26
|
Abstract
The exocytosis of death-inducing granzymes stored in the granules of cytotoxic lymphocytes allows the immune system to rapidly eliminate intracellular pathogens and transformed cells. The membrane-disrupting protein perforin allows the entry of granzymes into a cell, where they induce apoptosis by cleaving target substrates in the cytoplasm and nucleus. Granzymes kill cells in a variety of ways. Recent work has demonstrated that granzymes induce mitochondrial dysfunction through caspase and caspase-independent pathways and destroy DNA and the integrity of the nucleus. Cytotoxic lymphocytes are susceptible to self-inflicted damage. Mice and humans defective in perforin and granzymes point to a role for self-inflicted damage in downregulating lymphocyte responses. Given the propensity for the granule pathway to inflict cellular damage, cytotoxic lymphocytes have developed a variety of mechanisms to protect themselves. In this regard, endogenous serine protease inhibitors have been suggested to protect cytotoxic lymphocytes from granzyme B. It would appear that certain viruses and possibly even tumor cells also use the same mechanism to escape destruction from the exocytosis pathway of programmed cell death.
Collapse
|
27
|
|
28
|
Phillips T, Opferman JT, Shah R, Liu N, Froelich CJ, Ashton-Rickardt PG. A role for the granzyme B inhibitor serine protease inhibitor 6 in CD8+ memory cell homeostasis. THE JOURNAL OF IMMUNOLOGY 2004; 173:3801-9. [PMID: 15356127 DOI: 10.4049/jimmunol.173.6.3801] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Generation and maintenance of protective immunological memory is the goal of vaccination programs. It has recently become clear that CD8+ memory T cells are derived directly from CTLs. The mechanisms underlying this transformation and the subsequent survival of memory cells are not completely understood. However, some effector molecules required by CTLs to eliminate infected cells have also been shown to control the number of Ag-specific cells. We report that memory cells express high levels of serine protease inhibitor (Spi) 6, an inhibitor of the effector molecule granzyme B, and that Spi6 can protect T cells from granzyme B-mediated apoptosis. In mouse models, both elevated expression of Spi6 and the complete absence of granzyme B in CD8+ T cells led to an increase in memory cells after infection with lymphocytic choriomeningitis virus. This was not the result of increased levels of antilymphocytic choriomeningitis virus CD8+ T cells during the expansion or contraction phases, but rather transgenic Spi6 directly influenced the survival of CD8+ memory T cells. We propose that expression of protective molecules, like Spi6, serves to shield metabolically active CD8+ memory T cells from their own effector molecules.
Collapse
|
29
|
Liu N, Phillips T, Zhang M, Wang Y, Opferman JT, Shah R, Ashton-Rickardt PG. Serine protease inhibitor 2A is a protective factor for memory T cell development. Nat Immunol 2004; 5:919-26. [PMID: 15311278 DOI: 10.1038/ni1107] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 07/21/2004] [Indexed: 12/31/2022]
Abstract
An essential event in the development of memory CD8(+) T lymphocytes is the escape of progenitors from programmed cell death, but how this is mediated is unclear. Here we report that the gene encoding serine protease inhibitor 2A (Spi2A), an inhibitor of lysosomal executioner proteases dependent on transcription factor NF-kappaB, is upregulated in memory cell precursors. Spi2A upregulation protected lymphocytic choriomeningitis virus-specific memory progenitors from programmed cell death. Thus, Spi2A promotes the survival of cytotoxic T lymphocytes, allowing them to differentiate into memory CD8 T cells. These findings suggest a model in which commitment to the memory lineage is facilitated by the upregulation of protective genes.
Collapse
|
30
|
Liu N, Wang Y, Ashton-Rickardt PG. Serine protease inhibitor 2A inhibits caspase-independent cell death. FEBS Lett 2004; 569:49-53. [PMID: 15225607 DOI: 10.1016/j.febslet.2004.05.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 05/04/2004] [Accepted: 05/05/2004] [Indexed: 11/23/2022]
Abstract
The release of cysteine cathepsins from the lysosome into the cytoplasm can trigger programs of cell death (PCD) that do not require caspase executioner proteases but instead are mediated by toxic reactive oxygen species (ROS). Here, we show that a cytoplasmic inhibitor of papain-like cathepsins - Serine protease inhibitor 2A (Spi2A) - is required for the protection of cells from caspase-independent PCD triggered by tumor necrosis factor-alpha. In the absence of caspase activity, Spi2A suppressed PCD by inhibiting cathepsin B after it was released into the cytoplasm. Spi2A also directly protected against ROS-mediated PCD, which is consistent with a role in suppressing caspase-independent pathways of PCD. We conclude that inhibition of lysosomal executioner proteases by Spi2A is a physiological mechanism by which cells are protected from caspase-independent programmed cell death.
