26
|
Kuznietsova H, Dziubenko N, Herheliuk T, Prylutskyy Y, Tauscher E, Ritter U, Scharff P. Water-Soluble Pristine C 60 Fullerene Inhibits Liver Alterations Associated with Hepatocellular Carcinoma in Rat. Pharmaceutics 2020; 12:pharmaceutics12090794. [PMID: 32842595 PMCID: PMC7559840 DOI: 10.3390/pharmaceutics12090794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Excessive production of reactive oxygen species is the main cause of hepatocellular carcinoma (HCC) initiation and progression. Water-soluble pristine C60 fullerene is a powerful and non-toxic antioxidant, therefore, its effect under rat HCC model and its possible mechanisms were aimed to be discovered. Studies on HepG2 cells (human HCC) demonstrated C60 fullerene ability to inhibit cell growth (IC50 = 108.2 μmol), to induce apoptosis, to downregulate glucose-6-phosphate dehydrogenase, to upregulate vimentin and p53 expression and to alter HepG2 redox state. If applied to animals experienced HCC in dose of 0.25 mg/kg per day starting at liver cirrhosis stage, C60 fullerene improved post-treatment survival similar to reference 5-fluorouracil (31 and 30 compared to 17 weeks) and inhibited metastasis unlike the latter. Furthermore, C60 fullerene substantially attenuated liver injury and fibrosis, decreased liver enzymes, and normalized bilirubin and redox markers (elevated by 1.7–7.7 times under HCC). Thus, C60 fullerene ability to inhibit HepG2 cell growth and HCC development and metastasis and to improve animal survival was concluded. C60 fullerene cytostatic action might be realized through apoptosis induction and glucose-6-phosphate dehydrogenase downregulation in addition to its antioxidant activity.
Collapse
|
27
|
Tasew G, Gadisa E, Abera A, Chanyalew M, Abebe M, Howe R, Ritter U, Aseffa A, Laskay T. Whole blood-based in vitro culture reveals diminished secretion of pro-inflammatory cytokines and chemokines in visceral leishmaniasis. Cytokine 2020; 145:155246. [PMID: 32828639 DOI: 10.1016/j.cyto.2020.155246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 11/28/2022]
Abstract
The likelihood of being bitten by sand flies infected with Leishmania (L.) donovani is considered to be high for all inhabitants living in the endemic areas, but only a small ratio of the population develop symptomatic visceral leishmanisis (VL). Since adequate activation of antimicrobial immune response plays a key role in control of pathogens early after infection we hypothesized that a dysfunction of essential cells of the immune system is associated with disease development after infection with L. donovani. In order to obtain insights into the capacity of leukocytes to respond to L. donovani, a whole blood based assay was applied to evaluate the production of cytokines and chemokines in clinical VL versus Ethiopian endemic healthy control (EHC). In response to L. donovani, VL blood cultures showed significantly lower secretion of IL-12p70, IL-6, IL-17, IL-8 and IP-10 compared to EHC. On the contrary, there was a significantly higher secretion of IL-10 observed in VL compared to EHC. In response to LPS also a lower IL-1β, IL-12p70 and IL-6 secretion was observed in VL as compared to EHC. The data clearly indicate a diminished ability of blood leukocytes in VL to respond to L. donovani and to the TLR ligand LPS. This compromised response in VL may contribute to the severe disease development and enhanced susceptibility to secondary infections in VL.
