26
|
Tao J, Huang Y, Li Y, Dai W. Platelet-to-lymphocyte ratio and serum hsCRP levels in third trimester and adverse pregnancy outcomes in women with gestational diabetes mellitus. Sci Rep 2023; 13:20963. [PMID: 38017249 PMCID: PMC10684644 DOI: 10.1038/s41598-023-48371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a major complication of pregnancy. GDM is associated with a higher risk of adverse pregnancy outcomes (APO). The purpose of this study was to assess the association between third-trimester platelet to lymphocyte ratio (PLR) and high-sensitivity C-reactive protein (hsCRP) concentration and the risk of APO in GDM pregnant women. This study selected 406 non-elderly gestational diabetes patients diagnosed in the Renmin Hospital of Wuhan University from May 2021 to February 2023 as the research objects. According to the presence or absence of APO, they were divided into an APO group (n = 171) and a non-APO group (n = 235). Logistic regression model to evaluate the correlation between PLR and hsCRP and APO in women with GDM; Restricted cubic spline analyses was used to explore nonlinear correlations between PLR or hsCRP and the risk of APO; ROC curve analysis of the diagnostic performance of PLR and hsCRP for APO in women with GDM. APO occurred in 171 of the 406 included participants. Compared with the non-APO group, patients in the APO group had higher PLR and hsCRP levels. The incidence of APO was positively associated with PLR and the hsCRP level in each logistic regression model (P < 0.05). After adjusting for all the risk factors included in this study, restricted cubic spline analyses found that the PLR and the hsCRP level were positively associated with the risk of APO. The levels of PLR and hsCRP in the third trimester are related to the occurrence of APO in women with GDM, and high levels of PLR and hsCRP may indicate the occurrence of APO.
Collapse
|
27
|
Dai W, Castleberry M, Zheng Z. Tale of two systems: the intertwining duality of fibrinolysis and lipoprotein metabolism. J Thromb Haemost 2023; 21:2679-2696. [PMID: 37579878 PMCID: PMC10599797 DOI: 10.1016/j.jtha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Fibrinolysis is an enzymatic process that breaks down fibrin clots, while dyslipidemia refers to abnormal levels of lipids and lipoproteins in the blood. Both fibrinolysis and lipoprotein metabolism are critical mechanisms that regulate a myriad of functions in the body, and the imbalance of these mechanisms is linked to the development of pathologic conditions, such as thrombotic complications in atherosclerotic cardiovascular diseases. Accumulated evidence indicates the close relationship between the 2 seemingly distinct and complicated systems-fibrinolysis and lipoprotein metabolism. Observational studies in humans found that dyslipidemia, characterized by increased blood apoB-lipoprotein and decreased high-density lipoprotein, is associated with lower fibrinolytic potential. Genetic variants of some fibrinolytic regulators are associated with blood lipid levels, supporting a causal relationship between these regulators and lipoprotein metabolism. Mechanistic studies have elucidated many pathways that link the fibrinolytic system and lipoprotein metabolism. Moreover, profibrinolytic therapies improve lipid panels toward an overall cardiometabolic healthier phenotype, while some lipid-lowering treatments increase fibrinolytic potential. The complex relationship between lipoprotein and fibrinolysis warrants further research to improve our understanding of the bidirectional regulation between the mediators of fibrinolysis and lipoprotein metabolism.
Collapse
|
28
|
Dai J, Dai W, Li WQ. Trends in physical activity and sedentary time among U.S. adults with diabetes: 2007-2020. Diabetes Metab Syndr 2023; 17:102874. [PMID: 37813070 DOI: 10.1016/j.dsx.2023.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
AIMS To examine temporal trends in physical activity and sedentary time among U.S. adults with diabetes from 2007 to 2020. METHODS We performed serial cross-sectional analyses for participants aged ≥ 20 years with diagnosed diabetes from the U.S. National Health and Nutrition Examination Survey from 2007 to 2020. Participants completed the Global Physical Activity Questionnaire. RESULTS The analytic sample comprised 5096 adults with diabetes (mean age: 60.3 years; 48.2% females; 60.1% White people; mean body mass index: 33.0 kg/m2). From 2007-2008 through 2017-March 2020, the proportion of being physically sufficiently active increased from 41.5% (95% CI, 35.9%-47.2%) to 55.8% (95% CI, 51.3%-60.3%) (P-trend<0.001), whereas that of physical inactivity declined from 43.7% (95% CI, 38.1%-49.2%) to 31.0% (95% CI, 27.7%-34.3%) (P-trend<0.001). The decline was driven by increasing engagement in work-related and leisure-time activity. However, engagement in transportation-related activity stayed persistently low (16.7% [95% CI, 14.8%-18.8%] in 2017-March 2020) (P-trend = 0.25), and the mean daily sitting hours remained unaltered (6.2 [95% CI, 5.9-6.5] in 2017-March 2020) (P-trend = 0.60). Adults who were middle-aged or older, or with class III obesity, cardiovascular or chronic kidney concomitants were less likely to be sufficiently active and prone to prolonged sitting. CONCLUSIONS Physical activity levels in U.S. adults with diabetes have increased from 2007 to 2020, but about one in two remains inactive or insufficiently active. Sedentary time has not decreased. For diabetes management, nationwide efforts are needed to promote transportation-related physical activity while minimizing prolonged sitting, especially among those who are middle-aged or older, or with severe obesity or other complications.