Collapse
|
31
|
Liu N, Raja SM, Zazzeroni F, Metkar SS, Shah R, Zhang M, Wang Y, Brömme D, Russin WA, Lee JC, Peter ME, Froelich CJ, Franzoso G, Ashton-Rickardt PG. NF-kappaB protects from the lysosomal pathway of cell death. EMBO J 2003; 22:5313-22. [PMID: 14517268 PMCID: PMC204493 DOI: 10.1093/emboj/cdg510] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The programme of gene expression induced by RelA/NF-kappaB transcription factors is critical to the control of cell survival. Ligation of 'death receptors' such as tumor necrosis factor receptor 1 (TNF-R1) triggers apoptosis, as well as NF-kappaB, which counteracts this process by activating the transcription of anti-apoptotic genes. In addition to activating caspases, TNF-R1 stimulation causes the release of cathepsins, most notably cathepsin B, from the lysosome into the cytoplasm where they induce apoptosis. Here we report a mechanism by which NF-kappaB protects cells against TNF-alpha-induced apoptosis: inhibition of the lysosomal pathway of apoptosis. NF-kappaB can protect cells from death after TNF-R1 stimulation, by extinguishing cathepsin B activity in the cytosol. This activity of NF-kappaB is mediated, at least in part, by the upregulation of Serine protease inhibitor 2A (Spi2A), a potent inhibitor of cathepsin B. Indeed, Spi2A can substitute for NF-kappaB in suppressing the induction of cathepsin B activity in the cytosol. Thus, inhibition of cathepsin B by Spi2A is a mechanism by which NF-kappaB protects cells from lysosome-mediated apoptosis.
Collapse
|
32
|
Hettmann T, Opferman JT, Leiden JM, Ashton-Rickardt PG. A critical role for NF-kappaB transcription factors in the development of CD8+ memory-phenotype T cells. Immunol Lett 2003; 85:297-300. [PMID: 12663146 DOI: 10.1016/s0165-2478(02)00260-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Memory T cells are essential for generating secondary immune responses and so provide long-lived protection from pathogens. The mechanisms that regulate the differentiation and survival of memory T cells are largely unknown. Transgenic mice in which NF-kappaB activity is inhibited by the expression of a dominant-negative form of IkappaB-alpha (mIkappaB-alpha mice) have drastically diminished numbers of CD8(+) memory-phenotype cells. The development of activated mIkappaB-alpha CD8 cells into memory-phenotype CD8 cells was severely impaired after adoptive transfer to lymphopenic hosts. Our findings demonstrate a critical role for NF-kappaB transcription factors in determining the number of memory-phenotype CD8 cells.
Collapse
|
33
|
Hirst CE, Buzza MS, Bird CH, Warren HS, Cameron PU, Zhang M, Ashton-Rickardt PG, Bird PI. The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:805-15. [PMID: 12517944 DOI: 10.4049/jimmunol.170.2.805] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Granzyme B (grB) is a serine proteinase released by cytotoxic lymphocytes (CLs) to kill abnormal cells. GrB-mediated apoptotic pathways are conserved in nucleated cells; hence, CLs require mechanisms to protect against ectopic or misdirected grB. The nucleocytoplasmic serpin, proteinase inhibitor 9 (PI-9), is a potent inhibitor of grB that protects cells from grB-mediated apoptosis in model systems. Here we show that PI-9 is present in CD4(+) cells, CD8(+) T cells, NK cells, and at lower levels in B cells and myeloid cells. PI-9 is up-regulated in response to grB production and degranulation, and associates with grB-containing granules in activated CTLs and NK cells. Intracellular complexes of PI-9 and grB are evident in NK cells, and overexpression of PI-9 enhances CTL potency, suggesting that cytoplasmic grB, which may threaten CL viability, is rapidly inactivated by PI-9. Because dendritic cells (DCs) acquire characteristics similar to those of target cells to activate naive CD8(+) T cells and therefore may also require protection against grB, we investigated the expression of PI-9 in DCs. PI-9 is evident in thymic DCs (CD3(-), CD4(+), CD8(-), CD45(+)), tonsillar DCs, and DC subsets purified from peripheral blood (CD16(+) monocytes and CD123(+) plasmacytoid DCs). Furthermore, PI-9 is expressed in monocyte-derived DCs and is up-regulated upon TNF-alpha-induced maturation of monocyte-derived DCs. In conclusion, the presence and subcellular localization of PI-9 in leukocytes and DCs are consistent with a protective role against ectopic or misdirected grB during an immune response.
