26
|
Xia L, Sun Y, Wang Y, Yao W, Wu Q, Min Y, Xu Q. Three dimensional nickel foam carried sea urchin-like copper-cobalt-cerium cathode for enhanced tetracycline wastewater purification in photocatalytic fuel cell. J Colloid Interface Sci 2024; 653:1444-1454. [PMID: 37804613 DOI: 10.1016/j.jcis.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Photocatalytic fuel cells (PFCs) regarded as a potential sustainable technique, have been broadly reported. In this work, the carbon quantum dot-loaded TiO2 photoanode and sea urchin-like CuCoCe ternary metal oxide cathode materials are successfully synthesized and used to construct PFC systems for efficient tetracycline (TC) degradation (45 mg/L) and simultaneous electricity generation. The results demonstrate that the CQDs-modified TiO2 photoanode has improved absorption intensity in both the UV and visible regions, and the photocurrent density at 1.23 V vs RHE reached 1.31 mA cm-2, which is 1.3 times higher than that of the original TiO2 photoanode. The established PFC system achieves the highest removal ratio of 96.9 % for TC in 60 min with a maximum power density of 0.77 mW cm-2. The PFC system can operate efficiently over a wide pH range (3.0-9.0). Furthermore, quenching experiments and ESR spectra show that the main reactive oxygen species in the degradation process are •O2-, 1O2 and •OH. This study provides meaningful way to develop multiple metal oxides as cathode of PFC system for efficient organic pollutant degradation and energy recovery.
Collapse
|
27
|
Hämäläinen A, Kokko M, Tolvanen H, Kinnunen V, Rintala J. Towards the implementation of hydrothermal carbonization for nutrients, carbon, and energy recovery in centralized biogas plant treating sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:99-108. [PMID: 37984264 DOI: 10.1016/j.wasman.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
In recent years, extensive experimental research on hydrothermal carbonization (HTC) of sewage sludge has been performed, to study the effects of process conditions on hydrochar characteristics and nutrient, carbon, and energy recovery from sewage sludge. To promote the implementation of HTC, this study assessed HTC (230 °C, 30 min) integration into an advanced centralized biogas plant by analyzing its theoretical effects on the fates of sewage sludge solids, nitrogen, phosphorus, and carbon. The study used the mass and nutrient flows and concentrations obtained from laboratory studies, and the studied biogas plant had an original layout that employed hygienization. HTC integration decreased the solid product volume by up to 56 % and, increased the recovery of ammonium in ammonia water by 33 % and methane by 1.4 %, while increasing the biogas plant energy demand by 4 %. The changes in the nutrient and solids flows and their recovery potentials show the need to consider the rearrangements of the liquid and gas flows in the biogas plant and the re-dimensioning of stripping process.
Collapse
|
28
|
Liu S, Jin R, Zhang J, Zhao Y, Shen M, Wang Y. Are algae a promising ecofriendly approach to micro/nanoplastic remediation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166779. [PMID: 37660628 DOI: 10.1016/j.scitotenv.2023.166779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
How to reduce microplastic pollution in aquatic ecosystem has become the focus of the global attention. The re-removal of microplastics of wastewater treatment plant (WWTP) effluent is gradually being put on the agenda. Recently, algae have been used as an ecofriendly remediation strategy for microplastic removal. Microplastics in sewage can be removed by algae through interception, capture, and entanglement, and can also form heterogeneous aggregates with algae, thereby reducing their free suspensions. Algae can recover nitrogen and carbon from wastewater and can be made into biochar, biofertilizers, and biofuels. However, problematically, this technology has been in the laboratory research stage, and existing research results cannot provide effective basis for its application. Microplastic removal via algae is influenced by wastewater flow rate, microplastic types, and pollutants. Microplastics are only physically fixed by algae, and ensuring that microplastics do not re-enter the environment during resource and capacity recovery is also a key factor limiting the implementation of this technology. The topic of this paper is to discuss the performance of the current tertiary wastewater treatment process - algae process to remove microplastics. Algae can remove nitrogen and phosphorus pollutants in sewage and remove microplastics at the same time, which can realize energy recovery and reduce ecological risks of the effluent. Although algae combined tertiary sewage treatment is a green technology for microplastic removal, its application still needs to be explored. The key challenges that need to be addressed, from single laboratory conditions to complex conditions, from small-scale testing to large-scale simulations, lie ahead of the application of this friendly technology.