Collapse
|
28
|
Halenova T, Raksha N, Savchuk O, Ostapchenko L, Prylutskyy Y, Ritter U, Scharff P. Evaluation of the Biocompatibility of Water-Soluble Pristine С60 Fullerenes in Rabbit. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00762-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Strandt H, Voluzan O, Niedermair T, Ritter U, Thalhamer J, Malissen B, Stoecklinger A, Henri S. Macrophages and Fibroblasts Differentially Contribute to Tattoo Stability. Dermatology 2020; 237:296-302. [PMID: 32344413 DOI: 10.1159/000506540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/17/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Little information is available about the complexity and function of skin cells contributing to the high stability of tattoos. It has been shown that dermal macrophages play an important role in the storage and maintenance of pigment particles. By contrast, the impact of dermal fibroblasts, forming the connective tissue of the skin, on the stability of the tattoo is not known. METHOD In this study, we compared the cell number and the particle load in dermal macrophages versus dermal fibroblasts, isolated from tail skin of tattooed mice. RESULTS Microscopic analysis revealed that both cell populations contained the tattoo particles, although in largely different amounts. A small number of macrophages with high side scatter intensity contained a large quantity of pigment particles, whereas a high number of dermal fibroblasts harbored only a few pigment particles. Using the CD64dtr mouse model that allows for selective, diphtheria toxin-mediated depletion of macrophages, we have previously shown that macrophages hold the tattoo in place by capture-release and recapture cycles. In the tattooed skin of macrophage-depleted mice, the content of pigment particles in fibroblasts did not change; however, the total number of fibroblasts carrying particles increased. CONCLUSION The present study demonstrates that dermal macrophages and fibroblasts contribute in different ways to the tattoo stability and further improves our knowledge on tattoo persistence.
Collapse
|
30
|
Maznychenko AV, Mankivska OP, Sokolowska (Vereshchaka) IV, Kopyak BS, Tomiak T, Bulgakova NV, Gonchar OO, Prylutskyy YI, Ritter U, Mishchenko IV, Kostyukov AI. C60 fullerenes increase the intensity of rotational movements in non-anesthetized hemiparkinsonic rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Maznychenko AV, Mankivska OP, Sokolowska Vereshchaka IV, Kopyak BS, Tomiak T, Bulgakova NV, Gonchar OO, Prylutskyy YI, Ritter U, Mishchenko IV, Kostyukov AI. C60 fullerenes increase the intensity of rotational movements in non‑anesthetized hemiparkinsonic rats. Acta Neurobiol Exp (Wars) 2020; 80:32-37. [PMID: 32214272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of C60 fullerene aqueous colloid solution (C60FAS) on the intensity of long‑lasting (persisting for one hour) rotational movements in non‑anesthetized rats was investigated. For this purpose, an experimental hemiparkinsonic animal model was used in the study. Rotational movements in hemiparkinsonic animals were initiated by the intraperitoneal administration of the dopamine receptor agonist apomorphine. It was shown that a preliminary injection of C60FAS (a substance with powerful antioxidant properties) in hemiparkinsonic rats induced distinct changes in animal motor behavior. It was revealed that fullerene‑pretreated animals, in comparison with non‑pretreated or vehicle‑pretreated rats, rotated for 1 h at an approximately identical speed until the end of the experiment, whereas the rotation speed of control rats gradually decreased to 20-30% of the initial value. One can assume that the observed changes in the movement dynamics of the hemiparkinsonic rats after C60FAS pretreatment presumably can be induced by the influence of C60FAS on the dopaminergic system, although the isolated potentiation of the action of apomorphine C60FAS cannot be excluded. Nevertheless, earlier data on the action of C60FAS on muscle dynamics has suggested that C60FAS can activate a protective action of the antioxidant system in response to long‑lasting muscular activity and that the antioxidant system in turn may directly decrease fatigue‑relate d changes during long‑lasting muscular activity.