Collapse
|
34
|
Thompson CB, Rathmell JC, Frauwirth KA, Lindsten T, Rudin CM, Opferman JT, Ashton-Rickardt PG, Harris MH, Chandel NS, Schumacker PT, Vander Heiden MG. What keeps a resting T cell alive? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:383-7. [PMID: 11232311 DOI: 10.1101/sqb.1999.64.383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Opferman JT, Ober BT, Narayanan R, Ashton-Rickardt PG. Suicide induced by cytolytic activity controls the differentiation of memory CD8(+) T lymphocytes. Int Immunol 2001; 13:411-9. [PMID: 11282980 DOI: 10.1093/intimm/13.4.411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) confer protection against intracellular pathogens, yet the mechanism by which some escape activation induced cell death (AICD) and give rise to long-lived memory cells is unclear. We studied the differentiation of transgenic TCR CD8(+) cells into CTL and memory cells using a novel system that allowed us to control cytolytic activity. The perforin/granzyme granules used to lyse targets induced the apoptosis of CTL in a fratricide-independent manner. After adoptive transfer to antigen-free mice, the ability of CTL to give generate memory cells was determined. We found that the extent of cytolysis by a common pool of CTL controlled the differentiation into memory cells, which were only generated under conditions of minimal cytolytic activity. Thus, the differentiation of naive CD8(+) cells into memory cells may not depend on the presence on a subset of committed CTL precursors, but rather is controlled by the extent of granule-mediated cytolysis.
Collapse
|
36
|
Ober BT, Hu Q, Opferman JT, Hagevik S, Chiu N, Wang CR, Ashton-Rickardt PG. Affinity of thymic self-peptides for the TCR determines the selection of CD8(+) T lymphocytes in the thymus. Int Immunol 2000; 12:1353-63. [PMID: 10967031 DOI: 10.1093/intimm/12.9.1353] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Experiments with synthetic antigen peptides have suggested that a critical parameter that determines the developmental fate of an immature thymocyte is the affinity of interaction between TCR and self-peptide/MHC expressed on thymic stromal cells. To test the physiological relevance of this model for thymocyte development, we determined the affinity of the anti-HY TCR (B6.2.16) expressed on CD8(+) cells for thymic self-peptide/H-2D(b) tetramers, then examined the ability of these self-peptides to determine the outcome of B6.2.16 CD8 cell selection in the thymus. The B6.2.16 TCR bound the male HY self-antigen with high affinity. Thymic self-peptides, which are highly abundant on the surface of thymic epithelial cells, bound the B6.2.16 TCR with low affinity. The ability of self-peptides to trigger positive or negative selection of B6.2.16 CD8 cells in cultured fetal thymi was determined by the relative affinity of self-peptide/H-2D(b) for the B6.2.16 TCR. High-affinity binding of the HY self-peptide resulted in B6.2.16 TCR complex zeta chain phosphorylation and the negative selection of B6.2.16 CD8 cells. Low-affinity binding of thymic self-peptides to B6.2.16 TCR resulted in the positive selection of B6.2.16 CD8 cells. Differences between the binding affinities of self-peptides to B6.2.16 TCR accounted for the self-peptide specificity of B6.2.16 CD8 cell positive selection. We conclude that the relative affinity of TCR for thymic self-peptide/class I MHC is a critical parameter in determining fate of CD8(+) cells during thymic selection.
