the rat D(2) gene. The D(3) promoter lacks TATA or CAAT boxes but unlike that of other dopamine receptor genes has only 52% GC content. Functional analysis of D(3) promoter deletion mutants fused to a reporter gene in TE671 cells, which endogenously express this gene, revealed strong transcriptional activity localized within 36 nucleotides upstream of transcription start site, and a potent silencer between bases --37 and --537. The D(3) promoter is inactive in C6 and COS7 cells. We conclude that the D(3) gene, similar to the closely related D(2) gene, is transcribed from a tissue specific promoter which is under intense negative control.
Collapse
|
28
|
Yu P, Asico LD, Eisner GM, Hopfer U, Felder RA, Jose PA. Renal protein phosphatase 2A activity and spontaneous hypertension in rats. Hypertension 2000; 36:1053-8. [PMID: 11116124 DOI: 10.1161/01.hyp.36.6.1053] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The impaired renal paracrine function of dopamine in spontaneously hypertensive rats (SHR) is caused by hyperphosphorylation and desensitization of the renal D(1) dopamine receptor. Protein phosphatase 2A (PP(2A)) is critical in the regulation of G-protein-coupled receptor function. To determine whether PP(2A) expression and activity in the kidney are differentially regulated in genetic hypertension, we examined the effects of a D(1)-like agonist, fenoldopam, in renal cortical tubules and immortalized renal proximal tubule cells from normotensive Wistar-Kyoto rats (WKY) and SHR. In cortical tubules and immortalized proximal tubule cells, PP(2A) expression and activities were greater in cytosol than in membrane fractions in both WKY and SHR. Although PP(2A) expressions were similar in WKY and SHR, basal PP(2A) activity was greater in immortalized proximal tubule cells of SHR than WKY. In immortalized proximal tubule cells of WKY, fenoldopam increased membrane PP(2A) activity and expression of the regulatory subunit PP(2A)-B56alpha, effects that were blocked by the D(1)-like antagonist SCH23390. Fenoldopam had no effect on cytosolic PP(2A) activity but decreased PP(2A)-B56alpha expression. In contrast, in immortalized proximal tubule cells of SHR, fenoldopam decreased PP(2A) activity in both membranes and cytosol but predominantly in the membrane fraction, without affecting PP(2A)-B56alpha expression; this effect was blocked by the D(1)-like antagonist SCH23390. We conclude that renal PP(2A) activity and expression are differentially regulated in WKY and SHR by D(1)-like receptors. A failure of D(1)-like agonists to increase PP(2A) activity in proximal tubule membranes may be a cause of the increased phosphorylation of the D(1) receptor in the SHR.
Collapse
|
29
|
Xu J, Li XX, Albrecht FE, Hopfer U, Carey RM, Jose PA. Dopamine(1) receptor, G(salpha), and Na(+)-H(+) exchanger interactions in the kidney in hypertension. Hypertension 2000; 36:395-9. [PMID: 10988271 DOI: 10.1161/01.hyp.36.3.395] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of dopamine(1) (D(1)) receptors to inhibit luminal Na(+)-H(+) exchanger (NHE) activity in renal proximal tubules and induce a natriuresis is impaired in spontaneously hypertensive rats (SHR). However, it is not clear whether the defect is at the level of the D(1) receptor, G(salpha), or effector proteins. The coupling of the D(1) receptor to G(salpha) and NHE3 was studied in renal brush border membranes (BBM), devoid of cytoplasmic second messengers. D(1) receptor, G(salpha), and NHE3 expressions were similar in SHR and their normotensive controls, Wistar-Kyoto rats (WKY). Guanosine-5'-O:-(3-thiotriphosphate) (GTPgammaS) decreased NHE activity and increased NHE3 linked with G(salpha) similarly in WKY and SHR, indicating normal G(salpha) and NHE3 regulation in SHR. However, D(1) agonists increased NHE3 linked with G(salpha) in WKY but not in SHR, and the inhibitory effects of D(1) agonists on NHE activity were less in SHR than in WKY. Moreover, GTPgammaS enhanced the inhibitory effect of D(1) agonist on NHE activity in WKY but not in SHR, suggesting an uncoupling of the D(1) receptor from G(salpha)/NHE3 in SHR. Similar results were obtained with the use of immortalized renal proximal tubule cells from WKY and SHR. We conclude that the defective D(1) receptor function in renal proximal tubules in SHR is proximal to G(salpha)/effectors and presumably at the receptor level. The mechanism(s) responsible for the uncoupling of the D(1) receptor from G proteins remains to be determined. Because the primary structure of the D(1) receptor is not different between normotensive and hypertensive rats, differences in D(1) receptor posttranslational modification are possible.