Collapse
|
32
|
Prylutska SV, Lynchak OV, Kostjukov VV, Evstigneev MP, Remeniak OV, Rybalchenko VK, Prylutskyy YI, Ritter U, Scharff P. Antitumor effects and hematotoxicity of C 60-Cis-Pt nanocomplex in mice with Lewis lung carcinoma. Exp Oncol 2019; 41:106-111. [PMID: 31262160 DOI: 10.32471/exp-oncology.2312-8852.vol-41-no-2.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cisplatin (Cis-Pt) is a widely used anticancer drug but its therapeutic efficiency is limited by hemato-, cardio-, hepato-, nephro- and neurotoxicity. Complexation of Cis-Pt with C60 fullerene nanoparticle will allow to enhance the antitumor activity of the drug and to reduce its side toxic effects. AIM To estimate the antitumor effects of С60-Cis-Pt nanocomplex in Lewis lung carcinoma (LLC) and analyze hematological toxicity in tumor-bearing mice. MATERIALS AND METHODS Complexation of C60 fullerene and Cis-Pt molecule was studied by computer simulation. С60-Cis-Pt nanocomplex was i.p. injected to LLC-bearing mice in a total dose of 7.5 mg/kg (C60:Cis-Pt as 3.75:3.75 mg/kg). The survival of tumor-bearing mice and the relative reduction of tumor weight was recorded. Blood indices were determined using the Particle Counter PCE-210 automatic hematology analyzer. RESULTS Computer simulation demonstrated the formation of С60-Cis-Pt nanocomplex in physiological medium and its stability due to the hydrophobic interactions. Treatment with C60-Cis-Pt nanocomplex increased survival time of LLC-bearing mice by 32%, normalized hemoglobin content (up to 100 g/l), erythrocyte and platelet count as compared to the untreated LLC-bearing mice. Tumor weight decreased by 35.5%; the mitotic index of tumor cells decreased by 78%, and apoptotic index increased by 75%. The revealed effects of the C60-Cis-Pt nanocomplex were more pronounced than the effects of Cis-Pt or C60 fullerene alone in equivalent dose. CONCLUSION Treatment with C60-Cis-Pt nanocomplex prolonged the survival of LLC-bearing mice and reduced anemia in LLC-bearing mice.
Collapse
|
33
|
Crauwels P, Bank E, Walber B, Wenzel UA, Agerberth B, Chanyalew M, Abebe M, König R, Ritter U, Reiling N, van Zandbergen G. Cathelicidin Contributes to the Restriction of Leishmania in Human Host Macrophages. Front Immunol 2019; 10:2697. [PMID: 31824492 PMCID: PMC6883804 DOI: 10.3389/fimmu.2019.02697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022] Open
Abstract
In cutaneous Leishmaniasis the parasitic control in human host macrophages is still poorly understood. We found an increased expression of the human cathelicidin CAMP in skin lesions of Ethiopian patients with cutaneous leishmaniasis. Vitamin D driven, Cathelicidin-type antimicrobial peptides (CAMP) play an important role in the elimination of invading microorganisms. Recombinant cathelicidin was able to induce cell-death characteristics in Leishmania in a dose dependent manner. Using human primary macrophages, we demonstrated pro-inflammatory macrophages (hMDM1) to express a higher level of human cathelicidin, both on gene and protein level, compared to anti-inflammatory macrophages (hMDM2). Activating the CAMP pathway using Vitamin D in hMDM1 resulted in a cathelicidin-mediated-Leishmania restriction. Finally, a reduction of cathelicidin in hMDM1, using a RNA interference (RNAi) approach, increased Leishmania parasite survival. In all, these data show the human cathelicidin to contribute to the innate immune response against Leishmaniasis in a human primary cell model.
Collapse
|
34
|
Grebinyk A, Prylutska S, Buchelnikov A, Tverdokhleb N, Grebinyk S, Evstigneev M, Matyshevska O, Cherepanov V, Prylutskyy Y, Yashchuk V, Naumovets A, Ritter U, Dandekar T, Frohme M. C 60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells. Pharmaceutics 2019; 11:pharmaceutics11110586. [PMID: 31717305 PMCID: PMC6920783 DOI: 10.3390/pharmaceutics11110586] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle-C60 fullerene (C60)-for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.