Collapse
|
37
|
Opferman JT, Ober BT, Ashton-Rickardt PG. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 1999; 283:1745-8. [PMID: 10073942 DOI: 10.1126/science.283.5408.1745] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A central question in immunology is the origin of long-lived T cell memory that confers protection against recurrent infection. The differentiation of naïve T cell receptor transgenic CD8+ cells into effector cytotoxic T lymphocytes (CTLs) and memory CD8+ cells was studied. Memory CD8+ cells that were generated after strong antigenic stimulation were the progeny of cytotoxic effectors and retained antigen-specific cytolytic activity 10 weeks after adoptive transfer to antigen-free recipient mice. Thus, potential vaccines based on CTL memory will require the differentiation of naïve cells into post-effector memory T cells.
Collapse
|
38
|
Markiewicz MA, Girao C, Opferman JT, Sun J, Hu Q, Agulnik AA, Bishop CE, Thompson CB, Ashton-Rickardt PG. Long-term T cell memory requires the surface expression of self-peptide/major histocompatibility complex molecules. Proc Natl Acad Sci U S A 1998; 95:3065-70. [PMID: 9501216 PMCID: PMC19695 DOI: 10.1073/pnas.95.6.3065] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1997] [Indexed: 02/06/2023] Open
Abstract
How memory T cells are maintained in vivo is poorly understood. To address this problem, a male-specific peptide (H-Y) was identified and used to activate female anti-H-Y T cells in vitro. Anti-H-Y T cells survived in vivo for at least 70 days in the absence of antigen. This persistence was not because of the intrinsic ability of memory T cells to survive in vivo. Instead, the survival and function of adoptively transferred memory cells was found to require transporter of antigen protein 1-dependent expression of self-peptide/major histocompatibility complex class I molecules in recipient animals. Therefore, it appears that the level of T cell receptor engagement provided by transporter of antigen protein 1-dependent, self-peptide/major histocompatibility complexes is sufficient to maintain the long-term survival and functional phenotype of memory cells in the absence of persistent antigen. These data suggest that positive selection plays a role not only in T cell development but also in the maintenance of T cell memory.
Collapse
|
39
|
Girao C, Hu Q, Sun J, Ashton-Rickardt PG. Limits to the differential avidity model of T cell selection in the thymus. THE JOURNAL OF IMMUNOLOGY 1997. [DOI: 10.4049/jimmunol.159.9.4205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
It has been postulated that the critical feature that determines the developmental fate of an immature thymocyte is the avidity of interaction between thymocyte TCR and peptide/MHC molecules on thymic stromal cells. However, it is possible that certain innate properties of peptides predispose them to triggering only positive or negative selection irrespective of their density on thymic stromal cells. To distinguish between these hypotheses, we examined the ability of several different peptides to induce the positive and negative selection of TCR transgenic (P14) antilymphocytic choriomeningitis virus (LCMV) CTLs in fetal thymus organ cultures (FTOC) from TAP1+ and TAP1- mice. We found that only relatively weak agonist peptides could induce the positive selection of anti-LCMV CTLs. A nonagonist peptide could induce positive selection but not negative selection; however, a weak agonist peptide could induce the positive selection of anti-LCMV CTLs in P14 TAP1- FTOC and negative selection in P14 TAP1+ FTOC. These data imply that there are upper and lower limits for the affinity of a peptide in triggering positive or negative selection, but that for peptides of intermediate affinity the overall avidity of interaction with the P14 TCR is the critical parameter in determining the developmental fate of thymocytes. Our observations also suggest a prominent role for low affinity self peptides in selecting a function repertoire of CD8+ T cells.
Collapse
|
40
|
Girao C, Hu Q, Sun J, Ashton-Rickardt PG. Limits to the differential avidity model of T cell selection in the thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1997; 159:4205-11. [PMID: 9379014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been postulated that the critical feature that determines the developmental fate of an immature thymocyte is the avidity of interaction between thymocyte TCR and peptide/MHC molecules on thymic stromal cells. However, it is possible that certain innate properties of peptides predispose them to triggering only positive or negative selection irrespective of their density on thymic stromal cells. To distinguish between these hypotheses, we examined the ability of several different peptides to induce the positive and negative selection of TCR transgenic (P14) antilymphocytic choriomeningitis virus (LCMV) CTLs in fetal thymus organ cultures (FTOC) from TAP1+ and TAP1- mice. We found that only relatively weak agonist peptides could induce the positive selection of anti-LCMV CTLs. A nonagonist peptide could induce positive selection but not negative selection; however, a weak agonist peptide could induce the positive selection of anti-LCMV CTLs in P14 TAP1- FTOC and negative selection in P14 TAP1+ FTOC. These data imply that there are upper and lower limits for the affinity of a peptide in triggering positive or negative selection, but that for peptides of intermediate affinity the overall avidity of interaction with the P14 TCR is the critical parameter in determining the developmental fate of thymocytes. Our observations also suggest a prominent role for low affinity self peptides in selecting a function repertoire of CD8+ T cells.