Collapse
|
30
|
Williams SM, Addy JH, Phillips JA, Dai M, Kpodonu J, Afful J, Jackson H, Joseph K, Eason F, Murray MM, Epperson P, Aduonum A, Wong LJ, Jose PA, Felder RA. Combinations of variations in multiple genes are associated with hypertension. Hypertension 2000; 36:2-6. [PMID: 10904004 DOI: 10.1161/01.hyp.36.1.2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The genetic analysis of hypertension has revealed complex and inconsistent results, making it difficult to draw clear conclusions regarding the impact of specific genes on blood pressure regulation in diverse human populations. Some of the confusion from previous studies is probably due to undetected gene-gene interactions. Instead of focusing on the effects of single genes on hypertension, we examined the effects of interactions of alleles at 4 candidate loci. Three of the loci are in the renin-angiotensin-system, angiotensinogen, ACE, and angiotensin II type 1 receptor, and they have been associated with hypertension in at least 1 previous study. The fourth locus studied is a previously undescribed locus, named FJ. In total, 7 polymorphic sites at these loci were analyzed for their association with hypertension in 51 normotensive and 126 hypertensive age-matched individuals. There were no significant differences between the 2 phenotypic classes with respect to either allele or genotype frequencies. However, when we tested for nonallelic associations (linkage disequilibrium), we found that of the 120 multilocus comparisons, 16 deviated significantly from random in the hypertensive class, but there were no significant deviations in the normotensive group. These findings suggest that genetic interactions between multiple loci rather than variants of a single gene underlie the genetic basis of hypertension in our study subjects. We hypothesize that such interactions may account for the inconsistent findings in previous studies because, unlike our study, prior studies almost always examined single-locus effects and did not consider the effects of variation at other potentially interacting loci.
Collapse
|
31
|
Abstract
During the past decade, it has become evident that dopamine plays an important role in the regulation of fluid and electrolyte balance and blood pressure. Dopamine exerts its actions through two families of dopamine receptors, designated D1-like and D2-like, which are identical in the brain and in peripheral tissues. The two D1-like receptors--D1 and D5 receptors--expressed in mammals are linked to stimulation of adenylyl cyclase. The three D2-like receptors--D2, D3, and D4,--are linked to inhibition of adenylyl cyclase. Dopamine affects fluid and electrolyte balance by regulation of renal excretion of electrolytes and water through actions on renal hemodynamics and tubular epithelial transport and by modulation of the secretion and/or action of vasopressin, renin, aldosterone, catecholamines, and endothelin B receptors (ETB) receptors. It also affects fluid and sodium intake by way of "appetite" centers in the brain and alterations of gastrointestinal tract transport. The production of dopamine in neural and non-neural tissues and the presence of receptors in these tissues suggest that dopamine can act in an autocrine or paracrine fashion. This renal autocrine-paracrine function, which becomes most evident during extracellular fluid volume expansion, is lost in essential hypertension and in some animal models of genetic hypertension. This deficit may be caused by abnormalities in renal dopamine production and polymorphisms or abnormal post-translational modification and regulation of dopamine receptor subtypes.
Collapse
|
32
|
Aoki Y, Aviles DH, Jose PA. Biphasic effects of dopamine on 86rubidium uptake in rat renal proximal tubules. Clin Exp Hypertens 2000; 22:289-301. [PMID: 10803734 DOI: 10.1081/ceh-100100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The mechanism(s) by which dopamine inhibits Na+-K+-ATPase activity in the renal proximal tubule is still controversial. We studied the short-term effects of dopamine on the sodium pump in rat renal proximal tubule suspensions with the 86Rb uptake method. Dopamine and the D1-like agonist, SKF81297, initially stimulated Na+-K+-ATPase activity at 5 min and subsequently inhibited it at 10 min and 20 min; the inhibition by 10 microM dopamine at 20 min was 21.3 +/- 4.5%. The inhibitory effect of dopamine on Na+-K+-ATPase activity was mimicked by thymeleatoxin (a classical protein kinase C [PKC] agonist) while Sp-8-CPT-cAMPS (a protein kinase A [PKA] agonist) had no effect. However, the combination of the PKC and PKA agonists mimicked the biphasic effects of dopamine and SKF81297. Rp-8-CPT-cAMPS (a PKA inhibitor), U-73122 (a phospholipase C inhibitor), or calphostin C (a PKC inhibitor), blocked the dopamine-mediated biphasic effects on Na+-K+-ATPase activity. It is suggested that the biphasic effects of dopamine on Na+-K+-ATPase activity (an initial stimulation and a subsequent inhibition) are transduced by activating both PKA and PKC through a D1-like receptor.
