26
|
Long SA, Cerosaletti K, Wan JY, Ho JC, Tatum M, Wei S, Shilling HG, Buckner JH. An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4(+) T cells. Genes Immun 2011; 12:116-25. [PMID: 21179116 PMCID: PMC3058680 DOI: 10.1038/gene.2010.54] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/18/2010] [Accepted: 07/05/2010] [Indexed: 01/12/2023]
Abstract
The IL-2/IL-2R signaling pathway has an important role in autoimmunity. Several genes identified in genome-wide association (GWA) studies encode proteins in the IL-2/IL-2R signaling cascade that are associated with autoimmune diseases. One of these, PTPN2, encodes a protein tyrosine phosphatase that is highly expressed in T cells and regulates cytokine signaling. An intronic risk allele in PTPN2, rs1893217(C), correlated with decreased IL-2R signaling in CD4(+) T cells as measured by phosphorylation of STAT5 (phosphorylated STAT5 (pSTAT5)). We modeled an additive single nucleotide polymorphism (SNP) genotype, in which each copy of the risk allele conferred a decrease in IL-2R signaling (P=4.4 × 10(-8)). Decreased pSTAT5 impacted IL-2Rβ chain signaling resulting in reduced FOXP3 expression in activated cells. This phenotype was not due to overt differences in expression of the IL-2R, molecules in the IL-2R signaling cascade or defects in STAT5. However, the rs1893217(C) risk variant did correlate with decreased PTPN2 expression in CD4(+)CD45RO T cells (P=0.0002). Thus, the PTPN2rs1893217(C) risk allele associated with reduced pSTAT5 in response to IL-2 and reduced PTPN2 expression. Together, these data suggest that decreased expression of PTPN2 may indirectly modulate IL-2 responsiveness. These findings, identified through genotype/phenotype relationships, may lead to identification of novel mechanisms underlying dysregulation of cytokine signaling in autoimmunity.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
113 |
27
|
Capdevila J, Wei S, Yan J, Karara A, Jacobson H, Falck J, Guengerich F, DuBois R. Cytochrome P-450 arachidonic acid epoxygenase. Regulatory control of the renal epoxygenase by dietary salt loading. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36671-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
|
33 |
113 |
28
|
Belanger KD, Kenna MA, Wei S, Davis LI. Genetic and physical interactions between Srp1p and nuclear pore complex proteins Nup1p and Nup2p. J Cell Biol 1994; 126:619-30. [PMID: 8045927 PMCID: PMC2120133 DOI: 10.1083/jcb.126.3.619] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nup1p is a yeast nuclear pore complex protein (nucleoporin) required for nuclear protein import, mRNA export and maintenance of normal nuclear architecture. We have used a genetic approach to identify other proteins that interact functionally with Nup1p. Here we describe the isolation of seventeen mutants that confer a requirement for Nup1p in a background in which this protein is normally not essential. Some of the mutants require wild-type Nup1p, while others are viable in combination with specific nup1 alleles. Several of the mutants show nonallelic noncomplementation, suggesting that the products may be part of a hetero-oligomeric complex. One is allelic to srp1 which, although it was identified in an unrelated screen, was shown to encode a protein that is localized to the nuclear envelope (Yano, R., M. Oakes, M. Yamaghishi, J. A. Dodd, and M. Nomura. 1992. Mol. Cell. Biol. 12:5640-5651). We have used immunoprecipitation and fusion protein precipitation to show that Srp1p forms distinct complexes with both Nup1p and the related nucleoporin Nup2p, indicating that Srp1p is a component of the nuclear pore complex. The distant sequence similarity between Srp1p and the beta-catenin/desmoplakin family, coupled with the altered structure of the nuclear envelope in nup1 mutants, suggests that Srp1p may function in attachment of the nuclear pore complex to an underlying nuclear skeleton.
