26
|
Zasada AA, Formińska K, Zacharczuk K, Jacob D, Grunow R. Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Lett Appl Microbiol 2015; 60:409-13. [PMID: 25598285 DOI: 10.1111/lam.12392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Yersinia pestis, Bacillus anthracis and Francisella tularensis cause serious zoonotic diseases and have the potential to cause high morbidity and mortality in humans. In case of natural outbreaks and deliberate or accidental release of these pathogens rapid detection of the bacteria is crucial for limitation of negative effects of the release. In the present study, we evaluated 11 commercially available rapid test kits for the detection of Y. pestis, B. anthracis and F. tularensis in terms of sensitivity, specificity and simplicity of the procedure. The results revealed that rapid and easy-to-perform lateral flow assays for detection of highly pathogenic bacteria have very limited sensitivity. In contrast, the immunofiltration assays showed high sensitivity but limited specificity and required a too complicated procedure to be applied in the field by nonlaboratory workers (e.g. First Responders like fire, police and emergency medical personnel). Each sample - whether tested negative or positive by the rapid tests - should be retested in a reference laboratory using validated methods. SIGNIFICANCE AND IMPACT OF THE STUDY Rapid detection of highly pathogenic bacteria causing anthrax, plague and tularemia is crucial for the limitation of negative effects of a potential release (natural, accidental or deliberate). In the study, commercially available rapid tests for detection of Bacillus anthracis, Yersinia pestis and Francisella tularensis were investigated in terms of sensitivity, specificity and ease-to-perform. The study showed problems which could be faced during testing and results interpretation. Conclusions from this study should be helpful not only in selection of the most appropriate test for particular group of First Responders but also in undertaking decisions in situation of a contamination suspicion which have high social and economical impacts.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
33 |
27
|
Cuthbert BJ, Ross W, Rohlfing AE, Dove SL, Gourse RL, Brennan RG, Schumacher MA. Dissection of the molecular circuitry controlling virulence in Francisella tularensis. Genes Dev 2017; 31:1549-1560. [PMID: 28864445 PMCID: PMC5630020 DOI: 10.1101/gad.303701.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/09/2017] [Indexed: 11/24/2022]
Abstract
Francisella tularensis, the etiological agent of tularemia, is one of the most infectious bacteria known. Because of its extreme pathogenicity, F. tularensis is classified as a category A bioweapon by the US government. F. tularensis virulence stems from genes encoded on the Francisella pathogenicity island (FPI). An unusual set of Francisella regulators-the heteromeric macrophage growth locus protein A (MglA)-stringent starvation protein A (SspA) complex and the DNA-binding protein pathogenicity island gene regulator (PigR)-activates FPI transcription and thus is essential for virulence. Intriguingly, the second messenger, guanosine-tetraphosphate (ppGpp), which is produced during infection, is also involved in coordinating Francisella virulence; however, its role has been unclear. Here we identify MglA-SspA as a novel ppGpp-binding complex and describe structures of apo- and ppGpp-bound MglA-SspA. We demonstrate that MglA-SspA, which binds RNA polymerase (RNAP), also interacts with the C-terminal domain of PigR, thus anchoring the (MglA-SspA)-RNAP complex to the FPI promoter. Furthermore, we show that MglA-SspA must be bound to ppGpp to mediate high-affinity interactions with PigR. Thus, these studies unveil a novel pathway different from those described previously for regulation of transcription by ppGpp. The data also indicate that F. tularensis pathogenesis is controlled by a highly interconnected molecular circuitry in which the virulence machinery directly senses infection via a small molecule stress signal.