Collapse
|
33
|
Li XX, Albrecht FE, Robillard JE, Eisner GM, Jose PA. Gbeta regulation of Na/H exchanger-3 activity in rat renal proximal tubules during development. Am J Physiol Regul Integr Comp Physiol 2000; 278:R931-6. [PMID: 10749781 DOI: 10.1152/ajpregu.2000.278.4.r931] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The decreased natriuretic action of dopamine in the young has been attributed to decreased generation of cAMP by the activated renal D(1)-like receptor. However, sodium/hydrogen exchanger (NHE) 3 activity in renal brush-border membrane vesicles (BBMV) can be modulated independent of cytoplasmic second messengers. We therefore studied D(1)-like receptor regulation of NHE activity in BBMVs in 2-, 4-, and 12-wk-old (adult) rats. Basal NHE activity was least in 2-wk-old compared with 4- and 12-wk-old rats. D(1)-like agonist (SKF-81297) inhibition of NHE activity was also least in 2-wk-old (-1 +/- 9%, n = 3) compared with 4 (-15 +/- 5%, n = 6)- and 12 (-65 +/- 4%, n = 6)-wk-old rats. The decreased response to the D(1)-like agonist in BBMV was not caused by decreased D(1) receptors or NHE3 expression in the young. G(s)alpha, which inhibits NHE3 activity by itself, coimmunoprecipitated with NHE3 to the same extent in 2-wk-old and adult rats. G(s)alpha function was also not impaired in the young because guanosine 5'-O-(3-thiotriphosphate) decreased NHE activity to a similar extent in 4-wk-old and adult rats. Galpha(i-3) protein expression in BBMV also did not change with age. In contrast, Gbeta expression and the amount of Gbeta that coimmunoprecipitated with NHE3 in BBMV was greatest in 2-wk-old rats and decreased with age. Gbeta common antibodies did not affect D(1)-like agonist inhibition of NHE activity in adult rats (8%) but markedly increased it (48%)in 4-wk-old rats. We conclude that the decreased inhibitory effect of D(1)-like receptors on NHE activity in BBMV in young rats is caused, in part, by the increased expression and activity of the G protein subunit Gbeta/gamma. The direct regulation of NHE activity by G protein subunits may be an important step in the maturation of renal tubular ion transport.
Collapse
|
34
|
Albrecht FE, Xu J, Moe OW, Hopfer U, Simonds WF, Orlowski J, Jose PA. Regulation of NHE3 activity by G protein subunits in renal brush-border membranes. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1064-73. [PMID: 10749796 DOI: 10.1152/ajpregu.2000.278.4.r1064] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NHE3 activity is regulated by phosphorylation/dephosphorylation processes and membrane recycling in intact cells. However, the Na(+)/H(+) exchanger (NHE) can also be regulated by G proteins independent of cytoplasmic second messengers, but the G protein subunits involved in this regulation are not known. Therefore, we studied G protein subunit regulation of NHE3 activity in renal brush-border membrane vesicles (BBMV) in a system devoid of cytoplasmic components and second messengers. Basal NHE3 activity was not regulated by G(s)alpha or G(i)alpha, because antibodies to these G proteins by themselves were without effect. The inhibitory effect of D(1)-like agonists on NHE3 activity was mediated, in part, by G(s)alpha, because it was partially reversed by anti-G(s)alpha antibodies. Moreover, the amount of G(s)alpha that coimmunoprecipitated with NHE3 was increased by fenoldopam in both brush-border membranes and renal proximal tubule cells. Furthermore, guanosine 5'-O-(3-thiotriphosphate) but not guanosine 5'-O-(2-thiodiphosphate), the inactive analog of GDP, increased the amount of G(s)alpha that coimmunoprecipitated with NHE3. The alpha(2)-adrenergic agonist, UK-14304 or pertussis toxin (PTX) alone had no effect on NHE3 activity, but UK-14304 and PTX treatment attenuated the D(1)-like receptor-mediated NHE3 inhibition. The ability of UK-14304 to attenuate the D(1)-like agonist effect was not due to G(i)alpha, because the attenuation was not blocked by anti-G(i)alpha antibodies or by PTX. Anti-Gbeta(common) antibodies, by themselves, slightly inhibited NHE3 activity but had little effect on D(1)-like receptor-mediated NHE3 inhibition. However, anti-Gbeta(common) antibodies reversed the effects of UK-14304 and PTX on D(1)-like agonist-mediated NHE3 inhibition. These studies provide concrete evidence of a direct regulatory role for G(s)alpha, independent of second messengers, in the D(1)-like-mediated inhibition of NHE3 activity in rat renal BBMV. In addition, beta/gamma dimers of heterotrimeric G proteins appear to have a stimulatory effect on NHE3 activity in BBMV.