Collapse
|
research-article |
31 |
111 |
29
|
Bellaiche L, Wei S, Zunger A. Localization and percolation in semiconductor alloys: GaAsN vs GaAsP. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:17568-17576. [PMID: 9985881 DOI: 10.1103/physrevb.54.17568] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
|
29 |
110 |
30
|
Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, Deng Y, Wei S. [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. ZHONGHUA JIE HE HE HU XI ZA ZHI = ZHONGHUA JIEHE HE HUXI ZAZHI = CHINESE JOURNAL OF TUBERCULOSIS AND RESPIRATORY DISEASES 2020; 43:203-208. [PMID: 32026671 DOI: 10.3760/cma.j.issn.1001-0939.2020.03.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: To analyze the clinical characteristics of 2019 novel coronavirus (2019-nCoV) pneumonia and to investigate the correlation between serum inflammatory cytokines and severity of the disease. Methods: 29 patients with 2019-ncov admitted to the isolation ward of Tongji hospital affiliated to Tongji medical college of Huazhong University of Science and Technology in January 2020 were selected as the study subjects. Clinical data were collected and the general information, clinical symptoms, blood test and CT imaging characteristics were analyzed. According to the relevant diagnostic criteria, the patients were divided into three groups: mild (15 cases), severe (9 cases) and critical (5 cases). The expression levels of inflammatory cytokines and other markers in the serum of each group were detected, and the changes of these indicators of the three groups were compared and analyzed, as well as their relationship with the clinical classification of the disease. Results: (1) The main symptoms of 2019-nCoV pneumonia was fever (28/29) with or without respiratory and other systemic symptoms. Two patients died with underlying disease and co-bacterial infection, respectively. (2) The blood test of the patients showed normal or decreased white blood cell count (23/29), decreased lymphocyte count (20/29), increased hypersensitive C reactive protein (hs-CRP) (27/29), and normal procalcitonin. In most patients,serum lactate dehydrogenase (LDH) was significantly increased (20/29), while albumin was decreased(15/29). Alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (Tbil), serum creatinine (Scr) and other items showed no significant changes. (3) CT findings of typical cases were single or multiple patchy ground glass shadows accompanied by septal thickening. When the disease progresses, the lesion increases and the scope expands, and the ground glass shadow coexists with the solid shadow or the stripe shadow. (4) There were statistically significant differences in the expression levels of interleukin-2 receptor (IL-2R) and IL-6 in the serum of the three groups (P<0.05), among which the critical group was higher than the severe group and the severe group was higher than the mildgroup. However, there were no statistically significant differences in serum levels of tumor necrosis factor-alpha (TNF-α), IL-1, IL-8, IL-10, hs-CRP, lymphocyte count and LDH among the three groups (P>0.05). Conclusion: The clinical characteristics of 2019-nCoV pneumonia are similar to those of common viral pneumonia. High resolution CT is of great value in the differential diagnosis of this disease. The increased expression of IL-2R and IL-6 in serum is expected to predict the severity of the 2019-nCoV pneumonia and the prognosis of patients.
Collapse
|
Journal Article |
5 |
107 |
31
|
Wei S, Ferreira LG, Zunger A. First-principles calculation of temperature-composition phase diagrams of semiconductor alloys. PHYSICAL REVIEW. B, CONDENSED MATTER 1990; 41:8240-8269. [PMID: 9993147 DOI: 10.1103/physrevb.41.8240] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
|
35 |
106 |
32
|
Zou W, Borvak J, Marches F, Wei S, Galanaud P, Emilie D, Curiel TJ. Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by beta-chemokines rather than IL-12. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4388-96. [PMID: 11035076 DOI: 10.4049/jimmunol.165.8.4388] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocyte-derived dendritic cells (MDDCs) activate naive T lymphocytes to induce adaptive immunity, effecting Th1 polarization through IL-12. However, little is known about other potential DC Th1 polarizing mechanisms, or how T cell polarization may be affected by DCs differentiating in, or exposed to, a proinflammatory environment. Macrophages (MPhis) are DC precursors abundant in inflamed tissues, lymph nodes, and tumors. Thus we studied the T cell-activating and -polarizing properties of MPhi-derived DCs (PhiDCs). Monocytes were cultured in MPhi-CSF (M-CSF) to produce MPhis, which were then differentiated into DCs following culture with GM-CSF plus IL-4. PhiDCs activated a significant allogeneic MLR and were significantly better than MDDCs in activating T cells with superantigen. Most strikingly, PhiDCs elicited up to 9-fold more IFN-gamma from naive or Ag-specific T cells compared with MDDCs (with equivalent IL-4 secretion), despite producing up to 9-fold less IL-12. Neutralization of MDDC, but not PhiDC IL-12 significantly inhibited T cell IFN-gamma induction. PhiDCs produced up to 12-fold more beta-chemokines (macrophage-inflammatory protein-1alpha, -1beta, and RANTES) than MDDCs. Ab blockade of CCR5, but not CXC chemokine receptor 4, inhibited T cell IFN-gamma induction by PhiDCs significantly greater than by MDDCs. Thus DCs differentiating from MPhis induce T cell IFN-gamma through beta-chemokines with little or no requirement for IL-12. Myeloid DCs arising from distinct precursor cells may have differing properties, including different mechanisms of Th1 polarization. These data are the first reports of IFN-gamma induction through chemokines by DCs.