Collapse
|
35
|
Grebinyk A, Prylutska S, Chepurna O, Grebinyk S, Prylutskyy Y, Ritter U, Ohulchanskyy TY, Matyshevska O, Dandekar T, Frohme M. Synergy of Chemo- and Photodynamic Therapies with C 60 Fullerene-Doxorubicin Nanocomplex. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1540. [PMID: 31671590 PMCID: PMC6915635 DOI: 10.3390/nano9111540] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/17/2022]
Abstract
A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C60 fullerene (C60) were applied in 1:1 and 2:1 molar ratio, exploiting C60 both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox's nuclear and C60's extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C60's photoinduced pro-oxidant activity. When cells were treated with 2:1 C60-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C60-Dox enabled a nanomolar concentration of Dox and C60 to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC50 16, 9 and 7 × 103-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C60's photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C60-mediated Dox delivery and C60 photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C60-Dox nanoformulation provides a promising synergetic approach for cancer treatment.
Collapse
|
36
|
Yasinskyi Y, O. P, O. M, V. R, Prylutskyy Y, Tauscher E, Ritter U, Kozeretska I. Reconciling the controversial data on the effects of C60 fullerene at the organismal and molecular levels using as a model Drosophila melanogaster. Toxicol Lett 2019; 310:92-98. [DOI: 10.1016/j.toxlet.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/01/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
|
37
|
Ribechini E, Eckert I, Beilhack A, Du Plessis N, Walzl G, Schleicher U, Ritter U, Lutz MB. Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell-killing capability. JCI Insight 2019; 5:128664. [PMID: 31162143 DOI: 10.1172/jci.insight.128664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis patients and mice infected with live Mycobacterium tuberculosis (Mtb) accumulate high numbers of myeloid-derived suppressor cells (MDSCs). Here, we hypothesized that also dead Mtb vaccines may induce MDSCs that could impair the efficacy of vaccination. We found that repeated injections of Mtb vaccines (heat-killed Mtb in Incomplete Freund's Adjuvant, like Montanide) but not single or control vaccines without Mtb strongly expanded CD11b+ myeloid cells in the spleen, that suppressed T cell proliferation and killing ex vivo. Dead Mtb vaccination induced the generation of CD11b+ Ly-6Chigh CD115+ iNOS/Nos2+ monocytic MDSCs (M-MDSCs) upon application of inflammatory or microbial activation signals. In vivo these M-MDSCs positioned strategically in the spleen by infiltrating the splenic bridging channels and white pulp areas. Notably, within 6 to 24 hours in a Nos2-dependent fashion they produced NO to rapidly kill conventional and plasmacytoid dendritic cells (cDCs, pDCs) while, surprisingly, sparing T cells in vivo. Thus, we demonstrate that Mtb vaccine induced M-MDSCs to not directly suppress T cell in vivo but, instead, M-MDSCs directly target DC subpopulations thereby indirectly suppressing effector T cell responses. Collectively, we demonstrate that Mtb booster vaccines induce M-MDSCs in the spleen that can be activated to kill DCs cautioning to thoroughly investigate MDSC formation in individuals after Mtb vaccination in clinical trials.
Collapse
|
38
|
Franskevych D, Prylutska S, Grynyuk I, Pasichnyk G, Drobot L, Matyshevska O, Ritter U. Mode of photoexcited C 60 fullerene involvement in potentiating cisplatin toxicity against drug-resistant L1210 cells. ACTA ACUST UNITED AC 2019; 9:211-217. [PMID: 31799157 PMCID: PMC6879712 DOI: 10.15171/bi.2019.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/08/2019] [Accepted: 04/09/2019] [Indexed: 11/23/2022]
Abstract
![]()
Introduction: C60 fullerene has received great attention as a candidate for biomedical applications. Due to unique structure and properties, C60 fullerene nanoparticles are supposed to be useful in drug delivery, photodynamic therapy (PDT) of cancer, and reversion of tumor cells’ multidrug resistance. The aim of this study was to elucidate the possible molecular mechanisms involved in photoexcited C60 fullerene-dependent enhancement of cisplatin toxicity against leukemic cells resistant to cisplatin.