Collapse
|
35
|
Felder RA, Eisner GM, Jose PA. D1 dopamine receptor signalling defect in spontaneous hypertension. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 168:245-50. [PMID: 10691808 DOI: 10.1046/j.1365-201x.2000.00634.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopamine modulates cardiovascular function by actions in the central and peripheral nervous system, by altering the secretion/release of prolactin, pro-opiomelanocortin, vasopressin, aldosterone, and renin, and by directly affecting renal function. Dopamine produced by the renal proximal tubule exerts an autocrine/paracrine action via two classes of dopamine receptors, D1-like (D1 and D5) and D2-like (D2, D3, and D4), that are differentially expressed along the nephron. The autocrine/paracrine function of dopamine, manifested by tubular rather than by haemodynamic mechanisms, becomes most evident during extracellular fluid volume expansion. This renal autocrine/paracrine function is lost in essential hypertension and in some animal models of genetic hypertension. The molecular basis for the dopaminergic dysfunction in hypertension may involve an abnormal post-translational modification of dopamine receptors.
Collapse
|
36
|
Sanada H, Jose PA, Hazen-Martin D, Yu PY, Xu J, Bruns DE, Phipps J, Carey RM, Felder RA. Dopamine-1 receptor coupling defect in renal proximal tubule cells in hypertension. Hypertension 1999; 33:1036-42. [PMID: 10205244 DOI: 10.1161/01.hyp.33.4.1036] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of the dopamine-1 (D1)-like receptor to stimulate adenylyl cyclase (AC) and phospholipase C (PLC), inhibit sodium transport in the renal proximal tubule (RPT), and produce natriuresis is attenuated in several rat models of hypertension. Since the inhibitory effect of D1-like receptors on RPT sodium transport is also reduced in some patients with essential hypertension, we measured D1-like receptor coupling to AC and PLC in cultures of human RPT cells from normotensive (NT) and hypertensive (HT) subjects. Basal cAMP concentrations were the same in NT (n=6) and HT (n=4). However, the D1-like receptor agonist fenoldopam increased cAMP production to a greater extent in NT (maximum response=67+/-1%) than in HT (maximum response=17+/-5%), with a potency ratio of 105. Dopamine also increased cAMP production to a greater extent in NT (32+/-3%) than in HT (14+/-3%). The fenoldopam-mediated increase in cAMP production was blocked by SCH23390 (a D1-like receptor antagonist) and by antisense D1 oligonucleotides in both HT and NT, indicating action at the D1 receptor. The stimulatory effects of forskolin and parathyroid hormone-related protein of cAMP accumulation were not statistically different in NT and HT, indicating receptor specificity and an intact G-protein/AC pathway. The fenoldopam-stimulated PLC activity was not impaired in HT, and the primary sequence and expression of the D1 receptor were the same in NT and HT. However, D1 receptor serine phosphorylation in the basal state was greater in HT than in NT and was not responsive to fenoldopam stimulation in HT. These studies demonstrate the expression of D1 receptors in human RPT cells in culture. The uncoupling of the D1 receptor in both rats (previously described) and humans (described here) suggests that this mechanism may be involved in the pathogenesis of hypertension; the uncoupling may be due to ligand-independent phosphorylation of the D1 receptor in hypertension.
Collapse
|
37
|
Jose PA, Eisner GM, Felder RA. Role of dopamine in the pathogenesis of hypertension. CLINICAL AND EXPERIMENTAL PHARMACOLOGY & PHYSIOLOGY. SUPPLEMENT 1999; 26:S10-3. [PMID: 10386248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
1. Dopamine, via different dopamine receptor subtypes, regulates cardiovascular functions by actions on the central and peripheral nervous systems, vascular smooth muscle, the heart and the kidney. The dopaminergic system in the central nervous system (CNS) may participate in the regulation of systemic blood pressure. 2. Dopamine 'D2-like' (D2, D3 and D4) receptors, rather than 'D1-like' (D1 and D5) receptors, are involved in the CNS regulation of blood pressure; post-synaptic D2-like receptors increase blood pressure, while presynaptic D2-like receptors (the predominant action) produce the opposite effect. 3. Outside the CNS, dopamine may regulate blood pressure via pressure controls that act with intermediate rapidity (e.g. stress relaxation, arginine vasopressin and renin-angiotensin vasoconstriction), as well as those systems related to the long-term control of body fluid volume. 4. Dopamine D1- and D2-like receptors have been described in resistance vessels, such as the renal, mesenteric, coronary, pulmonary and cerebral arteries. The ability of D1-like receptors to inhibit renal smooth muscle hypertrophy indicates their importance in longer-term regulation of blood pressure. 5. Aberrant dopaminergic regulation of aldosterone secretion, via D2-like receptors, has been reported to be involved in some forms of hyperaldosteronism and hypertension. Some forms of hypertension may also be caused by an aberrant renal dopaminergic system. Abnormalities of three aspects of the renal dopaminergic system may lead to hypertension: (i) renal production of dopamine; (ii) transduction of the renal vascular dopamine signal; and (iii) transduction of the renal tubular dopamine signal. 6. Thus, increased blood pressure occurs after either blockade of D1-like receptors or of dopamine production in rats or disruption of the D1 receptor or the D3 receptor gene in mice.