Collapse
|
Journal Article |
8 |
32 |
28
|
Klimentova J, Pavkova I, Horcickova L, Bavlovic J, Kofronova O, Benada O, Stulik J. Francisella tularensis subsp. holarctica Releases Differentially Loaded Outer Membrane Vesicles Under Various Stress Conditions. Front Microbiol 2019; 10:2304. [PMID: 31649645 PMCID: PMC6795709 DOI: 10.3389/fmicb.2019.02304] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022] Open
Abstract
Francisella tularensis is a Gram-negative, facultative intracellular bacterium, causing a severe disease called tularemia. It secretes unusually shaped nanotubular outer membrane vesicles (OMV) loaded with a number of virulence factors and immunoreactive proteins. In the present study, the vesicles were purified from a clinical isolate of subsp. holarctica strain FSC200. We here provide a comprehensive proteomic characterization of OMV using a novel approach in which a comparison of OMV and membrane fraction is performed in order to find proteins selectively enriched in OMV vs. membrane. Only these proteins were further considered to be really involved in the OMV function and/or their exceptional structure. OMV were also isolated from bacteria cultured under various cultivation conditions simulating the diverse environments of F. tularensis life cycle. These included conditions mimicking the milieu inside the mammalian host during inflammation: oxidative stress, low pH, and high temperature (42°C); and in contrast, low temperature (25°C). We observed several-fold increase in vesiculation rate and significant protein cargo changes for high temperature and low pH. Further proteomic characterization of stress-derived OMV gave us an insight how the bacterium responds to the hostile environment of a mammalian host through the release of differentially loaded OMV. Among the proteins preferentially and selectively packed into OMV during stressful cultivations, the previously described virulence factors connected to the unique intracellular trafficking of Francisella were detected. Considerable changes were also observed in a number of proteins involved in the biosynthesis and metabolism of the bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids. Data are available via ProteomeXchange with identifier PXD013074.
Collapse
|
Journal Article |
6 |
31 |
29
|
Whole-Genome Relationships among Francisella Bacteria of Diverse Origins Define New Species and Provide Specific Regions for Detection. Appl Environ Microbiol 2017; 83:AEM.02589-16. [PMID: 27881415 DOI: 10.1128/aem.02589-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a highly virulent zoonotic pathogen that causes tularemia and, because of weaponization efforts in past world wars, is considered a tier 1 biothreat agent. Detection and surveillance of F. tularensis may be confounded by the presence of uncharacterized, closely related organisms. Through DNA-based diagnostics and environmental surveys, novel clinical and environmental Francisella isolates have been obtained in recent years. Here we present 7 new Francisella genomes and a comparison of their characteristics to each other and to 24 publicly available genomes as well as a comparative analysis of 16S rRNA and sdhA genes from over 90 Francisella strains. Delineation of new species in bacteria is challenging, especially when isolates having very close genomic characteristics exhibit different physiological features-for example, when some are virulent pathogens in humans and animals while others are nonpathogenic or are opportunistic pathogens. Species resolution within Francisella varies with analyses of single genes, multiple gene or protein sets, or whole-genome comparisons of nucleic acid and amino acid sequences. Analyses focusing on single genes (16S rRNA, sdhA), multiple gene sets (virulence genes, lipopolysaccharide [LPS] biosynthesis genes, pathogenicity island), and whole-genome comparisons (nucleotide and protein) gave congruent results, but with different levels of discrimination confidence. We designate four new species within the genus; Francisella opportunistica sp. nov. (MA06-7296), Francisella salina sp. nov. (TX07-7308), Francisella uliginis sp. nov. (TX07-7310), and Francisella frigiditurris sp. nov. (CA97-1460). This study provides a robust comparative framework to discern species and virulence features of newly detected Francisella bacteria. IMPORTANCE DNA-based detection and sequencing methods have identified thousands of new bacteria in the human body and the environment. In most cases, there are no