Collapse
|
29
|
Xie F, Mao Z, Curran DP, Liang H, Dai W. Facile Borylation of Alkenes, Alkynes, Imines, Arenes and Heteroarenes with N-Heterocyclic Carbene-Boranes and a Heterogeneous Semiconductor Photocatalyst. Angew Chem Int Ed Engl 2023; 62:e202306846. [PMID: 37555790 DOI: 10.1002/anie.202306846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Although the development of radical chain and photocatalytic borylation reactions using N-heterocyclic carbene (NHC)-borane as boron source is remarkable, the persistent problems, including the use of hazardous and high-energy radical initiators or the recyclability and photostability issues of soluble homogeneous photocatalysts, still leave great room for further development in a sustainable manner. Herein, we report a conceptually different approach toward highly functionalized organoborane synthesis by using recoverable ultrathin cadmium sulfide (CdS) nanosheets as a heterogeneous photocatalyst, and a general and mild borylation platform that enables regioselective borylation of a wide variety of alkenes (arylethenes, trifluoromethylalkenes, α,β-unsaturated carbonyl compounds and nitriles), alkynes, imines and electron-poor aromatic rings with NHC-borane as boryl radical precursor. Mechanistic studies and density functional theory (DFT) calculations reveal that both photogenerated electrons and holes on the CdS fully perform their own roles, thereby resulting in enhancement of photocatalytic activity and stability of CdS.
Collapse
|
30
|
Li Y, Luo H, Wang S, Li L, Li G, Dai W. Cobalt nanoparticles-catalyzed aerobic oxygenation and esterification of alkynes via C≡C bonds cleavage. iScience 2023; 26:107608. [PMID: 37664625 PMCID: PMC10470385 DOI: 10.1016/j.isci.2023.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
An unprecedented efficient protocol is developed for the oxidative cleavage of C≡C bonds in alkynes to produce structure-diverse esters using heterogeneous cobalt nanoparticles as catalyst with molecular oxygen as the oxidant. A diverse set of mono- and multisubstituted aromatic and aliphatic alkynes can be effectively cleaved and converted into the corresponding esters. Characterization analysis and control experiments indicate high surface area and pore volume, as well as nanostructured nitrogen-doped graphene-layer coated cobalt nanoparticles are possibly responsible for excellent catalytic activity. Mechanistic studies reveal that ketones derived from alkynes under oxidative conditions are formed as intermediates, which subsequently are converted to esters through a tandem sequential process. The catalyst can be recycled up to five times without significant loss of activity.
Collapse
|
31
|
Dai W, Zhang H, Lund H, Zhang Z, Castleberry M, Rodriguez M, Kuriakose G, Gupta S, Lewandowska M, Powers HR, Valmiki S, Zhu J, Shapiro AD, Hussain MM, López JA, Sorci-Thomas MG, Silverstein RL, Ginsberg HN, Sahoo D, Tabas I, Zheng Z. Intracellular tPA-PAI-1 interaction determines VLDL assembly in hepatocytes. Science 2023; 381:eadh5207. [PMID: 37651538 PMCID: PMC10697821 DOI: 10.1126/science.adh5207] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Apolipoprotein B (apoB)-lipoproteins initiate and promote atherosclerotic cardiovascular disease. Plasma tissue plasminogen activator (tPA) activity is negatively associated with atherogenic apoB-lipoprotein cholesterol levels in humans, but the mechanisms are unknown. We found that tPA, partially through the lysine-binding site on its Kringle 2 domain, binds to the N terminus of apoB, blocking the interaction between apoB and microsomal triglyceride transfer protein (MTP) in hepatocytes, thereby reducing very-low-density lipoprotein (VLDL) assembly and plasma apoB-lipoprotein cholesterol levels. Plasminogen activator inhibitor 1 (PAI-1) sequesters tPA away from apoB and increases VLDL assembly. Humans with PAI-1 deficiency have smaller VLDL particles and lower plasma levels of apoB-lipoprotein cholesterol. These results suggest a mechanism that fine-tunes VLDL assembly by intracellular interactions among tPA, PAI-1, and apoB in hepatocytes.