Collapse
|
38
|
Yao LP, Li XX, Yu PY, Xu J, Asico LD, Jose PA. Dopamine D1 receptor and protein kinase C isoforms in spontaneously hypertensive rats. Hypertension 1998; 32:1049-53. [PMID: 9856972 DOI: 10.1161/01.hyp.32.6.1049] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-Dopamine, via D1-like receptors, stimulates the activity of both protein kinase A (PKA) and protein kinase C (PKC), which results in inhibition of renal sodium transport. Since D1-like receptors differentially regulate sodium transport in normotensive and hypertensive rats, they may also differentially regulate PKC expression in these rat strains. Thus, 2 different D1-like agonists (fenoldopam or SKF 38393) were infused into the renal artery of anesthetized normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) (n=5 to 6/drug/strain). Ten or 60 minutes after starting the D1-like agonist infusion, both the infused kidney and the noninfused kidney that served as control were prepared for analysis. The D1-like agonists produced a greater diuresis and natriuresis and inhibited Na+,K+-ATPase activity in proximal tubule (PT) and medullary thick ascending limb (mTAL) to a greater extent in WKY (Delta20+/-1%) than in SHR (Delta7+/-1%, P<0.001). D1-like agonists had no effect on PKC-alpha or PKC-lambda expression in either membrane or cytosol but increased PKC-theta expression in PT in both WKY and SHR at 10 minutes but not at 60 minutes. However, membranous PKC-delta expression in PT and mTAL decreased in WKY but increased in SHR with either 10 or 60 minutes of D1-like agonist infusion. D1-like agonists also decreased membranous PKC-zeta expression in PT and mTAL in WKY but increased it in PT but not in mTAL in SHR. We conclude that there is differential regulation of PKC isoform expression by D1-like agonists that inhibits membranous PKC-delta and PKC-zeta in WKY but stimulates them in SHR; this effect in SHR is similar to the stimulatory effect of norepinephrine and angiotensin II and may be a mechanism for their differential effects on sodium transport.
Collapse
|
39
|
Abstract
During the past decade, it has become evident that dopamine plays an important role in the regulation of renal function and blood pressure. Dopamine exerts its actions via a class of cell-surface receptors coupled to G-proteins that belong to the rhodopsin family. Dopamine receptors have been classified into two families based on pharmacologic and molecular cloning studies. In mammals, two D1-like receptors that have been cloned, the D1 and D5 receptors (known as D1A and D1B, respectively, in rodents), are linked to stimulation of adenylyl cyclase. Three D2-like receptors that have been cloned (D2, D3, and D4) are linked to inhibition of adenylyl cyclase and Ca2+ channels and stimulation of K+ channels. All the mammalian dopamine receptors, initially cloned from the brain, have been found to be expressed outside the central nervous system, in such sites as the adrenal gland, blood vessels, carotid body, intestines, heart, parathyroid gland, and the kidney and urinary tract. Dopamine receptor subtypes are differentially expressed along the nephron, where they regulate renal hemodynamics and electrolyte and water transport, as well as renin secretion. The ability of renal proximal tubules to produce dopamine and the presence of receptors in these tubules suggest that dopamine can act in an autocrine or paracrine fashion; this action becomes most evident during extracellular fluid volume expansion. This renal autocrine/paracrine function is lost in essential hypertension and in some animal models of genetic hypertension; disruption of the D1 or D3 receptor produces hypertension in mice. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to the hypertension. The molecular basis for the dopaminergic dysfunction in hypertension is not known, but may involve an abnormal post-translational modification of the dopamine receptor.
Collapse
|
40
|
Jose PA, Asico LD, Eisner GM, Pocchiari F, Semeraro C, Felder RA. Effects of costimulation of dopamine D1- and D2-like receptors on renal function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R986-94. [PMID: 9756526 DOI: 10.1152/ajpregu.1998.275.4.r986] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro studies have suggested that dopamine D1- and D2-like receptors interact to inhibit renal sodium transport. We used Z-1046, a dopamine receptor agonist with the rank-order potency D3 >/= D4 > D2 > D5 > D1, to test the hypothesis that D1- and D2-like receptors interact to inhibit renal sodium transport in vivo in anesthetized rats. Increasing doses of Z-1046, administered via the right renal artery, increased renal blood flow (RBF), urine flow, and absolute and fractional sodium excretion without affecting glomerular filtration rate. For determination of the dopamine receptor involved in the renal functional effects of Z-1046, another group of rats received Z-1046 at 2 microgram . kg-1 . min-1 (n = 10) in the presence or absence of the D2-like receptor antagonist domperidone and/or the D1-like antagonist SCH-23390. Domperidone alone had no effect but blocked the Z-1046-mediated increase in urine flow and sodium excretion; it enhanced the increase in RBF after Z-1046. SCH-23390 by itself decreased urine flow and sodium excretion without affecting RBF and blocked the diuretic, natriuretic, and renal vasodilatory effect of Z-1046. We conclude that the renal vasodilatory effect of Z-1046 is D1-like receptor dependent, whereas the diuretic and natriuretic effects are both D1- and D2-like receptor dependent.