Collapse
|
Comparative Study |
25 |
106 |
33
|
Zeldin DC, Wei S, Falck JR, Hammock BD, Snapper JR, Capdevila JH. Metabolism of epoxyeicosatrienoic acids by cytosolic epoxide hydrolase: substrate structural determinants of asymmetric catalysis. Arch Biochem Biophys 1995; 316:443-51. [PMID: 7840649 DOI: 10.1006/abbi.1995.1059] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The metabolism of cis-epoxyeicosatrienoic acids (EETs), methyl cis-epoxyeicosatrienoates, and cis-epoxyeicosanoic acids by cytosolic epoxide hydrolase was studied to identify substrate structural features important for stereoselective metabolism and chiral diol formation. 14(R), 15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET, the predominant enantiomers present endogenously in rat organs, were metabolized at substantially higher rates than their antipodes. With the exception of 8(R),9(S)-EET (Km = 41 microM), differences in enantiomer hydration rates appear to be caused by Km-independent factors since the apparent Km values for the enantiomers of 14,15-, 11,12-, and 8(S),9(R)-EET were similar (between 3 and 5 microM). Chiral analysis of the diols resulting from enzymatic hydration of homochiral EETs showed that the regio and/or stereochemistry of water addition was EET regioisomer dependent. For the 11,12-EET enantiomers, water addition was nonregioselective; whereas, with both 8,9-EET antipodes water addition occurred predominantly at C9. Importantly, for 14,15-EET the regiochemistry of water addition was enantiomer-dependent. Only with 14(R),15(S)-EET did enzymatic hydration result in regiospecific addition at C15. Hence, enantioselective EET hydration is determined, principally, by enantiomer specific differences in rates of catalytic turnover and/or substrate binding parameters. On the other hand, the chirality of the diol products is determined by EET enantiomer-dependent differences in the regiochemistry of enzymatic oxirane cleavage and water addition. Esterification resulted in an overall reduction in the rates of epoxide hydration for all three EET-methyl esters (59, 89, and 68% of the EET rate for 8,9-, 11,12-, and 14,15-EET-methyl ester, respectively) and in the loss of regioselectivity during methyl 8(S),9(R)-EET oxirane cleavage. Catalytic EET hydrogenation reduced the rates of EET hydration (56, 45, and 23% of the EET rates for 8,9-, 11,12-, and 14,15-epoxyeicosanoic acids, respectively). Compared to 14,15-EET, enzyme catalyzed hydration of 14,15-epoxyeicosanoic acid was less regioselective and yielded products with a substantially lower chiral purity. Based on these data, as well as on the documentation of 14(R),15(R)-dihydroxyeicosatrienoic acid as an endogenous constituent of rat urine we concluded that: (1) cytosolic epoxide hydrolase plays a significant role in the regio- and stereoselective metabolism of endogenous EETs; (2) differences in the affinities and/or turnover rates of the enzyme for the individual EET antipodes may be responsible for enantioselective EET metabolism; and (3) for 14,15- and 8,9-EET, regioselective and/or enantioselective oxirane water addition is responsible for asymmetric diol formation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
30 |
103 |
34
|
Imig JD, Falck JR, Wei S, Capdevila JH. Epoxygenase metabolites contribute to nitric oxide-independent afferent arteriolar vasodilation in response to bradykinin. J Vasc Res 2001; 38:247-55. [PMID: 11399897 DOI: 10.1159/000051053] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the kidney, epoxyeicosatrienoic acids (EETs) have been suggested to be endothelium-derived hyperpolarizing factors (EDHFs). The aim of the present study was to determine the contribution of EETs to the preglomerular vasodilation elicited by bradykinin. Sprague-Dawley rats were studied utilizing an in vitro perfused juxtamedullary nephron preparation. The afferent arteriolar diameter was determined and the diameter averaged 19 +/- 1 microm (n = 26) at a renal perfusion pressure of 100 mm Hg. Addition of 1, 10 and 100 nM bradykinin to the perfusate dose-dependently increased afferent arteriolar diameter by 5 +/- 1, 12 +/- 2 and 17 +/- 2%, respectively. The nitric oxide inhibitor N(omega)-nitro-L-arginine reduced bradykinin-induced afferent arteriolar vasodilation by 50%, and the diameter increased by 9 +/- 2% in response to 100 nM bradykinin. Epoxygenase inhibitors N-methylsulphonyl-6-(2-propargyloxyphenyl)hexanamide or miconazole greatly attenuated the nitric oxide-independent component of the vasodilation elicited by bradykinin. Cyclooxygenase (COX) inhibition attenuated the nitric oxide-independent vasodilation elicited by 1 nM bradykinin but did not significantly affect the vascular response to 100 nM bradykinin. Combined inhibition of nitric oxide, COX and epoxygenase pathways completely abolished bradykinin-mediated afferent arteriolar vasodilation. In additional studies, renal microvessels were isolated and incubated with bradykinin and samples were analyzed by NICI/GC/MS. Under control conditions, renal microvascular EET levels averaged 49 +/- 9 pg/mg/20 min (n = 7). In the presence of bradykinin, EET levels were significantly higher and averaged 81 +/- 11 pg/mg/20 min (n = 7). These data support the concept that EETs are EDHFs and contribute to the nitric oxide-independent afferent arteriolar vasodilation elicited by bradykinin.