Collapse
|
32
|
Zhang Z, Dai W, Zhu W, Rodriguez M, Lund H, Xia Y, Chen Y, Rau M, Schneider EA, Graham MB, Jobe S, Wang D, Cui W, Wen R, Whiteheart SW, Wood JP, Silverstein R, Berger JS, Kreuziger LB, Barrett TJ, Zheng Z. Plasma tissue-type plasminogen activator is associated with lipoprotein(a) and clinical outcomes in hospitalized patients with COVID-19. Res Pract Thromb Haemost 2023; 7:102164. [PMID: 37680312 PMCID: PMC10480648 DOI: 10.1016/j.rpth.2023.102164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 09/09/2023] Open
Abstract
Background Patients with COVID-19 have a higher risk of thrombosis and thromboembolism, but the underlying mechanism(s) remain to be fully elucidated. In patients with COVID-19, high lipoprotein(a) (Lp(a)) is positively associated with the risk of ischemic heart disease. Lp(a), composed of an apoB-containing particle and apolipoprotein(a) (apo(a)), inhibits the key fibrinolytic enzyme, tissue-type plasminogen activator (tPA). However, whether the higher Lp(a) associates with lower tPA activity, the longitudinal changes of these parameters in hospitalized patients with COVID-19, and their correlation with clinical outcomes are unknown. Objectives To assess if Lp(a) associates with lower tPA activity in COVID-19 patients, and how in COVID-19 populations Lp(a) and tPA change post infection. Methods Endogenous tPA enzymatic activity, tPA or Lp(a) concentration were measured in plasma from hospitalized patients with and without COVID-19. The association between plasma tPA and adverse clinical outcomes was assessed. Results In hospitalized patients with COVID-19, we found lower tPA enzymatic activity and higher plasma Lp(a) than that in non-COVID-19 controls. During hospitalization, Lp(a) increased and tPA activity decreased, which associates with mortality. Among those who survived, Lp(a) decreased and tPA enzymatic activity increased during recovery. In patients with COVID-19, tPA activity is inversely correlated with tPA concentrations, thus, in another larger COVID-19 cohort, we utilized plasma tPA concentration as a surrogate to inversely reflect tPA activity. The tPA concentration was positively associated with death, disease severity, plasma inflammatory, and prothrombotic markers, and with length of hospitalization among those who were discharged. Conclusion High Lp(a) concentration provides a possible explanation for low endogenous tPA enzymatic activity, and poor clinical outcomes in patients with COVID-19.
Collapse
|
33
|
Zhang R, Nie Y, Dai W, Wang S, Geng X. Balance between pallidal neural oscillations correlated with dystonic activity and severity. Neurobiol Dis 2023:106178. [PMID: 37268239 DOI: 10.1016/j.nbd.2023.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The balance between neural oscillations provides valuable insights into the organisation of neural oscillations related to brain states, which may play important roles in dystonia. We aim to investigate the relationship of the balance in the globus pallidus internus (GPi) with the dystonic severity under different muscular contraction conditions. METHODS Twenty-one patients with dystonia were recruited. All of them underwent bilateral GPi implantation, and local field potentials (LFPs) from the GPi were recorded via simultaneous surface electromyography. The power spectral ratio between neural oscillations was computed as the measure of neural balance. This ratio was calculated under high and low dystonic muscular contraction conditions, and its correlation with the dystonic severity was assessed using clinical scores. RESULTS The power spectral of the pallidal LFPs peaked in the theta and alpha bands. Within participant comparison showed that the power spectral of the theta oscillations significantly increased during high muscle contraction compared with that during low contraction. The power spectral ratios between the theta and alpha, theta and low beta, and theta and high gamma oscillations were significantly higher during high contraction than during low contraction. The total score and motor score were associated with the power spectral ratio between the low and high beta oscillations, which was correlated with the dystonic severity both during high and low contractions. The power spectral ratios between the low beta and low gamma and between the low beta and high gamma oscillations showed a significantly positive correlation with the total score during both high and low contractions; a correlation with the motor scale score was found only during high contraction. Meanwhile, the power spectral ratio between the theta and alpha oscillations during low contraction showed a significantly negative correlation with the total score. The power spectral ratios between the alpha and high beta, alpha and low gamma, and alpha and high gamma oscillations were significantly correlated with the dystonic severity only during low contraction. CONCLUSION The balance between neural oscillations, as quantified by the power ratio between specific frequency bands, differed between the high and low muscular contraction conditions and was correlated with the dystonic severity. The balance between the low and high beta oscillations was correlated with the dystonic severity during both conditions, making this parameter a new possible biomarker for closed-loop deep brain stimulation in patients with dystonia.