Collapse
|
41
|
Asico LD, Ladines C, Fuchs S, Accili D, Carey RM, Semeraro C, Pocchiari F, Felder RA, Eisner GM, Jose PA. Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest 1998; 102:493-8. [PMID: 9691085 PMCID: PMC508909 DOI: 10.1172/jci3685] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since dopamine receptors are important in the regulation of renal and cardiovascular function, we studied the cardiovascular consequences of the disruption of the D3 receptor, a member of the family of D2-like receptors, expressed in renal proximal tubules and juxtaglomerular cells. Systolic and diastolic blood pressures were higher (approximately 20 mmHg) in heterozygous and homozygous than in wild-type mice. An acute saline load increased urine flow rate and sodium excretion to a similar extent in wild-type and heterozygous mice but the increase was attenuated in homozygous mice. Renal renin activity was much greater in homozygous than in wild-type mice; values for heterozygous mice were intermediate. Blockade of angiotensin II subtype-1 receptors decreased systolic blood pressure for a longer duration in mutant than in wild-type mice. Thus, disruption of the D3 receptor increases renal renin production and produces renal sodium retention and renin-dependent hypertension.
Collapse
|
42
|
Abstract
The resistance of the spontaneously hypertensive rat (SHR) kidney to the natriuretic effect of dopamine and D1 agonists may be due to increased renal nerve activity. Therefore, we compared the effects of the intrarenal arterial infusion of the D1 agonist, SKF 38383, into the denervated (DNX) kidney of saline-loaded-anesthetized SHR and its control, the Wistar-Kyoto (WKY) rat. In both WKY and SHR, DNX of the left kidney slightly decreased urine flow (UV) and absolute (UNaV) and fractional sodium excretion (FENa) in the innervated right kidney; neither vehicle nor D1 agonist infusion exerted any effect. In the left kidney, denervation increased UV, UNaV, and FENa to a similar degree in WKY and SHR (2-fold), without affecting renal blood flow, glomerular filtration rate, or blood pressure. In WKY but not in SHR, after DNX, the D1 agonist dose-dependently increased UV, UNaV, and FENa in the denervated kidney. We conclude that the decreased natriuretic effect of D1 agonists in the SHR is not due to increased renal nerve activity. These data support our previous studies implicating a defect of the D1 receptor or its regulation in the kidney in genetic hypertension.
Collapse
|
43
|
Jose PA, Eisner GM, Felder RA. Regulation of D1 receptor function in spontaneous hypertension. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 42:525-8. [PMID: 9327956 DOI: 10.1016/s1054-3589(08)60805-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Lee SH, Wang W, Yajima S, Jose PA, Mouradian MM. Tissue-specific promoter usage in the D1A dopamine receptor gene in brain and kidney. DNA Cell Biol 1997; 16:1267-75. [PMID: 9406999 DOI: 10.1089/dna.1997.16.1267] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The D1A dopamine receptor gene consists of a short, noncoding exon 1 separated from a longer coding exon 2 by a small intron. Recently, we found that in addition to its original TATA-less promoter located upstream of exon 1, the human D1A dopamine receptor gene is transcribed in neural cells from a second strong promoter located in its intron. In the present study, we addressed the possibility that these two promoters are used for the tissue-specific regulation of the D1A gene in neuronal and renal cells. Reverse transcription polymerase chain reaction revealed that D1A transcripts in the kidneys of humans and rats lack exon 1. Transient transfection analysis of these two promoters in D1A-expressing cells indicated that the upstream promoter has no detectable activity in the opossum kidney (OK) cell line, in contrast to its strong activity in two neuronal cell lines, SK-N-MC and NS20Y. On the other hand, the D1A intron promoter showed transcriptional activity both in OK cells and in neuronal cells. The activator sequence AR1, which enhances transcription from the upstream promoter in SK-N-MC and NS20Y cells, could not activate this promoter in OK cells. In addition, no protein binding to AR1 could be detected by gel mobility shift assay using nuclear extracts from either OK cells or from rat kidney tissue. These findings indicate that the differential expression of short and long D1A transcripts is due, at least in part, to the tissue-specific expression of the activator protein binding to AR1 driving transcription from the upstream promoter. Absence of this activator protein accounts for the nonfunctional D1A upstream promoter in the kidney.