Methods: Stable homogeneous pristine C60 fullerene aqueous colloid solution (10-4 М, purity 99.5%) was used in the study. The photoactivation of C60 fullerene accumulated by L1210R cells was done by irradiation in microplates with light-emitting diode lamp (420-700 nm light, 100 mW·cm-2). Cells were further incubated with the addition of Cis-Pt to a final concentration of 1 μg/mL. Activation of p38 MAPK was visualized by Western blot analysis. Flow cytometry was used for the estimation of cells distribution on cell cycle. Mitochondrial membrane potential (Δψm) was estimated with the use of fluorescent potential-sensitive probe TMRE (Tetramethylrhodamine Ethyl Ester).
Results: Cis-Pt applied alone at 1 μg/mL concentration failed to affect mitochondrial membrane potential in L1210R cells or cell cycle distribution as compared with untreated cells. Activation of ROS-sensitive proapoptotic p38 kinase and enhanced content of cells in subG1 phase were detected after irradiation of L1210R cells treated with 10-5M C60 fullerene. Combined treatment with photoexcited C60 fullerene and Cis-Pt was followed by the dissipation of Δψm at early-term period, blockage of cell transition into S phase, and considerable accumulation of cells in proapoptotic subG1 phase at prolonged incubation.
Conclusion: The effect of the synergic cytotoxic activity of both agents allowed to suppose that photoexcited C60 fullerene promoted Cis-Pt accumulation in leukemic cells resistant to Cis-Pt. The data obtained could be useful for the development of new approaches to overcome drug-resistance of leukemic cells.
Collapse
|
39
|
Kuznietsova H, Lynchak O, Dziubenko N, Herheliuk T, Prylutskyy Y, Rybalchenko V, Ritter U. Water-soluble pristine C 60 fullerene attenuates acetaminophen-induced liver injury. ACTA ACUST UNITED AC 2019; 9:227-237. [PMID: 31799159 PMCID: PMC6879707 DOI: 10.15171/bi.2019.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022]
Abstract
![]()
Introduction: Oxidative stress has been suggested as the main trigger and pathological mechanism of toxic liver injury. Effects of powerful free radical scavenger С60 fullerene on rat liver injury and liver cells (HepG2 line) were aimed to be discovered.
Methods: Acute liver injury (ALI) was simulated by single acetaminophen (APAP, 1000 mg/kg) administration, on a chronic CLI, by 4 weekly APAP administrations. Pristine C60 fullerene aqueous colloid solution (C60FAS; initial concentration 0.15 mg/mL) was administered per os or intraperitoneally at a dose of 0.5 mg/kg (ALI) or 0.25 mg/kg (CLI) daily for 2 or 28 days, respectively, after first APAP dose. Animals were sacrificed at 24th hour after the last dose. Biochemical markers of blood serum and liver autopsies were analyzed. EGFR expression in HepG2 cells after 48-hour incubation with C60FAS was assessed.
Results: Increase of serum conjugated and unconjugated bilirubin (up to 1.4-3.7 times), ALT (by 31-37%), and AST (by 18%) in non-treated ALI and CLI rats were observed, suggesting the hepatitis (confirmed by histological analysis). Liver morphological state (ALI, CLI), ALT (ALI and CLI), bilirubin (CLI), α-amylase, and creatinine (ALI) were normalized with C60FAS administration in both ways, which may indicate its protective impact on liver. However, unconjugated bilirubin sharply increased in ALI animals receiving C60FAS (up to 12 times compared to control), suggesting the augmentation of bilirubin metabolism. Furthermore, C60FAS inhibited EGFR expression in HepG2 cells in a dose-dependent manner.
Conclusion: C60FAS could partially correct acute and chronic toxic liver injury, however, it could not normalize bilirubin metabolism after acute exposure.