Collapse
|
34
|
Ouyang S, Yao Z, Dai W, Liu Y, Liu P, Luo J. Comparison of hospital delivery costs between cesarean section and natural delivery and analysis of influencing factors. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:733-742. [PMID: 37539576 PMCID: PMC10930408 DOI: 10.11817/j.issn.1672-7347.2023.220385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 08/05/2023]
Abstract
OBJECTIVES The increasing costs of hospital delivery have increased the economic burden of pregnant women, and the mode of delivery is the main factor affecting the costs of hospital delivery. This study aims to explore the difference in costs between cesarean section and natural delivery, and to provide reference for controlling the increase of hospital delivery costs. METHODS The data of inpatient delivery in the Hunan Maternal and Child Health Care Hospital from January 2016 to December 2020 were selected to compare the total inpatient costs and average daily costs of cesarean section and natural delivery. The linear trend model was used to analyze the trend change of inpatient delivery costs and the generalized linear model was used to analyze the influential factors for inpatient delivery costs. RESULTS The average hospitalization costs of cesarean section (10 447.25 yuan) were higher than that of natural delivery (5 567.95 yuan), and the average daily costs of cesarean section (1 902.57 yuan) were higher than those of natural delivery (1 666.40 yuan). There was no significant increase or decrease in trend for cesarean section, while the average annual growth rate of the costs of natural delivery was 11.79%. The main factors affecting the hospitalization costs of cesarean section and natural delivery included age, occupation, medical insurance, route of admission, length of stay, premature delivery and complications (all P<0.05). CONCLUSIONS The total hospitalization costs and average daily costs of cesarean section are higher than those of natural delivery, but the costs of natural delivery show a faster growth trend, and the hospitalization costs of cesarean section and natural delivery should be controlled by targeted measures.
Collapse
|
35
|
Luo H, Tian S, Liang H, Wang H, Gao S, Dai W. Oxidative cleavage and ammoxidation of organosulfur compounds via synergistic Co-Nx sites and Co nanoparticles catalysis. Nat Commun 2023; 14:2981. [PMID: 37221164 DOI: 10.1038/s41467-023-38614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
The cleavage and functionalization of C-S bonds have become a rapidly growing field for the design or discovery of new transformations. However, it is usually difficult to achieve in a direct and selective fashion due to the intrinsic inertness and catalyst-poisonous character. Herein, for the first time, we report a novel and efficient protocol that enables direct oxidative cleavage and cyanation of organosulfur compounds by heterogeneous nonprecious-metal Co-N-C catalyst comprising graphene encapsulated Co nanoparticles and Co-Nx sites using oxygen as environmentally benign oxidant and ammonia as nitrogen source. A wide variety of thiols, sulfides, sulfoxides, sulfones, sulfonamides, and sulfonyl chlorides are viable in this reaction, enabling access to diverse nitriles under cyanide-free conditions. Moreover, modifying the reaction conditions also allows for the cleavage and amidation of organosulfur compounds to deliver amides. This protocol features excellent functional group tolerance, facile scalability, cost-effective and recyclable catalyst, and broad substrate scope. Characterization and mechanistic studies reveal that the remarkable effectiveness of the synergistic catalysis of Co nanoparticles and Co-Nx sites is crucial for achieving outstanding catalytic performance.
Collapse
|
36
|
Dai W, Yao ZZ, Ou-Yang SS, Xu NA, Zhou HX, Li XW, Zhong Y, Luo JY. [A cross-sectional study on the prevalence rate and influencing factors of non-alcoholic fatty liver disease in overweight/obese children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:448-456. [PMID: 37272169 PMCID: PMC10247205 DOI: 10.7499/j.issn.1008-8830.2211018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
OBJECTIVES To investigate the prevalence rate of non-alcoholic fatty liver disease (NAFLD) in overweight/obese children who visit a hospital, and to explore the influencing factors of NAFLD, in order to provide a basis for the prevention of NAFLD in overweight/obese children. METHODS Overweight/obese children who visited Hunan Children's Hospital from June 2019 to September 2021 were recruited. The prevalence rate of NAFLD was examined. Logistic regression analysis was used to explore the factors influencing the development of NAFLD [non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH)]. Receiver operating characteristic curve analysis was used to evaluate the predictive value of the influencing factors for NAFL and NASH. RESULTS A total of 844 overweight/obese children aged 6-17 years were enrolled. The prevalence rate of NAFLD in overweight/obese children was 38.2% (322/844), among which the prevalence rates of NAFL and NASH were 28.8% (243/844) and 9.4% (79/844), respectively. Multivariate logistic regression analysis showed that the increase of waist-to-hip ratio (WHR) and low high-density lipoprotein cholesterol (HDL-C) were associated with the development of NAFL and NASH (P<0.05). The receiver operating characteristic curve analysis showed that the combined measurement of WHR and HDL-C had a predictive value for NAFL (area under the curve: 0.653, 95%CI: 0.613-0.694), and for NASH (area under the curve: 0.771, 95%CI: 0.723-0.819). CONCLUSIONS The prevalence rate of NAFLD in overweight/obese children who visit a hospital is high. WHR and HDL-C are associated with the development of NAFLD and the combined measurement of WHR and HDL-C has a certain value for predicating the development of NAFLD.