Collapse
|
|
24 |
99 |
35
|
Patterson SG, Wei S, Chen X, Sallman DA, Gilvary DL, Zhong B, Pow-Sang J, Yeatman T, Djeu JY. Novel role of Stat1 in the development of docetaxel resistance in prostate tumor cells. Oncogene 2006; 25:6113-22. [PMID: 16652143 DOI: 10.1038/sj.onc.1209632] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A major obstacle for clinicians in the treatment of advanced prostate cancer is the inevitable progression to chemoresistance, especially to docetaxel. It is essential to understand the molecular events that lead to docetaxel resistance in order to identify means to prevent or interfere with chemoresistance. In initial attempts to detect these events, we analysed genomic differences between non-resistant and docetaxel-resistant prostate tumor cells and, of the genes modulated by docetaxel treatment, we observed Stat1 and clusterin gene expression heightened in the resistant phenotype. In this study, we provide biochemical and biological evidence that these two gene products are related. Stat1 and clusterin protein expression was induced upon docetaxel treatment of DU145 cells and highly overexpressed in the docetaxel-resistant DU145 cells (DU145-DR). The increase in total Stat1 corresponded to an increase in phosphorylated Stat1. Interestingly, there was no detectable difference between DU145 and DU145-DR cells expression of total Stat3 and phosphorylated Stat3. Treatment of DU145-DR cells with small interfering RNA targeted for Stat1 not only resulted in the knockdown of Stat1 expression, but it also caused the inhibition of clusterin expression. Thus, Stat1 appears to play a key role in the regulation of clusterin. Remarkably, inhibition of Stat1 or clusterin expression resulted in the re-sensitization of DU145-DR cells to docetaxel. These results offer the first evidence that Stat1, and its subsequent regulation of clusterin, are essential for docetaxel resistance in prostate cancer. Targeting this pathway could be a potential therapeutic means for intervention of docetaxel resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
95 |
36
|
Wei S, Gamble MV, Vogel S, Piantedosi R, Gottesman M, Episkopou V, Blaner WS. Biochemical basis for depressed serum retinol levels in transthyretin-deficient mice. J Biol Chem 2001; 276:1107-13. [PMID: 11036082 DOI: 10.1074/jbc.m008091200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transthyretin (TTR) acts physiologically in the transport of retinol in the circulation. We previously reported the generation and partial characterization of TTR-deficient (TTR(-)) mice. TTR(-) mice have very low circulating levels of retinol and its specific transport protein, retinol-binding protein (RBP). We have examined the biochemical basis for the low plasma retinol-RBP levels. Cultured primary hepatocytes isolated from wild type (WT) and TTR(-) mice accumulated RBP in their media to an identical degree, suggesting that RBP was being secreted from the hepatocytes at the same rate. In vivo experiments support this conclusion. For the first 11 h after complete nephrectomy, the levels retinol and RBP rose in the circulations of WT and TTR(-) mice at nearly identical rates. However, human retinol-RBP injected intravenously was more rapidly cleared from the circulation (t(12) = 0.5 h for TTR(-) versus t(12) >6 h for WT) and accumulated faster in the kidneys of TTR(-) compared with WT mice. The rate of infiltration of the retinol-RBP complex from the circulation to tissue interstitial fluids was identical in both strains. Taken together, these data indicate that low circulating retinol-RBP levels in TTR(-) mice arise from increased renal filtration of the retinol-RBP complex.