Collapse
|
29
|
Fernández-Guillamón A, de la Cruz FJP, Valverde-Pérez B, Martínez-Solano PD, Vigueras-Rodriguez A. Assessing the energy recovery potential at district metered areas inlets of water supply systems: A Spanish case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119229. [PMID: 37820514 DOI: 10.1016/j.jenvman.2023.119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The energy required for various processes in the water cycle can have significant economic and environmental impacts. Therefore, efficient energy management in urban water supply systems is crucial for a sustainable operation. By installing energy recovery technologies in these facilities, it is possible to reap the benefits of the infrastructure design by saving energy. In this study, a new methodology to assess the energy recovery at the inlets of district metered areas is presented, considering the city of Murcia (Spain) as case study. This methodology is based on creating a detailed model of city water supply system and calibrating such model with an experimental campaign of measurements. Then, the assessment of the hydraulic potential recovery is analysed through two different energy estimators, one considering the minimum available net head and the other assuming a variable net head. Results show that there are several points where turbines could be installed, most of them recovering in between 1000-5000 kWh, which could be used to cover the yearly energy consumption of about 24-120 m2 of a school or 10-50 traffic lights of such area. Moreover, in some points it could be recovered up to 14500 kWh. Even though these values are not high, the energy recovered could be used for self-consumption of nearby electrical loads, at the time that reduces the pressure in the system, thus leading to leak reductions. Moreover, this kind of energy recovery does not reduce the potential of other proposals for upstream energy recovery, such as replacing pressure reduction valves with turbines instead. The scripts developed to apply the proposed methodology are available in EPANET-Octave file exchange for the researcher community.
Collapse
|
30
|
Tian H, Ee AWL, Yan M, Tiong YW, Tan W, Tan Q, Lam HT, Zhang J, Tong YW. Life cycle assessment and cost-benefit analysis of small-scale anaerobic digestion system treating food waste onsite under different operational conditions. BIORESOURCE TECHNOLOGY 2023; 390:129902. [PMID: 37871743 DOI: 10.1016/j.biortech.2023.129902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
This study employed life cycle assessment and cost-benefit analysis to evaluate the environmental and economic profile of a real decentralized small-scale anaerobic digestion (AD) system treating food waste (FW). Different operational conditions, including temperature, biochar addition, biogas engine efficiency, and FW loading, were compared via scenario analysis. Biochar addition could potentially obtain carbon reduction and save fossil fuel. Moreover, at high FW loading and biogas engine efficiency, biochar addition achieved 1-3190% better performance than the system without biochar in all the nine impact categories. The system under mesophilic conditions performed worse than ambient conditions due to high energy demand. All the current scenarios resulted in a monetary loss at US$ 480 k-681 k, while profit was possible if the capital cost and operator salary decreased significantly. Overall, operating the small-scale AD system under ambient temperature with biochar addition was preferred due to its potential environmental benefits and economic profits.
Collapse
|
31
|
Yuan T, Sun R, Miao Q, Wang X, Xu Q. Analysing the mechanism of food waste anaerobic digestion enhanced by iron oxide in a continuous two-stage process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:610-620. [PMID: 37832210 DOI: 10.1016/j.wasman.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
The food waste (FW) digestion performance can be enhanced by introducing iron oxide (IO) into digesters. However, the role of IO in continuous two-stage digesters in enhancing the FW anaerobic digestion remains unclear. In this study, the effect of IO on the bioenergy recovery from a two-stage digestion process was investigated. The bioenergy recovery was significantly increased by up to 208.43 % with IO addition. The activities of dehydrogenase, α-amylase, and protease increase by 0.82-1.44, 7.24-14.56 and 7.97-20.45 times, respectively, as compared with that of the blank. With IO addition, the metabolic pathway in hydrolytic-acidogenic (HA) reactor shifted from lactic acid fermentation to butyric fermentation, which promoted stable methane production in methanogenic (MG) reactor. The activity of coenzyme F420 increased by 19.19-39.01 times, indicating that IO facilitated FW digestion by promoting hydrogenotrophic methanogenesis. The enhancement in the enzyme activity was attributable to the Fe2+ generated by dissimilatory iron reduction. According to the microbial analysis, IO enhanced interspecies hydrogen transfer between Methanobacterium and Syntrophomonas. Furthermore, IO improved direct interspecies electron transfer between Geobacter sulfurreducens and Methanosarcina. The effluent recirculation strategy greatly facilitated the hydrolysis and acidification of FW, which was critical for improving the two-stage process performance.
Collapse
|
32
|
Gao L, Wei D, Ismail S, Wang Z, El-Baz A, Ni SQ. Combination of partial nitrification and microbial fuel cell for simultaneous ammonia reduction, organic removal, and energy recovery. BIORESOURCE TECHNOLOGY 2023; 386:129558. [PMID: 37499920 DOI: 10.1016/j.biortech.2023.129558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The chemical oxygen demand (COD) in municipal wastewater has become an obstacle for anammox in mainstream applications. In this study, the single chamber microbial fuel cell (MFC) was installed as an influent device for a partial nitrification-sequencing batch reactor (PN-SBR) to realize integrating COD removal and partial nitrification. After 80 days of operation, the nitrite accumulation rate reached 93%, while the COD removal efficiency was 56%. The output voltage and the power density of MFC were 66.62 mV and 2.40 W/m3, respectively. The content of EPS, especially polysaccharides in the stable phase, has increased compared with the seed sludge. The most dominant genus in MFC anode biofilm and SBR granular sludge was Thauera, which has organic compounds degradation capacity and could degrade nitrate. This study revealed the microbial interaction between MFC and partial nitrification and provided a new strategy for stable ammonia and nitrite supply for mainstream anammox plants.