Collapse
|
41
|
Hu Q, Bazemore Walker CR, Girao C, Opferman JT, Sun J, Shabanowitz J, Hunt DF, Ashton-Rickardt PG. Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes. Immunity 1997; 7:221-31. [PMID: 9285407 DOI: 10.1016/s1074-7613(00)80525-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To understand how thymic selection gives rise to T cells that are capable of major histocompatibility complex (MHC)-restricted recognition of antigen but are tolerant of self, we directly examined how peptide/MHC ligands expressed on thymic epithelial cells trigger the positive selection of immature thymocytes. We demonstrate that abundant self-peptides, purified from the H-2D(b) molecules of thymic epithelial cells, are specifically recognized during the positive selection of CD8+ T cells, implying that positive selection generates a repertoire of T cells that is weakly self-reactive. We also found that this recognition is somewhat cross-reactive, thereby providing an explanation for how the specific recognition of a limited repertoire of thymic self-peptides can select a diverse repertoire of T cells.
Collapse
MESH Headings
- Animals
- Autoantigens/immunology
- Autoantigens/isolation & purification
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Cell Line
- Cytotoxicity, Immunologic
- Epithelium/immunology
- Female
- Fetus
- Lymphocyte Activation
- Lymphocytic choriomeningitis virus/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organ Culture Techniques
- Peptide Fragments/immunology
- Peptide Fragments/isolation & purification
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
|
42
|
Oxenius A, Bachmann MF, Ashton-Rickardt PG, Tonegawa S, Zinkernagel RM, Hengartner H. Presentation of endogenous viral proteins in association with major histocompatibility complex class II: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. Eur J Immunol 1995; 25:3402-11. [PMID: 8566030 DOI: 10.1002/eji.1830251230] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Major histocompatibility complex (MHC) class II-associated antigen presentation is mainly linked to processing of exogenous antigens upon cellular uptake by endocytosis, but has also been observed for endogenously synthesized antigens. We have studied the MHC class II-associated presentation of the endogenously synthesized membrane associated glycoprotein (GP) and the cytosolic nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) in professional antigen presenting cells (APC) of mice. Since LCMV is a noncytopathic virus and minimally affects cellular protein synthesis, it is a convenient virus for the study of antigen presentation. In contrast, most other studies assessing class II-associated presentation of endogeneously synthesized viral antigens used cytolytic viruses such as vaccinia, measles and influenza virus, which drastically interfere with host cell functions. In addition, most studies were performed using non-professional APC. We found that class II-associated presentation of endogenously synthesized membrane associated LCMV-GP was efficient and could not be inhibited by chloroquine or leupeptin. Neither the transporter associated with processing (TAP) system nor the invariant chain (Ii) were significantly involved in this process. In contrast, MHC class II-associated presentation of endogenously synthesized cytosolic LCMV-NP was not observed even in Ii-deficient APC. Thus, MHC class II loading of endogenously synthesized LCMV-GP apparently does not require processing in acidic endosomal compartments as defined by chloroquine and leupeptin insensitivity. Furthermore, although the TAP molecules transport peptides of up to 15 amino acids in length, which potentially could bind to MHC class II molecules in the endoplasmic reticulum, such a process apparently does not occur for either the glycoprotein or the nucleoprotein. Therefore, the subcellular localization of an endogenously synthesized protein influences crucially whether or not MHC class II loading can occur independently of the acidic compartments usually involved in MHC class II loading.