Collapse
|
|
24 |
93 |
37
|
Wei S, Episkopou V, Piantedosi R, Maeda S, Shimada K, Gottesman ME, Blaner WS. Studies on the metabolism of retinol and retinol-binding protein in transthyretin-deficient mice produced by homologous recombination. J Biol Chem 1995; 270:866-70. [PMID: 7822324 DOI: 10.1074/jbc.270.2.866] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tissue needs for retinoids are believed to be satisfied through the delivery in the circulation of retinol by its specific plasma transport protein, retinol-binding protein (RBP), which circulates as a 1-to-1 protein complex with transthyretin (TTR). The binding of RBP to TTR is thought to prevent filtration of retinol-RBP in the kidney and to play a role in secretion of RBP from hepatocytes. Recently a strain of mice (TTR-) that totally lacks immunoreactive TTR was produced by targeted mutagenesis. We have explored the effects of TTR deficiency on retinol and RBP metabolism in this mutant strain. In pooled plasma from the TTR- mice retinol levels averaged 6% of those of wild type animals. Similarly, plasma RBP in the TTR- mice was found to be 5% of wild type levels. Hepatic retinol and retinyl ester levels were similar for mutant and wild type mice, suggesting that the mutation affects neither the uptake nor storage of dietary retinol. Levels of retinol and retinyl esters in testis, kidney, spleen, and eye cups from TTR- mice were normal. Plasma all-trans-retinoic acid levels for the TTR- mice were 2.3-fold higher than those of wild type (425 versus 190 ng/dl). Kidney RBP levels were similar for the mutant and wild type mice and we were unable to detect intact RBP in urine from TTR- mice. Hepatic RBP levels in the TTR- mice were 60% higher than those of wild type mice (39.8 versus 25.0 micrograms of RBP/g of tissue). These data may suggest that there is a partial blockage in RBP secretion from TTR- hepatocytes that leads to lessened plasma levels of retinol-RBP.
Collapse
|
|
30 |
92 |
38
|
Pontow SE, Heyden NV, Wei S, Ratner L. Actin cytoskeletal reorganizations and coreceptor-mediated activation of rac during human immunodeficiency virus-induced cell fusion. J Virol 2004; 78:7138-47. [PMID: 15194790 PMCID: PMC421652 DOI: 10.1128/jvi.78.13.7138-7147.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The membrane fusion events which initiate human immunodeficiency virus type 1 (HIV-1) infection and promote cytopathic syncytium formation in infected cells commence with the binding of the HIV envelope glycoprotein (Env) to CD4 and an appropriate coreceptor. Here, we show that HIV Env-coreceptor interactions activate Rac-1 GTPase and stimulate the actin filament network reorganizations that are requisite components of the cell fusion process. Disrupting actin filament dynamics with jasplakinolide or latrunculin A arrested fusion at a late step in the formation of Env-CD4-coreceptor complexes. Time-lapse confocal microscopy of living cells revealed vigorous activity of actin-based, target cell membrane extensions at the target cell-Env-expressing cell interface. The expression of dominant-negative forms of actin-regulating Rho-family GTPases established that HIV Env-mediated syncytium formation relies on Rac-1 but not on Cdc42 or Rho activation in target cells. Similar dependencies were found when cell fusion was induced by Env expressed on viral or cellular membranes. Additionally, Rac activity was specifically upregulated in a coreceptor-dependent manner in fusion reaction cell lysates. These results define a role for HIV Env-coreceptor interactions in activating the cellular factors essential for virus-cell and cell-cell fusion and provide evidence for the participation of pertussis toxin-insensitive signaling pathways in HIV-induced membrane fusion.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
90 |
39
|
Mertz JR, Shang E, Piantedosi R, Wei S, Wolgemuth DJ, Blaner WS. Identification and characterization of a stereospecific human enzyme that catalyzes 9-cis-retinol oxidation. A possible role in 9-cis-retinoic acid formation. J Biol Chem 1997; 272:11744-9. [PMID: 9115228 DOI: 10.1074/jbc.272.18.11744] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
All-trans- and 9-cis-retinoic acid are active retinoids for regulating expression of retinoid responsive genes, serving as ligands for two classes of ligand-dependent transcription factors, the retinoic acid receptors and retinoid X receptors. Little is known, however, regarding 9-cis-retinoic acid formation. We have obtained a 1.4-kilobase cDNA clone from a normalized human breast tissue library, which when expressed in CHO cells encodes a protein that avidly catalyzes oxidation of 9-cis-retinol to 9-cis-retinaldehyde. This protein also catalyzes oxidation of 13-cis-retinol at a rate approximately 10% of that of the 9-cis isomer but does not catalyze all-trans-retinol oxidation. NAD+ was the preferred electron acceptor for oxidation of 9-cis-retinol, although NADP+ supported low rates of 9-cis-retinol oxidation. The rate of 9-cis-retinol oxidation was optimal at pHs between 7.5 and 8. Sequence analysis indicates that the cDNA encodes a protein of 319 amino acids that resembles members of the short chain alcohol dehydrogenase protein family. mRNA for the protein is most abundant in human mammary tissue followed by kidney and testis, with lower levels of expression in liver, adrenals, lung, pancreas, and skeletal muscle. We propose that this cDNA encodes a previously unknown stereospecific enzyme, 9-cis-retinol dehydrogenase, which probably plays a role in 9-cis-retinoic acid formation.