Collapse
|
40
|
Prylutska S, Grynyuk I, Skaterna T, Horak I, Grebinyk A, Drobot L, Matyshevska O, Senenko A, Prylutskyy Y, Naumovets A, Ritter U, Frohme M. Toxicity of C 60 fullerene-cisplatin nanocomplex against Lewis lung carcinoma cells. Arch Toxicol 2019; 93:1213-1226. [PMID: 30989314 DOI: 10.1007/s00204-019-02441-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Cisplatin (Cis-Pt) is the cytotoxic agent widely used against tumors of various origin, but its therapeutic efficiency is substantially limited by a non-selective effect and high toxicity. Conjugation of Cis-Pt with nanocarriers is thought to be one option to enable drug targeting. The aim of this study was to estimate toxic effects of the nanocomplex formed by noncovalent interaction of C60 fullerene with Cis-Pt against Lewis lung carcinoma (LLC) cells in comparison with free drug. Scanning tunneling microscopy showed that the minimum size of C60-Cis-Pt nanoparticles in aqueous colloid solution was 1.1 nm whereas that of C60 fullerene was 0.72 nm, thus confirming formation of the nanocomplex. The cytotoxic effect of C60-Cis-Pt nanocomplex against LLC cells was shown to be higher with IC50 values 3.3 and 4.5 times lower at 48 h and 72 h, respectively, as compared to the free drug. 12.5 µM Cis-Pt had no effect on LLC cell viability and morphology while C60-Cis-Pt nanocomplex in Cis-Pt-equivalent concentration substantially decreased the cell viability, impaired their shape and adhesion, inhibited migration and induced accumulation in proapoptotic subG1 phase. Apoptosis induced by the C60-Cis-Pt nanocomplex was confirmed by caspase 3/7 activation and externalization of phosphatidylserine on the outer surface of LLC cells with the double Annexin V-FITC/PI staining. We assume that C60 fullerene as a component of the C60-Cis-Pt nanocomplex promoted Cis-Pt entry and intracellular accumulation thus contributing to intensification of the drug's toxic effect against lung cancer cells.
Collapse
|
41
|
Melnyk MI, Ivanova IV, Dryn DO, Prylutskyy YI, Hurmach VV, Platonov M, Al Kury LT, Ritter U, Soloviev AI, Zholos AV. C 60 fullerenes selectively inhibit BK Ca but not K v channels in pulmonary artery smooth muscle cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:1-11. [PMID: 30981819 DOI: 10.1016/j.nano.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023]
Abstract
Possessing unique physical and chemical properties, C60 fullerenes are arising as a potential nanotechnological tool that can strongly affect various biological processes. Recent molecular modeling studies have shown that C60 fullerenes can interact with ion channels, but there is lack of data about possible effects of C60 molecule on ion channels expressed in smooth muscle cells (SMC). Here we show both computationally and experimentally that water-soluble pristine C60 fullerene strongly inhibits the large conductance Ca2+-dependent K+ (BKCa), but not voltage-gated K+ (Kv) channels in pulmonary artery SMC. Both molecular docking simulations and analysis of single channel activity indicate that C60 fullerene blocks BKCa channel pore in its open state. In functional tests, C60 fullerene enhanced phenylephrine-induced contraction of pulmonary artery rings by about 25% and reduced endothelium-dependent acetylcholine-induced relaxation by up to 40%. These findings suggest a novel strategy for biomedical application of water-soluble pristine C60 fullerene in vascular dysfunction.
Collapse
|
42
|
Grebinyk A, Prylutska S, Grebinyk S, Prylutskyy Y, Ritter U, Matyshevska O, Dandekar T, Frohme M. Correction to: Complexation with C 60 Fullerene Increases Doxorubicin Efficiency against Leukemic Cells In Vitro. NANOSCALE RESEARCH LETTERS 2019; 14:91. [PMID: 30868449 PMCID: PMC6419633 DOI: 10.1186/s11671-019-2917-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Following publication of the original article [1], the authors flagged that there was unfortunately an error with Fig. 3 of the article.