Collapse
|
43
|
Ljunggren HG, Van Kaer L, Ashton-Rickardt PG, Tonegawa S, Ploegh HL. Differential reactivity of residual CD8+ T lymphocytes in TAP1 and beta 2-microglobulin mutant mice. Eur J Immunol 1995; 25:174-8. [PMID: 7843229 DOI: 10.1002/eji.1830250129] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
TAP1 -/- and beta 2-microglobulin (beta 2m) -/- mice (H-2b background) express very low levels of major histocompatibility complex (MHC) class I molecules on the cell surface. Consequently these mice have low numbers of mature CD8+ T lymphocytes. However, TAP1 -/- mice have significantly higher numbers of CD8+ T cells than beta 2m -/- mice. Alloreactive CD8+ cytotoxic T lymphocyte (CTL) responses were also stronger in TAP1 -/- mice than in beta 2m -/- mice. Alloreactive CTL generated in TAP1 -/- and beta 2m -/- mice cross-react with H-2b-expressing cells. Surprisingly, such cross-reactivity was stronger with alloreactive CTL from beta 2m -/- mice than with similar cells from TAP1 -/- mice. The beta 2m -/- mice also responded more strongly when primed with and tested against cells expressing normal levels of H-2b MHC class I molecules. Such H-2b-reactive CD8+ CTL from beta 2m -/- mice but not from TAP1 -/- mice also reacted with TAP1 -/- and TAP2-deficient RMA-S cells. In contrast, H-2b-reactive CD8+ CTL from neither beta 2m -/- mice nor TAP1 -/- mice killed beta 2m -/- cells. In line with these results, beta 2m -/- mice also responded when primed and tested against TAP1 -/- cells. We conclude that the reactivity of residual CD8+ T cells differs between TAP1 -/- and beta 2m -/- mice. The MHC class I-deficient phenotype of TAP1 -/- and beta 2m -/- mice is not equivalent: class I expression differs between the two mouse lines with regard to quality as well as quantity. We propose that the differences observed in numbers of CD8+ T cells, their ability to react with alloantigens and their cross-reactivity with normal H-2b class I are caused by differences in the expression of MHC class I ligands on selecting cells in the thymus.
Collapse
|
44
|
Van Kaer L, Ashton-Rickardt PG, Eichelberger M, Gaczynska M, Nagashima K, Rock KL, Goldberg AL, Doherty PC, Tonegawa S. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1994; 1:533-41. [PMID: 7600282 DOI: 10.1016/1074-7613(94)90043-4] [Citation(s) in RCA: 332] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MHC class I molecules present peptides generated by processing of endogenously synthesized proteins to CD8+ T lymphocytes. Recently, large proteolytic complexes, termed proteasomes, were implicated in antigen processing. Two proteasomal subunits, LMP2 and LMP7, are encoded within the MHC class II region, but their precise role in antigen processing is unknown. We have generated mice that harbor a disruption in their LMP2 gene. Proteasomes purified from spleen and liver of these mutant mice exhibit altered peptidase activities, and antigen-presenting cells showed reduced capacity to stimulate a T cell hybridoma specific for H-2Db plus a nucleoprotein epitope of an influenza A virus. The mutant mice have reduced (60%-70% of wild type) levels of CD8+ T lymphocytes and generate 5- to 6-fold fewer influenza nucleoprotein-specific cytotoxic T lymphocyte precursors. These findings indicate that LMP2 influences antigen processing.
Collapse
|
45
|
Abstract
The processes of positive and negative selection during thymic development shape the repertoires of antigen specificities displayed by T cells. This rids the animal of potentially autoreactive T cells and, at the same time, ensures that they are capable of major histocompatibility complex (MHC)-restricted recognition of antigen. Paradoxically, both processes involve the engagement of the T-cell recepetor (TCR) on immature thymocytes with peptide/MHC complexes expressed on thymic stromal cells. Here, Philip Ashton-Rickardt and Susumu Tonegawa suggest that the critical parameter determining the outcome of this interaction is the number of TCRs occupied by peptide/MHC complexes and that this, in turn, is determined by the avidity of the TCR-MHC interaction: low avidity resulting in positive selection and high avidity resulting in negative selection.