Collapse
|
33
|
Zhu X, Luo Z, Zhang Q, He M, Tsang DCW. Valorization of slow pyrolysis vapor from biomass waste: Comparative study on pyrolysis characteristics, evolved gas evaluation, and adsorption effects. BIORESOURCE TECHNOLOGY 2023; 386:129543. [PMID: 37482202 DOI: 10.1016/j.biortech.2023.129543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Pyrolysis vapor is an important byproduct in the production of biochar from biomass waste, and its emission may pose potential environmental risks. To achieve green production of biochar and efficient utilization of pyrolysis vapors, a novel strategy is proposed in this study to use pristine biochar as an adsorbent to adsorb the pyrolysis vapors. According to thermogravimetry-Fourier infrared spectroscopy-mass spectrometry evaluation, the evolved vapors mainly consisted of oxygenated compounds, hydrocarbons, CO2, CO, and H2O. With pyrolysis temperature increasing, ethers, phenols, hydrocarbons, acids/ketones, and CO2 were changed in the same direction based on two-dimensional correlation spectroscopy analysis. Moreover, butene, propargyl alcohol, and butane were the most abundant ionic fragments. After adsorbing pyrolysis vapors, the heating value of the biochar increased by a maximum of 3.2 MJ kg-1 with changes of physicochemical properties. This strategy provides a theoretical basis for green preparation of biochar while recovering energy from pyrolysis vapors.
Collapse
|
34
|
Ipiales RP, Mohedano AF, Diaz-Portuondo E, Diaz E, de la Rubia MA. Co-hydrothermal carbonization of swine manure and lignocellulosic waste: A new strategy for the integral valorization of biomass wastes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:267-275. [PMID: 37481937 DOI: 10.1016/j.wasman.2023.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Co-hydrothermal carbonization (co-HTC) is a promising strategy to improve hydrothermal carbonization (HTC) of low-quality wastes. HTC of swine manure (SM), with high N (2.9 wt%), S (0.7 wt%) and ash (22.6 wt%) contents, as well as low C (35.6 wt%) and higher heating value (HHV; 14.3 MJ kg-1), resulted in a hydrochar with unsuitable characteristics as a solid fuel. Co-HTC of SM and garden and park waste (GPW) improved hydrochar properties (C content (43 - 48 wt%) and HHV (18 - 20 MJ kg-1), and decreased N (∼2 wt%), S (<0.3 wt%) and ash (<15 wt%) content. A high GPW ratio (>50 wt%) during co-HTC resulted in a hydrochar similar to that obtained from GPW. The co-HTC increased nutrient migration to the process water, which allowed the precipitation of salt with high P (7.8 wt%) and negligible heavy metal content. Anaerobic digestion of co-HTC process water allowed high organic matter removal (up to 65%), and methane production (315 - 325 mL CH4 g-1CODadded). Gross energy recovery by HTC and anaerobic digestion was 5 - 6-fold higher than anaerobic treatment of feedstocks. Therefore, co-HTC of SM and GPW with a ratio > 50% GPW proved to be a suitable approach to valorize and manage SM and obtain value-added products (hydrochar, mineral fertilizer and methane).
Collapse
|
35
|
Han Y, Cai T, Yin J, Li W, Li S, Qiu B, Lu X, Zhou Y, Zhen G. Impact of sandwich-type composite anodic membrane on membrane fouling and methane recovery from sewage sludge and food waste via electrochemical anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2023; 382:129222. [PMID: 37217144 DOI: 10.1016/j.biortech.2023.129222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Membrane fouling presents a big challenge for the real-world implementation of anaerobic membrane bioreactors (AnMBRs) in digesting high-solid biowastes. In this study, an electrochemical anaerobic membrane bioreactor (EC-AnMBR) with a novel sandwich-type composite anodic membrane was designed and constructed for controlling membrane fouling whilst improving the energy recovery. The results showed that EC-AnMBR produced a higher methane yield of 358.5 ± 74.8 mL/d, rising by 12.8% compared to the AnMBR without applied voltage. Integration of composite anodic membrane induced a stable membrane flux and low transmembrane pressure through forming an anodic biofilm while total coliforms removal reached 97.9%. The microbial community analysis further provided compelling evidence that EC-AnMBR enriched the relative abundance of hydrolyzing (Chryseobacterium 2.6%) bacteria and methane-producing (Methanobacterium 32.8%) archaea. These findings offered new insights into anti-biofouling performance and provided significant implications for municipal organic waste treatment and energy recovery in the new EC-AnMBR.