Collapse
|
|
28 |
89 |
40
|
Karara A, Wei S, Spady D, Swift L, Capdevila JH, Falck JR. Arachidonic acid epoxygenase: structural characterization and quantification of epoxyeicosatrienoates in plasma. Biochem Biophys Res Commun 1992; 182:1320-5. [PMID: 1540175 DOI: 10.1016/0006-291x(92)91877-s] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gas chromatographic/mass spectroscopic and chiral analysis showed the presence of enzymatically derived 8,9-, 11,12- and 14,15-EET in rat plasma (2.8:1:3.4 molar ratio, respectively; 10.2 +/- 0.4 ng total EET/ml plasma). Greater than 90% of the plasma EETs was esterified to the phospholipids of circulating lipoproteins. The lipoprotein fraction with the highest EET concentration was LDL (8.1 +/- 0.9 ng/mg of protein) followed by HDL and VLDL (3.5 +/- 0.1 and 1.9 +/- 0.3 ng/mg of protein, respectively). In light of the biological activities of the EETs, these results suggest a potential systemic function for the cytochrome P-450 epoxygenase.
Collapse
|
|
33 |
88 |
41
|
Wei S, Tzeng WB, Castleman AW. Kinetic energy release measurements of ammonia cluster ions during metastable decomposition and determination of cluster ion binding energies. J Chem Phys 1990. [DOI: 10.1063/1.458434] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
35 |
88 |
42
|
Wei S, Teitelbaum SL, Wang MW, Ross FP. Receptor activator of nuclear factor-kappa b ligand activates nuclear factor-kappa b in osteoclast precursors. Endocrinology 2001; 142:1290-5. [PMID: 11181547 DOI: 10.1210/endo.142.3.8031] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Receptor activator of nuclear factor-kappa B ligand [RANK ligand (RANK-L)] stimulates mature osteoclasts to resorb bone, a process associated with NF-kappa B activation. RANK-L also prompts macrophages to develop the osteoclast phenotype. Although NF-kappa B is essential for osteoclast differentiation, it is not known whether RANK-L activates this transcription complex in osteoclast precursors. We report that RANK-L rapidly induces NF-kappa B activation in both authentic osteoclast precursors, namely bone marrow macrophages, and RAW 264.7 cells, a murine macrophage line also capable of RANK-L-mediated osteoclastogenesis. Supershift studies reveal the RANK-L-induced DNA binding moiety contains p50/p65, the most common NF-kappa B complex. Subcellular translocation of p50 and p65 subunits is confirmed by Western blots and immunofluorescence analysis. RANK-L activates NF-kappa B in both bone marrow macrophages and RAW 264.7 cells by serine phosphorylation of I kappa B alpha within 5 min, resulting in rapid I kappa B alpha degradation and resynthesis. Attesting to function, RANK-L treatment of RAW 264.7 cells transiently transfected with a plasmid containing NF-kappa B consensus elements linked to luciferase greatly enhances reporter activity. Our data suggest that activation of the NF-kappa B pathway is an integral component of RANK-L-induced osteoclast differentiation.
Collapse
|
|
24 |
87 |
43
|
Yoder JA, Mueller MG, Wei S, Corliss BC, Prather DM, Willis T, Litman RT, Djeu JY, Litman GW. Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian leukocyte receptor cluster. Proc Natl Acad Sci U S A 2001; 98:6771-6. [PMID: 11381126 PMCID: PMC34428 DOI: 10.1073/pnas.121101598] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extensive, highly diversified multigene family of novel immune-type receptor (nitr) genes has been defined in Danio rerio (zebrafish). The genes are predicted to encode type I transmembrane glycoproteins consisting of extracellular variable (V) and V-like C2 (V/C2) domains, a transmembrane region and a cytoplasmic tail. All of the genes examined encode immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. Radiation hybrid panel mapping and analysis of a deletion mutant line (b240) indicate that a minimum of approximately 40 nitr genes are contiguous in the genome and span approximately 0.6 Mb near the top of zebrafish linkage group 7. One flanking region of the nitr gene complex shares conserved synteny with a region of mouse chromosome 7, which shares conserved synteny with human 19q13.3-q13.4 that encodes the leukocyte receptor cluster. Antibody-induced crosslinking of Nitrs that have been introduced into a human natural killer cell line inhibits the phosphorylation of mitogen-activated protein kinase that is triggered by natural killer-sensitive tumor target cells. Nitrs likely represent intermediates in the evolution of the leukocyte receptor cluster.