Collapse
|
46
|
Aldrich CJ, Ljunggren HG, Van Kaer L, Ashton-Rickardt PG, Tonegawa S, Forman J. Positive selection of self- and alloreactive CD8+ T cells in Tap-1 mutant mice. Proc Natl Acad Sci U S A 1994; 91:6525-8. [PMID: 8022816 PMCID: PMC44235 DOI: 10.1073/pnas.91.14.6525] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mice with a homozygous deletion in their Tap-1 gene (-/- mice) express very low levels of cell membrane major histocompatibility complex class I molecules and have < 1% peripheral CD8+ T cells. We show that these -/- mice but not their +/- littermates display strong primary syngeneic anti-H-2Kb and -Db-specific responses mediated by CD8+ T cells. These responses are augmented by in vivo priming. Further, -/- mice primed in vivo with H-2d alloantigens generate an anti-H-2d response which appears nearly as strong as that found in +/- littermates. Both -/- anti-H-2b and anti-H-2d T cells do not recognize target cells from Tap-1 -/- animals or Tap-2-deficient RMA-S cells. Thus, some CD8+ anti-self and alloreactive T cells can be selected in the absence of Tap proteins.
Collapse
|
47
|
Ashton-Rickardt PG, Bandeira A, Delaney JR, Van Kaer L, Pircher HP, Zinkernagel RM, Tonegawa S. Evidence for a differential avidity model of T cell selection in the thymus. Cell 1994; 76:651-63. [PMID: 8124708 DOI: 10.1016/0092-8674(94)90505-3] [Citation(s) in RCA: 530] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Positive and negative selection of a lymphocytic choriomeningitis virus (LCMV) peptide-specific, H-2Db-restricted T cell clone (P14) was studied using TAP1- and TAP1+ mice transgenic for P14 T cell receptor (TCR) alpha and beta genes. Positive selection of transgenic CD8+ P14 cells was impaired in TAP1- mice. Addition of the LCMV peptide to TAP1- fetal thymic organ cultures (FTOCs) at low and high concentrations induced positive and negative selection of CD8+ P14 cells, respectively, while addition of the same peptide to TAP1+ FTOCs induced negative selection even at low concentrations. Both types of selection were peptide specific. Thus, a critical parameter that controls the fate of a thymocyte seems to be the number of TCRs engaged with complexes of peptide and major histocompatibility complex. When this number is low, positive selection occurs, and when it is high, negative selection takes place. These findings support a differential avidity model of T cell selection.
Collapse
|
48
|
Schumacher TN, Kantesaria DV, Heemels MT, Ashton-Rickardt PG, Shepherd JC, Fruh K, Yang Y, Peterson PA, Tonegawa S, Ploegh HL. Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J Exp Med 1994; 179:533-40. [PMID: 8294864 PMCID: PMC2191358 DOI: 10.1084/jem.179.2.533] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The transporter associated with antigen processing (TAP) delivers peptides to the lumen of the endoplasmic reticulum in an adenosine triphosphate (ATP) dependent fashion for presentation by major histocompatibility complex class I molecules. We show that the mouse TAP translocator (H-2b haplotype) selects peptides based on a minimal size of nine residues, and on the presence of a hydrophobic COOH-terminal amino acid. The preponderance of COOH-terminal hydrophobic amino acids in peptides capable of binding to mouse class I molecules thus fits remarkably well with the specificity of the TAP translocator. In addition to transport in the lumenal direction, efflux of peptide in the cytosolic direction is observed in an ATP- and temperature-dependent manner. By maintaining a low peptide concentration at the site of class I assembly, this efflux mechanism may ensure that class I molecules are loaded preferentially with high affinity peptides.
Collapse
|
49
|
Ashton-Rickardt PG, Van Kaer L, Schumacher TN, Ploegh HL, Tonegawa S. Repertoire-determining role of peptide in the positive selection of CD8+ T cells. Immunol Rev 1993; 135:157-82. [PMID: 8282312 DOI: 10.1111/j.1600-065x.1993.tb00648.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Ashton-Rickardt PG. The role of peptide in the positive selection of CD8+ T cells in the thymus. THYMUS 1993; 22:111-5. [PMID: 8209397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent experiments using fetal thymus organ culture (FTOC) systems derived from class I deficient mice have provided evidence supporting the view that specific recognition of class I MHC plus peptide complexes is required for the positive selection of CD8+ T cells. The addition of class I binding peptides to FTOC systems derived from beta 2-microglobulin and TAP 1 deficient mice induced the positive selection of CD8+ T cells in a peptide specific manner. The specific recognition of peptide during positive selection implies that the repertoire of specificity's exhibited by CD8+ T cells is at least in part determined by the repertoire of self-peptides presented by class I MHC in the thymus.
Collapse
|