Collapse
|
36
|
Kuah CT, Koh QY, Rajoo S, Wong KY. Waste heat recovery research - a systematic bibliometric analysis (1991 to 2020). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:72074-72100. [PMID: 35716302 PMCID: PMC9206142 DOI: 10.1007/s11356-022-21377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/05/2022] [Indexed: 06/12/2023]
Abstract
Human usage of non-renewable energy resources has caused many environmental issues, which include air pollution, global warming, and climate irregularities. To counter these issues, researchers have been seeking after alternative renewable energy sources and ways to manage energy more efficiently. This is where energy recovery technologies such as waste heat recovery (WHR) come into play. WHR is a form of waste to energy conversion. Waste heat can be captured and converted into usable energy instead of dumping it into the environment. In the more recent years, the WHR research field has gained great attention in the scientific community as well as in some energy-intensive industries. This article presents a bibliometric overview of the academic research on WHR over the span of 30 years from 1991 to 2020. A total of 5682 documents from Web of Science (WoS) have been retrieved and analyzed using various bibliometric methods, including performance analysis and network analysis. The analyses were performed on different actors in the field, i.e., funding agencies, journals, authors, organizations, and countries. In addition, several network mappings were done based on co-citation, co-authorship, and co-occurrences of keywords analyses. The research identified the most productive and influential actors in the field, established and emergent research topics, as well as the interrelations and collaboration patterns between different actors. The findings can be a robust roadmap for further research in this field.
Collapse
|
37
|
Thyer S, White T. Energy recovery in a commercial building using pico-hydropower turbines: An Australian case study. Heliyon 2023; 9:e16709. [PMID: 37303507 PMCID: PMC10250803 DOI: 10.1016/j.heliyon.2023.e16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Optimising energy use in systems and buildings is crucial to reduce climate change. This paper aims to address the gap in knowledge for pico-hydropower (<5 kW) that has been identified as an area of untapped potential in the water industries. A literature review and multivariate analysis are used to find a suitable pico-hydro turbine to install into a coral reef aquarium system in a government owned facility. Key findings from the literature review are untapped potential, gaps in knowledge and global quantification of small hydropower for energy recovery, and lack of enabling data contributing to slow uptake of small hydropower. The study showed a propeller pico-hydropower turbine could be used to recover approximately 10% of the energy used for pumping water through a filtration system. At 2.3 m available head, and 90 L/s water flow, power output up to 1.124 kW was achieved. The project was economically viable with financial and non-financial benefits for the life cycle of the product. There remain sparse case studies for energy recovery using small hydropower in the scientific literature. A growing number of authors see the potential of this renewable energy technology to reduce global greenhouse gas emissions and contribute to the UN Sustainable Development Goals to provide affordable clean energy and address climate change. This study helps to shine a light on opportunities to find value from waste using a novel application of hydropower in a water industry.
Collapse
|
38
|
Jiang P, Zhou T, Bai J, Zhang Y, Li J, Zhou C, Zhou B. Nitrogen-containing wastewater fuel cells for total nitrogen removal and energy recovery based on Cl•/ClO• oxidation of ammonia nitrogen. WATER RESEARCH 2023; 235:119914. [PMID: 37028212 DOI: 10.1016/j.watres.2023.119914] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The excess nitrogen discharge into water bodies has resulted in extensive water pollution and human health risks, which has become a critical global issue. Moreover, nitrogenous wastewater contains considerable chemical energy contributed by organic pollutants and nitrogenous compounds. Therefore, the treatment of various kinds of nitrogen-containing wastewater for nitrogen removal and energy recovery is of significance. Biological methode and advanced oxidation processes (AOPs) are the main methods for nitrogen removal. However, biological treatment is easily inhibited by high-salinity, high ammonia nitrogen (NH3-N/NH4+-N), nitrite and toxic organics in wastewater, which limits its application. AOPs mainly induce in situ generation of highly reactive species, such as hydroxyl radical (HO•), sulfate radical (SO4•-) and chlorine radicals (Cl•, ClO•, Cl2•-), for nitrogen removal. Nevertheless, HO• shows low reactivity and N2 selectivity towards NH3-N/NH4+-N oxidation, and SO4•- also demonstrates unsatisfactory NH3-N/NH4+-N removal. It has been shown that Cl•/ClO• can efficiently remove NH3-N/NH4+-N with high N2 selectivity. The generation of Cl•/ClO• can be triggered by various techniques, among which the PEC technique shows great potential due to its higher efficiency for Cl•/ClO• generation and eco-friendly approach for pollutants degradation and energy recovery by utilizing solar energy. Cl•/ClO• oxidation of NH3-N/NH4+-N and nitrate nitrogen (NO3--N) reduction can be strengthened through the design of photoanode and cathode materials, respectively. Coupling with this two pathways, an exhaustive total nitrogen (TN) removal system is designed for complete TN removal. When introducing the mechanism into photocatalytic fuel cells (PFCs), the concept of nitrogen-containing wastewater fuel cells (NFCs) is proposed to treat several typical types of nitrogen-containing wastewater, achieving high-efficiency TN removal, organics degradation, toxic chlorate control, and energy recovery simultaneously. Recent research progress in this field is reviewed, summarized and discussed, and in-depth perspectives are proposed, providing new ideas for the resource treatment of nitrogen-containing wastewater.