Collapse
|
37
|
Yao ZZ, Yan JX, Xu NA, Kang RT, Li XW, Zhou HX, Dai W, Ouyang SS, Liu YX, Luo JY, Zhong Y. [Study on related factors and characteristics of multimorbidity of overweight and obesity-related diseases in children in Hunan Province]. ZHONGHUA YU FANG YI XUE ZA ZHI [CHINESE JOURNAL OF PREVENTIVE MEDICINE] 2023; 57:747-752. [PMID: 37165822 DOI: 10.3760/cma.j.cn112150-20220707-00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
From January 2019 to December 2021, overweight and obese children who visited in health outpatient Center of Hunan Children's Hospital were studied to explore and analyze the rate, related factors and patterns of multimorbidity of overweight and obesity-related diseases in children in Hunan Province. Univariate and multivariate logistic regression models were used to analyze the multimorbidity-related factors of overweight and obesity-related diseases in children. Association rules (apriori algorithm) were used to explore the multimorbidity patterns of overweight and obesity-related diseases in children. A total of 725 overweight and obese children were included in this study. The multimorbidity rate of overweight and obesity-related diseases in children was 46.07% (334/725). Age, waist circumference, the frequency of food consumption such as hamburgers and fries and adding meals before bedtime were multimorbidity-related factors of overweight and obesity-related diseases in children. The multimorbidity associated with nonalcoholic fatty liver disease (NAFLD) was relatively common. The patterns with the top three support degrees were "NAFLD+dyslipidemia","NAFLD+hypertension" and "NAFLD+hyperuricemia". The patterns with the top three confidence and elevation degrees were "Hypertension+dyslipidemia => NAFLD","Hyperuricemia => NAFLD" and "NAFLD+hypertension => dyslipidemia".
Collapse
|
38
|
Xu J, Dai W, Goldberg J, Shah P, Hu I, Chen C, deFilippi C, Sun J. Explainable Machine Learning to Improve Donor-Recipient Matching at Time of Heart Transplant. J Heart Lung Transplant 2023. [DOI: 10.1016/j.healun.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
39
|
Chen L, Liu TH, Wang X, Wang Y, Cui X, Yan Q, Lv L, Ying J, Gao J, Han M, Yu J, Song C, Gao J, Sun R, Xue C, Jiang N, Deng T, Nishimura K, Yang R, Lin CT, Dai W. Near-Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap-Filling Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211100. [PMID: 36929098 DOI: 10.1002/adma.202211100] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat transfer issue. Due to their natural two-dimensional structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high-performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m-1 K-1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by "bottom-up" processes (e. g., solution-based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20 - 65% of the theoretical value. Here, a "top-down" strategy by splitting highly purified Ag foil with nanoscale thickness was adopted to prepare two-dimensional Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m-1 K-1 , reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibited a thermal conductivity of 15.1 W m-1 K-1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat-transfer efficiency of our Ag/epoxy achieved ≈ 1.4 times that of the state-of-the-art commercial TCA. This article is protected by copyright. All rights reserved.
Collapse
|
40
|
Li M, Dai W, Fan M, Qian W, Yang X, Tao Y, Zhao C. Combining Deep Learning and Hydrological Analysis for Identifying Check Dam Systems from Remote Sensing Images and DEMs in the Yellow River Basin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4636. [PMID: 36901649 PMCID: PMC10002097 DOI: 10.3390/ijerph20054636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Identifying and extracting check dams is of great significance for soil and water conservation, agricultural management, and ecological assessment. In the Yellow River Basin, the check dam, as a system, generally comprises dam locations and dam-controlled areas. Previous research, however, has focused on dam-controlled areas and has not yet identified all elements of check dam systems. This paper presents a method for automatically identifying check dam systems from digital elevation model (DEM) and remote sensing images. We integrated deep learning and object-based image analysis (OBIA) methods to extract the dam-controlled area's boundaries, and then extracted the location of the check dam using the hydrological analysis method. A case study in the Jiuyuangou watershed shows that the precision and recall of the proposed dam-controlled area extraction approach are 98.56% and 82.40%, respectively, and the F1 score value is 89.76%. The completeness of the extracted dam locations is 94.51%, and the correctness is 80.77%. The results show that the proposed method performs well in identifying check dam systems and can provide important basic data for the analysis of spatial layout optimization and soil and water loss assessment.