Collapse
|
43
|
Grebinyk A, Prylutska S, Grebinyk S, Prylutskyy Y, Ritter U, Matyshevska O, Dandekar T, Frohme M. Complexation with C 60 Fullerene Increases Doxorubicin Efficiency against Leukemic Cells In Vitro. NANOSCALE RESEARCH LETTERS 2019; 14:61. [PMID: 30788638 PMCID: PMC6382919 DOI: 10.1186/s11671-019-2894-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/06/2019] [Indexed: 05/06/2023]
Abstract
Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C60 fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells.Here, we studied the physicochemical properties and anticancer activity of C60 fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C60-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed ≤ 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C60 fullerene considerable nanocarrier function.The results of this study indicated that C60 fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells.
Collapse
|
44
|
Sukhodub L, Sukhodub L, Prylutskyy Y, Strutynska N, Vovchenko L, Soroca V, Slobodyanik N, Tsierkezos N, Ritter U. Composite material based on hydroxyapatite and multi-walled carbon nanotubes filled by iron: Preparation, properties and drug release ability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:606-614. [DOI: 10.1016/j.msec.2018.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023]
|
45
|
Byelinska I, Kuznietsova H, Dziubenko N, Lynchak O, Rybalchenko T, Prylutskyy Y, Kyzyma O, Ivankov O, Rybalchenko V, Ritter U. Effect of С60 fullerenes on the intensity of colon damage and hematological signs of ulcerative colitis in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:505-517. [DOI: 10.1016/j.msec.2018.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 07/06/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
|
46
|
Zavodovskyi DO, Zay SY, Matvienko TY, Prylutskyy YI, Nurishchenko NY, Paradizova SS, Bezuh LL, Ritter U, Scharff P. Influence of C(60) fullerene on the ischemia-reperfusion injury in the skeletal muscle of rat limb: mechanokinetic and biochemical analysis. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.06.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Skivka LM, Prylutska SV, Rudyk MP, Khranovska NM, Opeida IV, Hurmach VV, Prylutskyy YI, Sukhodub LF, Ritter U. C 60 fullerene and its nanocomplexes with anticancer drugs modulate circulating phagocyte functions and dramatically increase ROS generation in transformed monocytes. Cancer Nanotechnol 2018; 9:8. [PMID: 30416604 PMCID: PMC6208740 DOI: 10.1186/s12645-017-0034-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/25/2017] [Indexed: 12/16/2022] Open
Abstract
Background C60 fullerene-based nanoformulations are proposed to have a direct toxic effect on tumor cells. Previous investigations demonstrated that C60 fullerene used alone or being conjugated with chemotherapeutic agents possesses a potent anticancer activity. The main aim of this study was to investigate the effect of C60 fullerene and its nanocomplexes with anticancer drugs on human phagocyte metabolic profile in vitro. Methods Analysis of the metabolic profile of phagocytes exposed to C60 fullerene in vitro revealed augmented phagocytic activity and down-regulated reactive nitrogen species generation in these cells. Additionally, cytofluorimetric analysis showed that C60 fullerene can exert direct cytotoxic effect on normal and transformed phagocytes through the vigorous induction of intracellular reactive oxygen species generation. Results Cytotoxic action as well as the pro-oxidant effect of C60 fullerene was more pronounced toward malignant phagocytes. At the same time, C60 fullerenes have the ability to down-regulate the pro-oxidant effect of cisplatin on normal cells. These results indicate that C60 fullerenes may influence phagocyte metabolism and have both pro-oxidant and antioxidant properties. Conclusions The antineoplastic effect of C60 fullerene has been observed by direct toxic effect on tumor cells, as well as through the modulation of the functions of effector cells of antitumor immunity.