Collapse
|
research-article |
24 |
87 |
44
|
Pericle F, Liu JH, Diaz JI, Blanchard DK, Wei S, Forni G, Djeu JY. Interleukin-2 prevention of apoptosis in human neutrophils. Eur J Immunol 1994; 24:440-4. [PMID: 7507846 DOI: 10.1002/eji.1830240226] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Evidence is presented that interleukin (IL)-2 maintains viability of human polymorphonuclear cells (PMN) in culture by preventing these cells from undergoing programmed cell death (PCD) and induces the synthesis of new RNA and protein. Our laboratory has recently discovered that human PMN constitutively express IL-2 beta receptor and more importantly, PMN are able to respond functionally to IL-2 by enhanced growth inhibitory activity against an opportunistic fungal pathogen, Candida albicans. We now report that IL-2 was able to interfere with the PCD process and reduce the number of apoptotic PMN to < 40% in 72-h culture. Freshly isolated PMN usually underwent a time-dependent aging process and > 80% of PMN cultured in medium alone for 72 h showed morphologic features of PCD as depicted by hematoxylin and eosin staining as well as by electron microscopy. During the PCD process, untreated PMN not only exhibited condensed nuclear structure and decrease in cell size, but also displayed DNA fragmentation. DNA fragmentation in PMN was prevented by IL-2. Prevention of PCD by IL-2 was associated with an increase in new RNA and protein synthesis in PMN, which may reflect cytokine induction, such as tumor necrosis factor, as we have recently shown. Thus, our data expands our current understanding of PMN in that they may be an active component of the immune system, with a longer life-span when activated than expected.
Collapse
|
|
31 |
78 |
45
|
Snyder E, Wei S, Purnell J, Buzza S, Castleman A. Femtosecond laser-induced Coulomb explosion of ammonia clusters. Chem Phys Lett 1996. [DOI: 10.1016/0009-2614(95)01278-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
29 |
77 |
46
|
Wei S, Xu T, Ashery U, Kollewe A, Matti U, Antonin W, Rettig J, Neher E. Exocytotic mechanism studied by truncated and zero layer mutants of the C-terminus of SNAP-25. EMBO J 2000; 19:1279-89. [PMID: 10716928 PMCID: PMC305669 DOI: 10.1093/emboj/19.6.1279] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The highly conserved SNARE proteins, SNAP-25, syntaxin and synaptobrevin, form a tight ternary complex, which is essential for exocytosis. Crystallization of this complex revealed a four-helix bundle with an unusual hydrophilic layer (zero layer) in its center. In order to evaluate the role of this layer in different kinetic components of secretion, we used the Semliki Forest virus (SFV) system to infect adrenal chromaffin cells with SNAP-25 Q174L, a point mutant in the zero layer. Using combined flash photolysis of caged calcium and membrane capacitance measurements, we investigated its effect on the exocytotic burst and sustained phase of exocytosis with high time resolution. Cells expressing SNAP-25 Q174L displayed a selective reduction in the sustained phase, while the two components of the exocytotic burst remained unaffected. Furthermore, the exocytotic response to the second flash was significantly reduced, indicating a decrease in refilling kinetics. We therefore conclude that the zero layer is critical for the formation of SNARE complexes, but that it plays no role in the dynamic equilibrium between the two exocytosis-competent vesicle pools.
Collapse
|
research-article |
25 |
76 |
47
|
Wei S, Guo BC, Deng HT, Kerns K, Purnell J, Buzza SA, Castleman AW. Formation of Met-Cars and Face-Centered Cubic Structures: Thermodynamically or Kinetically Controlled? J Am Chem Soc 2002. [DOI: 10.1021/ja00089a046] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
23 |
74 |
48
|
Wei S, Chow LT, Sanderson JE. Effect of carvedilol in comparison with metoprolol on myocardial collagen postinfarction. J Am Coll Cardiol 2000; 36:276-81. [PMID: 10898446 DOI: 10.1016/s0735-1097(00)00671-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We sought to compare the effects of two different beta-blockers, carvedilol and metoprolol, to an angiotensin-converting enzyme (ACE) inhibitor (captopril) on myocardial collagen deposition during healing and ventricular remodeling after myocardial infarction (MI). BACKGROUND Beta-adrenergic blockade has been shown to be beneficial post-MI and in chronic heart failure. Carvedilol is a new-generation vasodilating beta-blocker with additional alpha1-adrenoceptor antagonism and an antiproliferative action, but it is not known if it is more beneficial than standard selective beta-blockers. METHODS Using a rat model of MI, induced by left coronary ligation, we studied the effects of 11 weeks of therapy with oral carvedilol, metoprolol or captopril on hemodynamics, tissue weights, collagen volume fraction and hydroxyproline content. RESULTS Both beta-blockers caused similar decreases in heart rate and LVEDP compared with untreated post-MI rats. At equivalent beta-adrenoceptor blocking doses, however, carvedilol, but not metoprolol, attenuated the increase in collagen content in noninfarcted regions and prevented the increase in right ventricular weight/body weight (all p < 0.05), and its effect was similar to captopril. Metoprolol treatment tended to increase right ventricular weight and heart weight (p < 0.05). There were no differences in infarct size between the groups. CONCLUSIONS Long-term treatment with both beta-blockers, as well as an ACE inhibitor, benefited the healing process in rats post-MI. At equivalent myocardial beta-adrenoceptor blocking doses, however, carvedilol significantly reduced myocardial collagen in the noninfarcted myocardium and cardiac hypertrophy in the right ventricle, whereas metoprolol had no effect on myocardial collagen deposition.