cultured isolates that correspond to these sequences. While DNA-based approaches are highly sensitive, accurately assigning species is difficult without known near relatives for comparison. This ambiguity poses challenges for clinical cases, disease epidemics, and environmental surveillance, for which response times must be short. Many new Francisella isolates have been identified globally. However, their species designations and potential for causing human disease remain ambiguous. Through detailed genome comparisons, we identified features that differentiate F. tularensis from clinical and environmental Francisella isolates and provide a knowledge base for future comparison of Francisella organisms identified in clinical samples or environmental surveys.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
31 |
30
|
DeLoid G, Casella B, Pirela S, Filoramo R, Pyrgiotakis G, Demokritou P, Kobzik L. Effects of engineered nanomaterial exposure on macrophage innate immune function. NANOIMPACT 2016; 2:70-81. [PMID: 29568809 PMCID: PMC5860825 DOI: 10.1016/j.impact.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing use of engineered nanomaterials (ENMs) means increased human exposures. Potential adverse effects include those on the immune system, ranging from direct toxicity to impairment of defenses against environmental pathogens and toxins. Effects on lung macrophages may be especially prominent, because they serve to clear foreign materials like ENMs and bacterial pathogens. We investigated the effects of 4 hour exposures over a range of concentrations, of a panel of industry-relevant ENMs, including SiO2, Fe2O3, ZnO, CeO2, TiO2, and an Ag/SiO2 composite, on human THP-1 macrophages. Effects on phagocytosis of latex beads, and phagocytosis and killing of Francisella tularensis (FT), as well as viability, oxidative stress and mitochondrial integrity, were measured by automated scanning confocal microscopy and image analysis. Results revealed some notable patterns: 1) Phagocytosis of unopsonized beads was increased, whereas that of opsonized beads was decreased, by all ENMs, with the exception of ZnO, which reduced both opsonized and unopsonized uptake; 2) Uptake of opsonized and unopsonized FT was either impaired or unaffected by all ENMs, with the exception of CeO2, which increased phagocytosis of unopsonized FT; 3) Macrophage killing of FT tended to improve with all ENMs; and 4) Viability was unaffected immediately following exposures with all ENMs tested, but was significantly decreased 24 hours after exposures to Ag/SiO2 and ZnO ENMs. The results reveal a complex landscape of ENM effects on macrophage host defenses, including both enhanced and reduced capacities, and underscore the importance of robust hazard assessment, including immunotoxicity assessment, of ENMs.
Collapse
|
research-article |
9 |
29 |
31
|
Franchini AM, Hunt D, Melendez JA, Drake JR. FcγR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species. J Biol Chem 2013; 288:25098-25108. [PMID: 23857584 DOI: 10.1074/jbc.m113.474106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of the FcγR via antigen containing immune complexes can lead to the generation of reactive oxygen species, which are potent signal transducing molecules. However, whether ROS contribute to FcγR signaling has not been studied extensively. We set out to elucidate the role of NADPH oxidase-generated ROS in macrophage activation following FcγR engagement using antigen-containing immune complexes. We hypothesized that NOX2 generated ROS is necessary for propagation of downstream FcγR signaling and initiation of the innate immune response. Following exposure of murine bone marrow-derived macrophages (BMDMs) to inactivated Francisella tularensis (iFt)-containing immune complexes, we observed a significant increase in the innate inflammatory cytokine IL-6 at 24 h compared with macrophages treated with Ft LVS-containing immune complexes. Ligation of the FcγR by opsonized Ft also results in significant ROS production. Macrophages lacking the gp91(phox) subunit of NOX2 fail to produce ROS upon FcγR ligation, resulting in decreased Akt phosphorylation and a reduction in the levels of IL-6 compared with wild type macrophages. Similar results were seen following infection of BMDMs with catalase deficient Ft that fail to scavenge hydrogen peroxide. In conclusion, our findings demonstrate that ROS participate in elicitation of an effective innate immune in response to antigen-containing immune complexes through FcγR.