Collapse
|
39
|
Teoh TP, Koo CJ, Ho LN, Wong YS, Lutpi NA, Tan SM, Yap KL, Ong SA. Transformation from biofiltration unit to hybrid constructed wetland-microbial fuel cell: Improvement of wastewater treatment performance and energy recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59877-59890. [PMID: 37016256 DOI: 10.1007/s11356-023-26789-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
This study aimed to compare the performance of biofiltration, constructed wetland, and constructed wetland microbial fuel cell (CW-MFC). The transformation from a biofiltration unit to a hybrid CW-MFC was demonstrated with the advantages of improvement of wastewater treatment while generating electricity simultaneously. The introduction of plants to the upper region of the bioreactor enhanced the DO level by 0.8 mg/L, ammonium removal by 5 %, and COD removal by 1 %. The integration of electrodes and external circuits stimulated the degradation rate of organic matter in the anodic region (1 % without aeration and 3 % with aeration) and produced 5.13 mW/m3 of maximum power density. Artificial aeration improved the nitrification efficiency by 38 % and further removed the residual COD to an efficiency of 99 %. The maximum power density was also increased by 3.2 times (16.71 mW/m3) with the aid of aeration. In treating higher organic loading wastewater (3M), the maximum power density showed a significant increment to 78.01 mW/m3 (4.6-fold) and the COD removal efficiency was 98 %. The ohmic overpotential dominated the proportion of total loss (67-91 %), which could be ascribed to the low ionic conductivity. The reduction in activation and concentration loss contributed to the lower internal resistance with the additional aeration and higher organic loading. Overall, the transformation from biofiltration to a hybrid CW-MFC system is worthwhile since the systems quite resemble while CW-MFC could improve the wastewater treatment as well as recover energy from the treated wastewater.
Collapse
|
40
|
Xu Q, Yang G, Liu X, Wong JWC, Zhao J. Hydrochar mediated anaerobic digestion of bio-wastes: Advances, mechanisms and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163829. [PMID: 37121315 DOI: 10.1016/j.scitotenv.2023.163829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Bio-wastes treatment and disposal has become a challenge because of their increasing output. Given the abundant organic matter in bio-wastes, its related resource treatment methods have received more and more attention. As a promising strategy, anaerobic digestion (AD) has been widely used in the treatment of bio-wastes, during which not only methane as energy can be recovered but also their reduction can be achieved. However, AD process is generally disturbed by some internal factors (e.g., low hydrolysis efficiency and accumulated ammonia) and external factors (e.g., input pollutants), resulting in unstable AD operation performance. Recently, hydrochar was wildly found to improve AD performance when added to AD systems. This review comprehensively summarizes the research progress on the performance of hydrochar-mediated AD, such as increased methane yield, improved operation efficiency and digestate dewatering, and reduced heavy metals in digestate. Subsequently, the underlying mechanisms of hydrochar promoting AD were systematically elucidated and discussed, including regulation of electron transfer (ET) mode, microbial community structure, bio-processes involved in AD, and reaction conditions. Moreover, the effects of properties of hydrochar (e.g., feedstock, hydrothermal carbonization (HTC) temperature, HTC time, modification and dosage) on the improvement of AD performance are systematically concluded. Finally, the relevant knowledge gaps and opportunities to be studied are presented to improve the progress and application of the hydrochar-mediated AD technology. This review aims to offer some references and directions for the hydrochar-mediated AD technology in improving bio-wastes resource recovery.
Collapse
|
41
|
Wang C, Wang Y, Chen Z, Wei W, Chen X, Mannina G, Ni BJ. A novel strategy for efficiently transforming waste activated sludge into medium-chain fatty acid using free nitrous acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160826. [PMID: 36502988 DOI: 10.1016/j.scitotenv.2022.160826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The global energy crisis is approaching due to rapid population growth and overexploitation of fossil fuels. Therefore, the development and use of new and renewable energy sources is already in the extreme urgency. This work developed a novel technology to efficiently produce renewable liquid bioenergy from discarded wastes, by effectively transforming sewage sludge into high-value medium chain fatty acids (MCFA). The maximum MCFA yield in the anaerobic sludge fermentation was revealed to be 10.6 times of control when utilizing sewage sludge with 1.78 mg-N/L free nitrous acid (FNA) pretreatment. The carbon flow from sewage sludge into MCFA in the fermentation system was significantly enhanced with appropriate levels (0.71-1.78 mg-N/L) of FNA pretreatment. Compared to FNA pretreatment, however, its direct addition severely inhibited total products (i.e., carboxylates and complex alcohols) generation because of the toxicity on live cells (decreasing to 8.3 %-13.9 %) in sludge. Kinetic models (one-substrate and two-substrate) were utilized to investigate the mechanism of MCFA promotion by FNA pretreatment on anaerobic sludge fermentation, in which linear relationship analysis between FNA-derived organic release and the fitted parameters were also performed. The results indicated that the conversion of refractory materials into rapidly bioavailable substrates for MCFA production contributed to increasing MCFA production rate and potential. Moreover, the relative abundances of functional microorganisms related to hydrolysis-acidification and chain elongation process increased under FNA pretreatment, further favoring the MCFA production. This study provides a novel and effective technology of sludge energy recovery that can achieve the next-generation sustainable sewage sludge management.