Collapse
|
Comparative Study |
25 |
73 |
49
|
Wei S, Lai K, Patel S, Piantedosi R, Shen H, Colantuoni V, Kraemer FB, Blaner WS. Retinyl ester hydrolysis and retinol efflux from BFC-1beta adipocytes. J Biol Chem 1997; 272:14159-65. [PMID: 9162045 DOI: 10.1074/jbc.272.22.14159] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adipose tissue is an important storage depot for retinol, but there are no data regarding retinol mobilization from adipose stores. To address this, dibutyryl cAMP was provided to murine BFC-1beta adipocytes and its effects on retinol efflux assessed. High performance liquid chromatography analysis of retinol and retinyl esters in adipocytes and media indicated that cAMP stimulated, in a time- and dose-dependent manner, retinol accumulation in the culture media and decreased cellular retinyl ester concentrations. Study of adipocyte retinol-binding protein synthesis and secretion indicated that cAMP-stimulated retinol efflux into the media did not result from increased retinol-retinol-binding protein secretion but was dependent on the presence of fetal bovine serum in the culture media. Since our data suggested that retinyl esters can be hydrolyzed by a cAMP-dependent enzyme like hormone-sensitive lipase (HSL), in separate studies, we purified a HSL-containing fraction from BFC-1beta adipocytes and demonstrated that it catalyzed retinyl palmitate hydrolysis. Homogenates of Chinese hamster ovary cells overexpressing HSL catalyzed retinyl palmitate hydrolysis in a time-, protein-, and substrate-dependent manner, with an apparent Km for retinyl palmitate of 161 microM, whereas homogenates from control Chinese hamster ovary cells did not.
Collapse
|
|
28 |
70 |
50
|
Wei S, Chen X, McGraw K, Zhang L, Komrokji R, Clark J, Caceres G, Billingsley D, Sokol L, Lancet J, Fortenbery N, Zhou J, Eksioglu EA, Sallman D, Wang H, Epling-Burnette PK, Djeu J, Sekeres M, Maciejewski JP, List A. Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion. Oncogene 2012; 32:1110-20. [PMID: 22525275 DOI: 10.1038/onc.2012.139] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allelic deletion of the RPS14 gene is a key effector of the hypoplastic anemia in patients with myelodysplastic syndrome (MDS) and chromosome 5q deletion (del(5q)). Disruption of ribosome integrity liberates free ribosomal proteins to bind to and trigger degradation of mouse double minute 2 protein (MDM2), with consequent p53 transactivation. Herein we show that p53 is overexpressed in erythroid precursors of primary bone marrow del(5q) MDS specimens accompanied by reduced cellular MDM2. More importantly, we show that lenalidomide (Len) acts to stabilize MDM2, thereby accelerating p53 degradation. Biochemical and molecular analyses showed that Len inhibits the haplodeficient protein phosphatase 2A catalytic domain alpha (PP2Acα) phosphatase resulting in hyperphosphorylation of inhibitory serine-166 and serine-186 residues on MDM2, and displaces binding of RPS14 to suppress MDM2 autoubiquitination whereas PP2Acα overexpression promotes drug resistance. Bone marrow specimens from del(5q) MDS patients resistant to Len overexpressed PP2Acα accompanied by restored accumulation of p53 in erythroid precursors. Our findings indicate that Len restores MDM2 functionality in the 5q- syndrome to overcome p53 activation in response to nucleolar stress, and therefore may warrant investigation in other disorders of ribosomal biogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
69 |