Collapse
|
Journal Article |
12 |
29 |
32
|
Zargar A, Maurin M, Mostafavi E. Tularemia, a re-emerging infectious disease in Iran and neighboring countrie. Epidemiol Health 2015; 37:e2015011. [PMID: 25773439 PMCID: PMC4430760 DOI: 10.4178/epih/e2015011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Tularemia is a zoonotic disease transmitted by direct contact with infected animals and through arthropod bites, inhalation of contaminated aerosols, ingestion of contaminated meat or water, and skin contact with any infected material. It is widespread throughout the northern hemisphere, including Iran and its neighbors to the north, northeast, and northwest. METHODS In this paper, the epidemiology of tularemia as a re-emerging infectious disease in the world with a focus on Iran and the neighboring countries is reviewed. RESULTS In Iran, positive serological tests were first reported in 1973, in wildlife and domestic livestock in the northwestern and southeastern parts of the country. The first human case was reported in 1980 in the southwest of Iran, and recent studies conducted among at-risk populations in the western, southeastern, and southwestern parts of Iran revealed seroprevalences of 14.4, 6.52, and 6%, respectively. CONCLUSIONS Several factors may explain the absence of reported tularemia cases in Iran since 1980. Tularemia may be underdiagnosed in Iran because Francisella tularensis subspecies holarctica is likely to be the major etiological agent and usually causes mild to moderately severe disease. Furthermore, tularemia is not a disease extensively studied in the medical educational system in Iran, and empirical therapy may be effective in many cases. Finally, it should be noted that laboratories capable of diagnosing tularemia have only been established in the last few years. Since both recent and older studies have consistently found tularemia antibodies in humans and animals, the surveillance of this disease should receive more attention. In particular, it would be worthwhile for clinical researchers to confirm tularemia cases more often by isolating F. tularensis from infected humans and animals.
Collapse
|
Review |
10 |
29 |
33
|
Luque-Larena JJ, Mougeot F, Roig DV, Lambin X, Rodríguez-Pastor R, Rodríguez-Valín E, Anda P, Escudero R. Tularemia Outbreaks and Common Vole (Microtus arvalis) Irruptive Population Dynamics in Northwestern Spain, 1997-2014. Vector Borne Zoonotic Dis 2015; 15:568-70. [PMID: 26333034 DOI: 10.1089/vbz.2015.1770] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the last decades, large tularemia outbreaks in humans have coincided in time and space with population outbreaks of common voles in northwestern Spain, leading us to hypothesize that this rodent species acts as a key spillover agent of Francisella tularensis in the region. Here, we evaluate for the first time a potential link between irruptive vole numbers and human tularemia outbreaks in Spain. We compiled vole abundance estimates obtained through live-trapping monitoring studies and official reports of human tularemia cases during the period 1997-2014. We confirm a significant positive association between yearly cases of tularemia infection in humans and vole abundance. High vole densities during outbreaks (up to 1000 voles/hectare) may therefore enhance disease transmission and spillover contamination in the environment. If this ecological link is further confirmed, the apparent multiannual cyclicity of common vole outbreaks might provide a basis for forecasting the risk of tularemia outbreaks in northwestern Spain.
Collapse
|
Journal Article |
10 |
28 |
34
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
|
Review |
11 |
28 |
35
|
Okan NA, Kasper DL. The atypical lipopolysaccharide of Francisella. Carbohydr Res 2013; 378:79-83. [PMID: 23916469 DOI: 10.1016/j.carres.2013.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/15/2013] [Accepted: 06/20/2013] [Indexed: 01/17/2023]
Abstract
Bacterial lipopolysaccharides (LPSs) are ubiquitous molecules that are prominent components of the outer membranes of most gram-negative bacteria. Genetic and structural characterizations of Francisella LPS have revealed substantial differences when compared to more commonly studied LPSs of the Enterobacteriaceae. This review discusses both the general characteristics and the unusual features of Francisella LPS.