Collapse
|
48
|
Blazquez R, Wlochowitz D, Wolff A, Seitz S, Wachter A, Perera-Bel J, Bleckmann A, Beißbarth T, Salinas G, Riemenschneider MJ, Proescholdt M, Evert M, Utpatel K, Siam L, Schatlo B, Balkenhol M, Stadelmann C, Schildhaus HU, Korf U, Reinz E, Wiemann S, Vollmer E, Schulz M, Ritter U, Hanisch UK, Pukrop T. PI3K: A master regulator of brain metastasis-promoting macrophages/microglia. Glia 2018; 66:2438-2455. [PMID: 30357946 DOI: 10.1002/glia.23485] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
Mutations and activation of the PI3K signaling pathway in breast cancer cells have been linked to brain metastases. However, here we describe that in some breast cancer brain metastases samples the protein expression of PI3K signaling components is restricted to the metastatic microenvironment. In contrast to the therapeutic effects of PI3K inhibition on the breast cancer cells, the reaction of the brain microenvironment is less understood. Therefore we aimed to quantify the PI3K pathway activity in breast cancer brain metastasis and investigate the effects of PI3K inhibition on the central nervous system (CNS) microenvironment. First, to systematically quantify the PI3K pathway activity in breast cancer brain metastases, we performed a prospective biomarker study using a reverse phase protein array (RPPA). The majority, namely 30 out of 48 (62.5%) brain metastatic tissues examined, revealed high PI3K signaling activity that was associated with a median overall survival (OS) of 9.41 months, while that of patients, whose brain metastases showed only moderate or low PI3K activity, amounted to only 1.93 and 6.71 months, respectively. Second, we identified PI3K as a master regulator of metastasis-promoting macrophages/microglia during CNS colonization; and treatment with buparlisib (BKM120), a pan-PI3K Class I inhibitor with a good blood-brain-barrier penetrance, reduced their metastasis-promoting features. In conclusion, PI3K signaling is active in the majority of breast cancer brain metastases. Since PI3K inhibition does not only affect the metastatic cells but also re-educates the metastasis-promoting macrophages/microglia, PI3K inhibition may hold considerable promise in the treatment of brain metastasis and the respective microenvironment.
Collapse
|
49
|
Matvienko T, Sokolova V, Prylutska S, Harahuts Y, Kutsevol N, Kostjukov V, Evstigneev M, Prylutskyy Y, Epple M, Ritter U. In vitro study of the anticancer activity of various doxorubicin-containing dispersions. BIOIMPACTS : BI 2018; 9:57-63. [PMID: 30788260 PMCID: PMC6378100 DOI: 10.15171/bi.2019.07] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 01/30/2023]
Abstract
Introduction: The aim of this research was to study the impact of various doxorubicin (Dox)-containing nanofluids, e.g. singlewalled carbon nanotube (SWCNT)+Dox, graphene oxide (GO)+Dox and DextranPNIPAM (copolymer)+Dox mixtures on HeLa cells (human transformed cervix epithelial cells, as a model for cancer cells) depending on their concentration. Methods: Structural analysis of GO+Dox complex was accomplished using Hartree-Fock level of theory in 6-31G** basis set in Gaussian. Dynamic light scattering (DLS), zeta-potential, scanning electron microscopy and confocal laser scanning microscopy were used. The cell viability was analyzed by the MTT assay. Results: The viability of HeLa cells was studied with the MTT assay after the incubation with various Dox-containing dispersions depending on their concentration. The size of the particles was determined by DLS. The morphology of the nanoparticles (NPs) was studied by scanning electron microscopy and their uptake into cells was visualized by confocal laser scanning microscopy. It was found that the Dextran-PNIPAM+Dox nanofluid in contrast to Dox alone showed higher toxicity towards HeLa cells up to 80% after 24 hours of incubation, whereas the SWCNT+Dox and GO+Dox nanofluids at the same concentrations protected cells from Dox. Conclusion: The importance of Dextran-PNIPAM copolymer as a universal platform for drug delivery was established, and the huge potential of Dextran-PNIPAM+Dox NPs as novel anticancer agents was noted. Based on the in vitro study of the SWCNT+Dox and GO+Dox nanofluids, it was concluded that SWCNT and GO NPs can be effective cytoprotectors against the highly toxic drugs.
Collapse
|
50
|
Tsierkezos NG, Ritter U, Nugraha Thaha Y, Knauer A, Fernandes D, Kelarakis A, McCarthy EK. Boron-doped multi-walled carbon nanotubes as sensing material for analysis of dopamine and epinephrine in presence of uric acid. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|