Collapse
|
42
|
Tomc U, Nosan S, Klinar K, Kitanovski A. Towards powerful magnetocaloric devices with static electro-permanent magnets. J Adv Res 2023; 45:157-181. [PMID: 35589540 PMCID: PMC10006538 DOI: 10.1016/j.jare.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Magnetocaloric energy conversion represents an alternative to existing refrigeration, heat pump and energy harvesting technologies. A crucial part of a magnetocaloric device concerns the magnetic field source. It uses mainly rare-earth materials and consists of moving parts and a drive system while displaying a limited energy efficiency and unavailability of fast and variable control of the magnetic field. Recent advances in efficient heat transfer for high-frequency magnetic cooling call for new developments of magnetic field sources that can operate with high efficiency at high frequencies. OBJECTIVES We report the concept of an electro-permanent magnetic (EPM) field source that efficiently recovers magnetic energy. In contrast to existing magnets, it allows very well-controlled operation without any moving parts. The main objective of this paper is to present a numerical and experimental study in which such an EPM was designed, built and tested. METHODS An extensive numerical investigation of the proposed design was carried out in terms of various geometrical and operating parameters. One of the design variations was built and experimentally evaluated for its energy efficiency and temperature increase at various operating frequencies. RESULTS We demonstrate an energy efficiency of these magnets of over 80% and operation with frequencies up to 50 Hz, which is crucial for future high-power-density and high-frequency magnetocaloric devices. CONCLUSIONS Considering high energy efficiency at high operating frequencies, such EPMs would allow for miniaturization, making them a viable option for future compact magnetocaloric devices.
Collapse
|
43
|
Moideen SNF, Krishnan S, Li YY, Hassim MH, Kamyab H, Nasrullah M, Din MFM, Halim KA, Chaiprapat S. Performance evaluation and energy potential analysis of anaerobic membrane bioreactor (AnMBR) in the treatment of simulated milk wastewater. CHEMOSPHERE 2023; 317:137923. [PMID: 36682635 DOI: 10.1016/j.chemosphere.2023.137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
An anaerobic membrane bioreactor (AnMBR) was employed as primary treatment unit for anaerobic treatment of simulated wastewater to produce high effluent quality. A lab scale hollow fiber membrane was used to scrutinize the performance of AnMBR as a potential treatment system for simulated milk wastewater and analyze its energy recovery potential. The 15 L bioreactor was operated continuously at mesophilic conditions (35 °C) with a pH constant of 7.0. The membrane flux was in the range of 9.6-12.6 L/m2. h. The different organic loading rates (OLRs) of 1.61, 3.28, 5.01, and 8.38 g-COD/L/d, of simulated milk wastewater, were fed to the reactor and the biogas production rate was analyzed, respectively. The results revealed that the COD removal efficiencies of 99.54 ± 0.001% were achieved at the OLR of 5.01 gCOD/L/d. The highest methane yield was found to be at OLR of 1.61 gCOD/L/d at HRT of 30 d with the value of 0.33 ± 0.01 L-CH4/gCOD. Moreover, based on the analysis of energy balance in the AnMBR system, it was found that energy is positive at all the given HRTs. The net energy production (NEP) ranged from 2.594 to 3.268 kJ/gCOD, with a maximum NEP value of 3.268 kJ/gCOD at HRT 10 d HRT. Bioenergy recovery with the maximum energy ratio, of 4.237, was achieved with an HRT of 5 d. The study suggests a sizable energy saving with the anaerobic membrane process.
Collapse
|
44
|
Teoh TP, Ong SA, Ho LN, Wong YS, Lutpi NA, Oon YL, Tan SM, Ong YP, Yap KL. Insights into the decolorization of mono and diazo dyes in single and binary dyes containing wastewater and electricity generation in up-flow constructed wetland coupled microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17546-17563. [PMID: 36197611 DOI: 10.1007/s11356-022-23101-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The treatment of single and binary azo dyes, as well as the effect of the circuit connection, aeration, and plant on the performance of UFCW-MFC, were explored in this study. The decolorization efficiency of Remazol Yellow FG (RY) (single dye: 98.2 %; binary dye: 92.3 %) was higher than Reactive Black 5 (RB5) (single: 92.3 %; binary: 86.7 %), which could be due to monoazo dye (RY) requiring fewer electrons to break the azo bond compared to the diazo dye (RB5). In contrast, the higher decolorization rate of RB5 in binary dye indicated the removal rate was affected by the electron-withdrawing groups in the dye structure. The closed circuit enhanced about 2% of color and 4% of COD removal. Aeration improved the COD removal by 6%, which could be contributed by the mineralization of intermediates. The toxicity of azo dyes was reduced by 11-26% and the degradation pathways were proposed. The dye removal by the plants was increased with a higher contact time. RB5 was more favorable to be uptook by the plant as RB5 holds a higher partial positive charge. 127.39 (RY), 125.82 (RB5), and 58.66 mW/m3 (binary) of maximum power density were generated. The lower power production in treating the binary dye could be due to more electrons being utilized for the degradation of higher dye concentration. Overall, the UFCW-MFC operated in a closed circuit, aerated, and planted conditions achieved the optimum performance in treating binary azo dyes containing wastewater (dye: 87-92%; COD: 91%) compared to the other conditions (dye: 83-92%; COD: 78-87%).