Collapse
|
Review |
12 |
27 |
36
|
Faith SA, Smith LP, Swatland AS, Reed DS. Growth conditions and environmental factors impact aerosolization but not virulence of Francisella tularensis infection in mice. Front Cell Infect Microbiol 2012; 2:126. [PMID: 23087911 PMCID: PMC3468843 DOI: 10.3389/fcimb.2012.00126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/25/2012] [Indexed: 01/06/2023] Open
Abstract
In refining methodology to develop a mouse model for inhalation of Francisella tularensis, it was noted that both relative humidity and growth media impacted the aerosol concentration of the live vaccine strain (LVS) of F. tularensis. A relative humidity of less than 55% had a negative impact on the spray factor, the ratio between the concentration of LVS in the aerosol and the nebulizer. The spray factor was significantly higher for LVS grown in brain heart infusion (BHI) broth than LVS grown in Mueller–Hinton broth (MHb) or Chamberlain's chemically defined medium (CCDM). The variability between aerosol exposures was also considerably less with BHI. LVS grown in BHI survived desiccation far longer than MHb-grown or CCDM-grown LVS (~70% at 20 min for BHI compared to <50% for MHb and CCDM). Removal of the capsule by hypertonic treatment impacted the spray factor for CCDM-grown LVS or MHb-grown LVS but not BHI-grown LVS, suggesting the choice of culture media altered the adherence of the capsule to the cell membrane. The choice of growth media did not impact the LD50 of LVS but the LD99 of BHI-grown LVS was 1 log lower than that for MHb-grown LVS or CCDM-grown LVS. Splenomegaly was prominent in mice that succumbed to MHb- and BHI-grown LVS but not CCDM-grown LVS. Environmental factors and growth conditions should be evaluated when developing new animal models for aerosol infection, particularly for vegetative bacterial pathogens.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
26 |
37
|
Hamblin KA, Wong JP, Blanchard JD, Atkins HS. The potential of liposome-encapsulated ciprofloxacin as a tularemia therapy. Front Cell Infect Microbiol 2014; 4:79. [PMID: 24995163 PMCID: PMC4062069 DOI: 10.3389/fcimb.2014.00079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
Liposome-encapsulation has been suggested as method to improve the efficacy of ciprofloxacin against the intracellular pathogen, Francisella tularensis. Early work with a prototype formulation, evaluated for use against the F. tularensis live vaccine strain, showed that a single dose of liposomal ciprofloxacin given by the intranasal or inhalational route could provide protection in a mouse model of pneumonic tularemia. Liposomal ciprofloxacin offered better protection than ciprofloxacin given by the same routes. Liposomal ciprofloxacin has been further developed by Aradigm Corporation for Pseudomonas aeruginosa infections in patients with cystic fibrosis and non-cystic fibrosis bronchiectasis. This advanced development formulation is safe, effective and well tolerated in human clinical trials. Further evaluation of the advanced liposomal ciprofloxacin formulation against the highly virulent F. tularensis Schu S4 strain has shown that aerosolized CFI (Ciprofloxacin encapsulated in liposomes for inhalation) provides significantly better protection than oral ciprofloxacin. Thus, liposomal ciprofloxacin is a promising treatment for tularemia and further research with the aim of enabling licensure under the animal rule is warranted.
Collapse
|
Review |
11 |
25 |
38
|
Salomonsson EN, Forslund AL, Forsberg A. Type IV Pili in Francisella - A Virulence Trait in an Intracellular Pathogen. Front Microbiol 2011; 2:29. [PMID: 21687421 PMCID: PMC3109291 DOI: 10.3389/fmicb.2011.00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/04/2011] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a highly virulent intracellular human pathogen that is capable of rapid proliferation in the infected host. Mutants affected in intracellular survival and growth are highly attenuated which highlights the importance of the intracellular phase of the infection. Genomic analysis has revealed that Francisella encodes all genes required for expression of functional type IV pili (Tfp), and in this focused review we summarize recent findings regarding this system in the pathogenesis of tularemia. Tfp are dynamic adhesive structures that have been identified as major virulence determinants in several human pathogens, but it is not obvious what role these structures could have in an intracellular pathogen like Francisella. In the human pathogenic strains, genes required for secretion and assembly of Tfp and one pilin, PilA, have shown to be required for full virulence. Importantly, specific genetic differences have been identified between the different Francisella subspecies where in the most pathogenic type A variants all genes are intact while several Tfp genes are pseudogenes in the less pathogenic type B strains. This suggests that there has been a selection for expression of Tfp with different properties in the different subspecies. There is also a possibility that the genetic differences reflect adaptation to different environmental niches of the subspecies and plays a role in transmission of tularemia. This is also in line with recent findings where Tfp pilins are found to be glycosylated which could reflect a role for Tfp in the environment to promote survival and transmission. We are still far from understanding the role of Tfp in virulence and transmission of tularemia, but with the genomic information and genetic tools available we are in a good position to address these issues in the future.