Collapse
|
41
|
Liang T, Dai W, Zhang Z, Bempah G, Shi L, Lu C. Altitudinal gradients and body size variation among Chinese lizards in different terrains. J Zool (1987) 2023. [DOI: 10.1111/jzo.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
42
|
Ma GC, Zou LL, Dai W, Wang ZZ, Cao YH. The association between glucose fluctuation with sarcopenia in elderly patients with type 2 diabetes mellitus. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2023; 27:1912-1920. [PMID: 36930518 DOI: 10.26355/eurrev_202303_31557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Growing evidence shows that sarcopenia is more prevalent in patients with type 2 diabetes mellitus (T2DM) than in the normal population. However, currently, data on the relationship between blood glucose fluctuation and sarcopenia in elderly patients with T2DM are still limited. PATIENTS AND METHODS In this study, 280 patients ≥ 60 years with T2DM were divided into sarcopenic group and non-sarcopenic group, according to the diagnostic criteria of the 2019 Asian Working Group for Sarcopenia. They wore MeiQi to acquire the indexes including time in range (TIR), time above range (TAR), time below range (TBR), mean amplitude of glycemic excursion (MAGE), coefficient of Variation (CV), blood glucose standard deviation (SD), largest amplitude of glycemic excursions (LAGE) and mean glucose (MG). The prevalence rate of sarcopenia was statistically analyzed and the different indicators of glucose fluctuation between the two groups were compared. We analyzed the indexes of glucose fluctuation and appendicular skeletal muscle mass index (ASMI), handgrip strength, the time of five times sit to stand test (FTSST) with Spearman's correlation analysis. Logistic regression was used to analyze the influence factors for sarcopenia. RESULTS The prevalence of sarcopenia was 15.36%. TIR, MG and TAR were correlated with ASMI, handgrip strength, the time of FTSST. MG and TAR were risk factors for sarcopenia, while TIR was the protective factor of sarcopenia. After adjusting mixing factors, logistic regression analysis showed that TIR was an independent protective factor. The result of the Chi-square test showed that the incidence of sarcopenia in different TIR ranges was different: the proportion of patients with sarcopenia was 40.48% (TIR ≤50%), 20.41% (50%<TIR≤70%) and 8.47% (TIR >70%). CONCLUSIONS TIR is associated with sarcopenia in elderly T2DM patients. Furtherly, the incidence rate of sarcopenia decreases with the increase of TIR.
Collapse
|
43
|
Chen B, Zhang L, Luo H, Huang L, He P, Xue G, Liang H, Dai W. Oxidative Cleavage and Ammoxidation of Unsaturated Hydrocarbons via Heterogeneous Auto-Tandem Catalysis. JACS AU 2023; 3:476-487. [PMID: 36873692 PMCID: PMC9975833 DOI: 10.1021/jacsau.2c00608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 05/31/2023]
Abstract
The oxidative cleavage and functionalization of unsaturated C-C bonds are important processes for synthesis of carbonyl compounds from hydrocarbon feedstocks, yet there has been no report of direct amidation of unsaturated hydrocarbons via an oxidative cleavage of unsaturated C-C bonds with molecular oxygen as an environmentally benign oxidant. Herein, for the first time, we describe a manganese oxide-catalyzed auto-tandem catalysis strategy that enables direct synthesis of amides from unsaturated hydrocarbons by coupling oxidative cleavage with amidation. With oxygen as an oxidant and ammonia as a nitrogen source, a wide range of structurally diverse mono- and multisubstituted activated and unactivated alkenes or alkynes can smoothly undergo unsaturated C-C bond cleavage to deliver one- or multiple-carbon shorter amides. Moreover, a slight modification of the reaction conditions also allows for the direct synthesis of sterically hindered nitriles from alkenes or alkynes. This protocol features excellent functional group tolerance, a broad substrate scope, flexible late-stage functionalization, facile scalability, and a cost-effective and recyclable catalyst. Detailed characterizations reveal that the high activity and selectivity of the manganese oxides are attributed to the large specific surface area, abundant oxygen vacancies, better reducibility, and moderate acid sites. Mechanistic studies and density functional theory calculations indicate that the reaction proceeds through divergent pathways depending on the structure of substrates.