Collapse
|
45
|
Lunag MN, Abana AS, Agcaoili JP, Arellano JKT, Caluza CAG, Decena NBV, Paz ERD, Delgado LAB, Obero AF, Ocampo DME, Sacdalan CAD. Face mask and medical waste generation in the City of Baguio, Philippines: its current management and GHG footprint. JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2023; 25:1216-1226. [PMID: 36743944 PMCID: PMC9884183 DOI: 10.1007/s10163-023-01601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The daily use of facemask to prevent virus transmission increases the negative effect on the environment because of improper waste disposal. Due to the absence of baseline data, the impact of facemask and medical waste generation, as well as the community's management practice, should be studied to avoid further environmental degradation. In this study, we surveyed 384 respondents and conducted computational analysis to provide an overview of the household's facemask usage and ecological footprint in combating Covid-19. Results showed that most respondents (48.7%) use two facemasks per day. Thus, an estimated 417,834 facemasks are disposed daily, generating 3,585 kg/day of additional waste. The average medical waste of Covid-infected individuals is 3.29 kg per day per capita. This yields 22,438 kg. of CO2 eq., which could contribute to the global warming potential; however, there is also a potential recovery of 61.572 gigajoules of energy for power generation. Most respondents are aware of proper facemask waste management practices, but some lacks application regarding responsible waste disposal. Despite the contribution of facemask to the overall solid waste generation, the city's current management remains a challenge since disposable facemasks are potentially mixed with other types of waste from its storage, collection, and disposal. Supplementary Information The online version contains supplementary material available at 10.1007/s10163-023-01601-2.
Collapse
|
46
|
Hollas CE, Rodrigues HC, Bolsan AC, Venturin B, Bortoli M, Antes FG, Steinmetz RLR, Kunz A. Swine manure treatment technologies as drivers for circular economy in agribusiness: A techno-economic and life cycle assessment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159494. [PMID: 36257411 DOI: 10.1016/j.scitotenv.2022.159494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion has been employed as a technology capable of adding value to waste coupled with environmental impact mitigation. However, many issues need to be elucidated to ensure the systems viability based on this technology. In this sense, the present study evaluated technically, environmentally, and economically, four configurations of swine waste treatment systems focused on the promotion of decarbonization and circularity of the swine chain. For this, a reference plant, based on a compact treatment process named SISTRATES® (Portuguese acronym for swine effluent treatment system) was adopted to serve as a model for comparison and validation. The results showed the importance of prioritization of the energy recuperation routes through anaerobic digestion, providing increased economic benefits and minimizing environmental damage. Thus, the SISTRATES® configuration was the one that presented the best designs in a circular context, maximizing the recovery of energy and nutrients, along with the reduction of greenhouse gas emissions, ensuring the sustainability of the pig production chain.
Collapse
|
47
|
Tisi YSAB, Matos FA, Carneiro MLNM. Development of waste-to-energy through integrated sustainable waste management: the case of ABREN WtERT Brazil towards changing status quo in Brazil. WASTE DISPOSAL & SUSTAINABLE ENERGY 2023; 5:1-14. [PMID: 36687498 PMCID: PMC9838418 DOI: 10.1007/s42768-022-00127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 01/11/2023]
Abstract
In the context of circular economy, it is known that once waste is generated, it should be subject to proper treatment for recovering material or energy before being disposed. Many countries worldwide, especially developing countries such as Brazil, have been struggling to effectively apply sustainable waste management in municipalities and still rely on dumpsites and unsuitable landfills. Misinformation, a weak legal framework, lack of financial resources and poor infra-structure as well as pressure from organizations profiting from the expansion of landfills are some factors contributing to the preservation of the negative status quo: the "landfill culture". Material recovery, i.e., recycling and composting, is applied to less than 5% of Brazilian municipal waste, while 95% is disposed of in landfills or dumpsites. In this context, ABREN WtERT (Waste-to-Energy Research and Technology Council) Brazil was created in 2019 as the first permanent organization formed to promote the development of energy and material recovery from waste focused on the waste-to-energy (WTE) market. In this paper, the strategy proposed and implemented by the organization towards changing the status quo in Brazil through an integrated sustainable waste management approach is described. The proposed strategy integrates the concepts of Sustainability and Circular Economy for minimizing landfill disposal (avoiding methane emissions) and maximizing material/energy recovery. Among others, the approach focuses on changing the public opinion regarding thermal treatment facilities, mainly incinerators, which has been wrongly linked to pollution, excessive public expenditures and considered a harm to the recycling industry. The activities performed by ABREN include engaging public and private institutions, enhancing education, leading the publication of research and business studies, gathering industry members and academy experts, as well as creating strategic alliances with players around the globe. As a result, within a few years, major outcomes were achieved in Brazil, such as: (i) changes in the legal framework, (ii) launching of a specific public auction category for sponsoring electricity production from WTE facilities, and (iii) establishment of official targets for municipalities to decrease landfill disposal and increase recycling/biological treatment and energy recovery from thermal treatment. Among the national goals, it should be highlighted the target regarding the increase from zero to 994 MW of electricity production from municipal solid waste, which will require building dozens of new WTE facilities. Global outcomes are expected as well since Brazil is the seventh largest country of the globe and the most influential in Latin America. International and national business deals should thrive due to the need of operational skills and technology imports, and the avoidance of carbon emissions will positively reflect the world climate. In parallel, there is also potential for the academy to benefit from research projects and investments if the WTE national industry is to be developed in the long term.