Collapse
|
45
|
Eisner GM, Asico LD, Albrecht FE, Jose PA. Dopamine and diltiazem-induced natriuresis in the spontaneously hypertensive rat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:R317-23. [PMID: 9249566 DOI: 10.1152/ajpregu.1997.273.1.r317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An attenuated natriuretic response to dopamine and D1 agonists in genetic hypertension has been attributed to an uncoupling of the renal D1 dopamine receptor from its G protein-effector protein complex. We have reported that in normotensive Wistar-Kyoto (WKY) rats the natriuresis induced by calcium channel blockers is caused in part by activation of renal D1 dopamine receptors. We tested the interaction between the renal D1 receptor and a calcium channel blocker, diltiazem, infused into a renal artery of anesthetized spontaneously hypertensive rats (SHR) acutely loaded with 5% saline. Diltiazem produced a 50% increase in renal blood flow and nearly tripled absolute and fractional sodium excretion; urine flow rate more than doubled, but glomerular filtration rate did not change. However, the D1 receptor antagonist SKF-83742, which had no effect by itself, did not diminish the response to diltiazem. In a separate group of concurrent experiments, we found that the diltiazem-induced natriuresis was associated with a decrease in Na(+)-K(+)-adenosinetriphosphatase activity in the renal medulla of SHR. In contrast, in WKY rats, no changes were noted in the renal medulla but a decrease in Na(+)-K(+)-adenosinetriphosphatase activity was noted in the renal cortex. Diltiazem had no effect on urinary dopamine excretion in either rat strain. We conclude that diltiazem induces natriuresis differently in SHR and WKY rats; it is independent of D1 receptors in SHR and is in great part mediated by renal hemodynamic, rather than by cortical tubular, effects. These studies support previous findings of a defective renal cortical tubular D1 mechanism in SHR.
Collapse
|
46
|
Yamaguchi I, Yao L, Sanada H, Ozono R, Mouradian MM, Jose PA, Carey RM, Felder RA. Dopamine D1A receptors and renin release in rat juxtaglomerular cells. Hypertension 1997; 29:962-8. [PMID: 9095084 DOI: 10.1161/01.hyp.29.4.962] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two dopamine D1-like receptors have been cloned from mammals, the D1 and D5 receptors, also known as D1A and D1B receptors, respectively, in rodents. Although D1-like receptors are known to stimulate renin release, the receptor subtype mediating this action has not been determined. We investigated D1 receptor subtype expression in rat juxtaglomerular cells obtained after enzymatic dispersion of kidney cortex and differential centrifugation. Juxtaglomerular cells in primary culture were immunocytochemically 85% to 95% renin positive. These cells expressed the D1A but not the D1B receptor (mRNA and protein). D1-like receptor function was demonstrated by a concentration-dependent stimulation of cAMP production by dopamine (n = 5-9 per group). Fenoldopam, a D1-like receptor agonist, also caused a concentration-dependent increase in cAMP production and renin secretion that was blocked by the selective D1-like receptor antagonist SCH23390 (n = 4-13 per group). Although the D1 ligands do not distinguish between the cloned D1-like receptors, the actions of fenoldopam were due to occupancy of the D1A receptor: (1) the D1B receptor, the only other mammalian D1-like receptor, is not expressed in juxtaglomerular cells; (2) antisense but not sense D1A oligonucleotides completely blocked the stimulatory effect of fenoldopam on cAMP production and renin secretion. We conclude that there is selective dopamine receptor gene expression in juxtaglomerular cells; the dopamine receptor subtype linked to the stimulation of cAMP and renin secretion in juxtaglomerular cells is the D1A subtype.
Collapse
|
47
|
Jose PA, Drago J, Accili D, Eisner GM, Felder RA. Transgenic mice to study the role of dopamine receptors in cardiovascular function. Clin Exp Hypertens 1997; 19:15-25. [PMID: 9028632 DOI: 10.3109/10641969709080801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dopamine, an intrarenal regulator of sodium transport, is important in the pathogenesis of hypertension. The transduction of D1-like receptors in renal proximal tubules is defective in animal models of genetic hypertension. The defect is associated with an impaired regulation of proximal tubular sodium transport and cosegregates with hypertension in rats. Moreover, mice lacking one or both D1A receptor alleles develop hypertension. Extrasynaptic D3 receptors in renal tubules and juxtaglomerular cells may also regulate renal sodium transport and renin secretion while presynaptic D3 receptors may act as autoreceptors to inhibit neural norepinephrine release. Mice lacking one or both D3 alleles have elevated systolic blood pressure and developed diastolic hypertension. Although basal urine flow, sodium excretion, and glomerular filtration rate are similar, mice homozygous to the D3 receptor have an impaired ability to excrete an acute saline load compared to heterozygous and wild type mice. These studies suggest that abnormalities in dopamine receptor genes or their regulation may lead to the development of hypertension via different pathogenetic mechanisms.