Collapse
|
44
|
Lv L, Ying J, Chen L, Tao P, Sun L, Yang K, Fu L, Yu J, Yan Q, Dai W, Jiang N, Lin CT. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:793. [PMID: 36903671 PMCID: PMC10005576 DOI: 10.3390/nano13050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
With the increase in heat power density in modern integrating electronics, thermal interface materials (TIM) that can efficiently fill the gaps between the heat source and heat sinks and enhance heat dissipation are urgently needed owing to their high thermal conductivity and excellent mechanical durability. Among all the emerged TIMs, graphene-based TIMs have attracted increasing attention because of the ultrahigh intrinsic thermal conductivity of graphene nanosheets. Despite extensive efforts, developing high-performance graphene-based papers with high through-plane thermal conductivity remains challenging despite their high in-plane thermal conductivity. In this study, a novel strategy for enhancing the through-plane thermal conductivity of graphene papers by in situ depositing AgNWs on graphene sheets (IGAP) was proposed, which could boost the through-plane thermal conductivity of the graphene paper up to 7.48 W m-1 K-1 under packaging conditions. In the TIM performance test under actual and simulated operating conditions, our IGAP exhibits strongly enhanced heat dissipation performance compared to the commercial thermal pads. We envision that our IGAP as a TIM has great potential for boosting the development of next-generation integrating circuit electronics.
Collapse
|
45
|
Wei J, Dai W, Pan X, Zhong Y, Xu N, Ye P, Wang J, Li J, Yang F, Luo J, Luo M. Identifying the Novel Gut Microbial Metabolite Contributing to Metabolic Syndrome in Children Based on Integrative Analyses of Microbiome-Metabolome Signatures. Microbiol Spectr 2023; 11:e0377122. [PMID: 36794949 PMCID: PMC10101147 DOI: 10.1128/spectrum.03771-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The pathogenesis of gut microbiota and their metabolites in the development of metabolic syndrome (MS) remains unclear. This study aimed to evaluate the signatures of gut microbiota and metabolites as well as their functions in obese children with MS. A case-control study was conducted based on 23 MS children and 31 obese controls. The gut microbiome and metabolome were measured using 16S rRNA gene amplicon sequencing and liquid chromatography-mass spectrometry. An integrative analysis was conducted, combining the results of the gut microbiome and metabolome with extensive clinical indicators. The biological functions of the candidate microbial metabolites were validated in vitro. We identified 9 microbiota and 26 metabolites that were significantly different from the MS and the control group. The clinical indicators of MS were correlated with the altered microbiota Lachnoclostridium, Dialister, and Bacteroides, as well as with the altered metabolites all-trans-13,14-dihydroretinol, DL-dipalmitoylphosphatidylcholine (DPPC), LPC 24: 1, PC (14:1e/10:0), and 4-phenyl-3-buten-2-one, etc. The association network analysis further identified three MS-linked metabolites, including all-trans-13,14-dihydroretinol, DPPC, and 4-phenyl-3-buten-2-one, that were significantly correlated with the altered microbiota. Bio-functional validation showed that all-trans-13, 14-dihydroretinol could significantly upregulate the expression of lipid synthesis genes and inflammatory genes. This study identified a new biomarker that may contribute to MS development. These findings provided new insights regarding the development of efficient therapeutic strategies for MS. IMPORTANCE Metabolic syndrome (MS) has become a health concern worldwide. Gut microbiota and metabolites play an important role in human health. We first endeavored to comprehensively analyze the microbiome and metabolome signatures in obese children and found the novel microbial metabolites in MS. We further validated the biological functions of the metabolites in vitro and illustrated the effects of the microbial metabolites on lipid synthesis and inflammation. The microbial metabolite all-trans-13, 14-dihydroretinol may be a new biomarker in the pathogenesis of MS, especially in obese children. These findings were not available in previous studies, and they provide new insights regarding the management of metabolic syndrome.
Collapse
|
46
|
Tao Y, Tian L, Wang C, Dai W. Dynamic simulation of land use and land cover and its effect on carbon storage in the Nanjing metropolitan circle under different development scenarios. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Land use and land cover (LULC) change is a pattern of alteration of the Earth’s land surface cover by human society and have a significant impact on the terrestrial carbon cycle. Optimizing the distribution of LULC is critical for the redistribution of land resources, the management of carbon storage in terrestrial ecosystems, and global climate change. We integrated the patch-generating land use simulation (PLUS) model and integrated valuation of ecosystem services and trade-offs (InVEST) model to simulate and assess future LULC and ecosystem carbon storage in the Nanjing metropolitan circle in 2030 under four scenarios: natural development (ND), economic development (ED), ecological protection (EP), and collaborative development (CD). The results showed that (1) LULC and carbon storage distribution were spatially heterogenous in the Nanjing metropolitan circle for the different scenarios, with elevation, nighttime lights, and population being the main driving factors of LULC changes; (2) the Nanjing metropolitan circle will experience a carbon increase of 0.50 Tg by 2030 under the EP scenario and losses of 1.74, 3.56, and 0.48 Tg under the ND, ED, and CD scenarios, respectively; and (3) the CD scenario is the most suitable for the development of the Nanjing metropolitan circle because it balances ED and EP. Overall, this study reveals the effects of different development scenarios on LULC and ecosystem carbon storage, and can provide a reference for policymakers and stakeholders to determine the development patterns of metropolitan areas under a dual carbon target orientation.