Collapse
|
48
|
Grewal R, Kumar M. Application of concatenated stepped solar still system (CS 4) for RO-waste-water purification: an experimental study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1460-1476. [PMID: 35917070 DOI: 10.1007/s11356-022-22251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This experimental study investigates the capability of a concatenated stepped solar still system (CS4) for RO-waste-water purification by assessing its thermo-enviro-economic aspects. In order to confirm the supremacy of CS4, a simple stepped solar still system (S5) of equivalent basin area (0.75 m2) is fabricated and tested. The experiments are conducted on CS4 and S5 simultaneously at different flow rates for comparison. The productivity of CS4 is observed to be 24.7 % higher than that of S5; thus, its pollutant removal efficiency is better. As compared to S5, CS4 is found to be more sustainable, economical, and better in terms of distillate production and thermal and exergy efficiencies which are optimum at 50 ml/min. The distillate production, thermal efficiency, and exergy efficiency of CS4 at 50 ml/min flow of RO-waste-water are 2.8 kg/day, 33.80%, and 1.93%, respectively. The second and third units in CS4 work in active mode that increases the solar energy utilization by 34.19% at optimal flow rate. The CO2 mitigation capability of CS4 is 8.89 tons and its distillate production cost is $0.021. At optimum flow rate, its energy and economic payback periods are evaluated as 199 and 483 days, respectively.
Collapse
|
49
|
Guo H, Tian L, Wang Y, Zheng K, Hou J, Zhao Y, Zhu T, Liu Y. Enhanced anaerobic digestion of waste activated sludge with periodate-based pretreatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100208. [PMID: 36388632 PMCID: PMC9640319 DOI: 10.1016/j.ese.2022.100208] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
The potential of periodate (PI) in sludge anaerobic digestion is not tapped, although it has recently attracted great research interest in organic contaminants removal and pathogens inactivation in wastewater treatment. This is the first work to demonstrate significant improvement in methane generation from waste activated sludge (WAS) with PI pretreatment and to provide underlying mechanisms. Biochemical methane potential tests indicated that methane yield enhanced from 100.2 to 146.3 L per kg VS (VS, volatile solids) with PI dosages from 0 to 100 mg per g TS (TS, total solids). Electron spin resonance showed PI could be activated without extra activator addition, which might be attributed to the native transition metals (e.g., Fe2+) in WAS, thereby generating hydroxyl radical (•OH), superoxide radicals (•O2 -), and singlet oxygen (1O2). Further scavenging tests demonstrated all of them synergistically promoted WAS disintegration, and their contributions were in the order of •O2 - > •OH > 1O2, leading to the release of substantial biodegradable substances (i.e., proteins and polysaccharides) into the liquid phase for subsequent biotransformation. Moreover, fluorescence and ultraviolet spectroscopy analyses indicated the recalcitrant organics (especially lignocellulose and humus) could be degraded by reducing their aromaticity under oxidative stress of PI, thus readily for methanogenesis. Microbial community analysis revealed some microorganisms participating in hydrolysis, acidogenesis, and acetoclastic methanogenesis were enriched after PI pretreatment. The improved key enzyme activities and up-regulated metabolic pathways further provided direct evidence for enhanced methane production. This research was expected to broaden the application scope of PI and provide more diverse pretreatment choices for energy recovery through anaerobic digestion.
Collapse
|
50
|
Centeno Mora E, Souza CLD, Neves TDA, Chernicharo CDL. Characterisation and perspectives of energetic use of dissolved gas recovered from anaerobic effluent with membrane contactor. BIORESOURCE TECHNOLOGY 2023; 367:128223. [PMID: 36368489 DOI: 10.1016/j.biortech.2022.128223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Biogas is a source of renewable energy, and its production and use has been validated in anaerobic-based sewage treatment plants (STPs). However, in these systems, a large amount of methane is lost as dissolved methane (D-CH4) in the liquid effluent. In this study, the characteristics and potential energetic uses of the gas recovered during the desorption of D-CH4 from anaerobic effluents with hollow fibre membrane contactors were investigated. A pilot-scale experiment was performed using sewage and two types of membrane contactors. The recovered gas contained considerable amounts of CH4, CO2, H2S, N2, and O2; therefore, a gas upgrade is required prior to its use as a biofuel. The recovery process should be energetically self-sustainable, and induce a considerable decrease in the STP carbon footprint. Recovering D-CH4 with membrane contactors could increase the energetic potential of anaerobic-based STPs up to 50 % and allow for more sustainable systems.
Collapse
|