Collapse
|
48
|
Sanada H, Yao L, Jose PA, Carey RM, Felder RA. Dopamine D3 receptors in rat juxtaglomerular cells. Clin Exp Hypertens 1997; 19:93-105. [PMID: 9028638 DOI: 10.3109/10641969709080807] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
D2-like receptors in the kidney have been suggested to be important in the regulation of renin release but the D2-like subtype(s) expressed in juxtaglomerular (JG) cells is not known. Therefore, we determined which of the D2-like family of dopamine receptors is located in primary cultures of rat juxtaglomerular (JG) cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) identified D3 and D4 but not D2Long mRNA in JG cells (n = 3). D3 receptor function was demonstrated by a concentration-dependent inhibition of forskolin-stimulated cAMP production by LY-171555 (a non-selective D2-like receptor agonist) and PD-128593 (a partially selective D3 agonist) (n = 3-7/group). The stimulatory action of LY-171555 and PD-128593 we blocked by the non-selective D2-like antagonist YM-09151. We conclude that D3 and D4 dopamine receptor subtypes are expressed in JG cells; the receptor subtype linked to the inhibition of cAMP in JG cells remains to be established.
Collapse
|
49
|
Aoki Y, Albrecht FE, Bergman KR, Jose PA. Stimulation of Na(+)-K(+)-2Cl- cotransport in rat medullary thick ascending limb by dopamine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:R1561-7. [PMID: 8997353 DOI: 10.1152/ajpregu.1996.271.6.r1561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dopamine receptors are present in the medullary thick ascending limb (mTAL) of Henle, but their effect on ion transport in this nephron segment has not been tested. Therefore, we studied the short-term effects of dopamine on Na(+)-K(+)-2Cl- cotransport (assessed by 100 microM bumetanide-sensitive 86Rb uptake) in rat mTAL tubular suspensions. Dopamine (1 microM) stimulated bumetanide-sensitive 86Rb uptake (72.1 +/- 10.6% vs. control, n = 5) by increasing total 86Rb uptake and by decreasing bumetanide-insensitive 86Rb uptake; this effect was concentration dependent. The dopamine-induced stimulation of Na(+)-K(+)-2Cl- cotransport activity was mimicked by calyculin A, a protein phosphatase (PP) inhibitor, and Sp isomer of adenosine 3',5'-cyclic monophosphothioate (Sp-cAMP[S]), a protein kinase A (PKA) agonist, and blocked by Rp isomer of 8-(4-chlorophenylthio)-cAMP[S] (Rp-8-CPT-cAMP[S]), a PKA inhibitor (n = 5). Dopamine did not increase the stimulatory effect of the PP inhibitor. However, the stimulatory effect of the PP inhibitor and PKA agonist was additive and approached the stimulatory effect of dopamine. The stimulatory effects of dopamine, PP inhibitor, and PKA agonist persisted even when intracellular sodium was clamped by 5 microM monensin. When K+ channels were blocked by 1 mM BaCl2, the effects of dopamine and calyculin A on the cotransport were no longer apparent, although the stimulatory effect of the PKA agonist was attenuated. We conclude that dopamine stimulates Na(+)-K(+)-2Cl- cotransport activity. This action is mediated mainly by PKA-dependent phosphorylation/dephosphorylation processes and modulated by dopamine actions on K+ channels.
Collapse
|
50
|
Jose PA, Felder RA. What we can learn from the selective manipulation of dopaminergic receptors about the pathogenesis and treatment of hypertension? Curr Opin Nephrol Hypertens 1996; 5:447-51. [PMID: 8937815 DOI: 10.1097/00041552-199609000-00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The natriuretic response that accompanies an acute or a chronic sodium load results, in a large part, from dopamine produced by the renal proximal tubules. This paracrine/ autocrine effect of dopamine, mediated by occupancy of renal tubular dopamine D1 receptors, is impaired in spontaneous hypertension. Disruption of the D1A receptor gene in mice increases blood pressure. The D3 receptor is also present in renal proximal tubules and juxtaglomerular cells, and it may be an inhibitor of renin release. Disruption of the D3 receptor gene in mice also increases blood pressure, but the ability to excrete a sodium chloride load is not impaired. Thus, selective manipulation of dopamine receptor subtypes might aid in studies of the pathogenesis of essential hypertension and the design of novel drugs to treat high blood pressure.
Collapse
|