Collapse
|
47
|
Fan M, Xu J, Yu W, Chen Y, Wang M, Dai W, Wang Y. Recent Tianshan warming in relation to large-scale climate teleconnections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159201. [PMID: 36202353 DOI: 10.1016/j.scitotenv.2022.159201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
On the alpine areas such as Tianshan Mountains, snow and glaciers are widely distributed, which are sensitive to temperature changes. However, due to high altitude and scarcity of observed stations, the temperature changes and their causes in Tianshan are unclear. To address this issue, this study integrated Thiel-Sen trend test, Pearson correlation, and wavelet analysis methods to analyze the driving factors of temperature changes in Tianshan. We draw the following conclusions: (1) In the past 40 years, Tianshan warmed at a rate of 0.30 °C/decade. Seasonally, the temperature increased the most in spring and summer; spatially, the east Tianshan experienced the most warming. (2) Climate change has affected significant warming in the Tianshan. (3) The large-scale climate teleconnections found to be associated with warming in the Tianshan include North Pacific pattern, Atlantic Multidecadal Variability (AMV), North Atlantic Oscillation, and Western Hemisphere Warm Pool (WHWP). During the study period, the temperature changes lagged AMV and WHWP by 1.5 months, North Tropical Atlantic Index and Tropical Northern Atlantic Index by 3 months, and Arctic Oscillation by 4 months. This research contributes to understanding the response of dry mountains to global warming and atmospheric circulation changes.
Collapse
|
48
|
Chen X, Wang Y, Jiang L, Huang X, Huang D, Dai W, Cai Z, Wang D. Water quality status response to multiple anthropogenic activities in urban river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3440-3452. [PMID: 35945324 DOI: 10.1007/s11356-022-22378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Water quality evaluation and degrading factors identification are crucial for predicting water quality evolution trends in an urban river. However, under the coupling of multiple factors, these targets face great challenges. The water quality status response to multiple anthropogenic activities in an urban river was evaluated and predicted based on comprehensive assessment methods and random forest (RF) model. We found that the distribution of each physicochemical parameter exhibits an obvious spatial clustering. The mean pollution level and trophic status of the urban river are medium pollution (water quality index = 59.79; Nemerow's pollution index = 2.00) and light eutrophication (trophic level index = 57.30). The water quality status is sensitive to anthropogenic activities, showing the following order of TLI and NPI values: residential district > industrial district > agricultural district and downtown > suburbs > countryside. According to the redundancy analysis, constructed land (F = 15.90, p < 0.01) and domestic sewage (F = 14.20, p < 0.01) evinced as the crucial factors that aggravated the water quality pollution level. Based on the simulation results of the RF model (variation explained = 94.91%; R2 = 0.978), improving domestic sewage treatment standards is the most effective measure to improve the water quality (increased by 40.3-49.3%) in residential and industrial districts. While in a suburban district, improving the domestic sewage collection rate has more effectively (23%) than those in the residential and industrial districts. Conclusively, reducing exogenous pollution input and improving domestic sewage treatment standards are vital to urban river restoration. Clinical trial registration Not applicable.
Collapse
|
49
|
Dai W, Ren XJ, Yan Q, Wang S, Yang M, Lv L, Ying J, Chen L, Tao P, Sun L, Xue C, Yu J, Song C, Nishimura K, Jiang N, Lin CT. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction. NANO-MICRO LETTERS 2022; 15:9. [PMID: 36484932 PMCID: PMC9733747 DOI: 10.1007/s40820-022-00979-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Developing advanced thermal interface materials (TIMs) to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices. Based on the ultra-high basal-plane thermal conductivity, graphene is an ideal candidate for preparing high-performance TIMs, preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM. However, the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory. In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved, another critical factor is the limited actual contact area leading to relatively high contact thermal resistance (20-30 K mm2 W-1) of the "solid-solid" mating interface formed by the vertical graphene and the rough chip/heat sink. To solve this common problem faced by vertically aligned graphene, in this work, we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces. Based on rational graphene orientation regulation in the middle tier, the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m-1 K-1. Additionally, we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a "liquid-solid" mating interface, significantly increasing the effective heat transfer area and giving a low contact thermal conductivity of 4-6 K mm2 W-1 under packaging conditions. This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
Collapse
|
50
|
Ying J, Tan X, Lv L, Wang X, Gao J, Yan Q, Ma H, Nishimura K, Li H, Yu J, Liu TH, Xiang R, Sun R, Jiang N, Wong C, Maruyama S, Lin CT, Dai W. Correction to Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates. ACS NANO 2022; 16:19607-19608. [PMID: 36342483 DOI: 10.1021/acsnano.2c10767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|