Collapse
|
Journal Article |
14 |
25 |
39
|
Seo SH, Lee YR, Ho Jeon J, Hwang YR, Park PG, Ahn DR, Han KC, Rhie GE, Hong KJ. Highly sensitive detection of a bio-threat pathogen by gold nanoparticle-based oligonucleotide-linked immunosorbent assay. Biosens Bioelectron 2014; 64:69-73. [PMID: 25194798 DOI: 10.1016/j.bios.2014.08.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/07/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023]
Abstract
Francisella (F.) tularensis causes the zoonotic disease tularemia and categorized as one of the highest-priority biological agents. The sensing approaches utilized by conventional detection methods, including enzyme-linked immunosorbent assay (ELISA), are not sensitive enough to identify an infectious dose of this high-risk pathogen due to its low infective dose. As an attempt to detect F. tularensis with high sensitivity, we utilized the highly sensitive immunoassay system named gold nanoparticle-based oligonucleotide-linked immunosorbent assay (GNP-OLISA) which uses antibody-gold nanoparticles conjugated with DNA strands as a signal generator and RNA oligonucleotides appended with a fluorophore as a quencher for signal amplification. We modified the GNP-OLISA for the detection F. tularensis to utilize one antibody for both the capture of the target and for signal generation instead of using two different antibodies, which are usually employed to construct the antibody sandwich in the ELISA. The GNP-OLISA showed 37-fold higher sensitivity compared with ELISA and generated very consistent detection results in the sera. In addition, the detection specificity was not affected by the presence of non-target bacteria, suggesting that GNP-OLISA can be used as a sensitive detection platform for monitoring high-risk pathogens thereby overcoming the limit of the conventional assay system.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
25 |
40
|
Rydén P, Sjöstedt A, Johansson A. Effects of climate change on tularaemia disease activity in Sweden. Glob Health Action 2009; 2. [PMID: 20052432 PMCID: PMC2799307 DOI: 10.3402/gha.v2i0.2063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/17/2009] [Accepted: 09/17/2009] [Indexed: 11/14/2022] Open
Abstract
Tularaemia is a vector-borne infectious disease. A large majority of cases transmitted to humans by blood-feeding arthropods occur during the summer season and is linked to increased temperatures. Therefore, the effect of climate change is likely to have an effect on tularaemia transmission patterns in highly endemic areas of Sweden. In this report, we use simulated climate change scenario data and empirical data of temperatures critical to tularaemia transmission to forecast tularaemia outbreak activity. The five high-endemic counties: Dalarna, Gävleborg, Norrbotten, Värmland and Örebro represent only 14.6% of the total population of Sweden, but have recorded 40.1–81.1% of the number of annual human tularaemia in Sweden from 1997 until 2008. We project here earlier starts and a later termination of future tularaemia outbreaks for the time period 2010–2100. For five localised outbreak areas; Gagnef (Dalarna), Ljusdal (Gävleborg), Harads (Norrbotten), Karlstad (Värmland) and Örebro municipality (Örebro), the climate scenario suggests an approximately 2°C increase in monthly average summer temperatures leading to increases in outbreak durations ranging from 3.5 weeks (Harads) to 6.6 weeks (Karlstad) between 2010 and 2100. In contrast, an analysis of precipitation scenarios indicates fairly stable projected levels of precipitation during the summer months. Thus, there should not be an increased abundance of late summer mosquitoes that are believed to be main vectors for transmission to humans in these areas. In conclusion, the results indicate that the future climate changes will lead to an increased burden of tularaemia in high-endemic areas of Sweden during the coming decades.
Collapse
|
Journal Article |
16 |
24 |
41
|
Ulu-Kilic A, Doganay M. An overview: tularemia and travel medicine. Travel Med Infect Dis 2014; 12:609-16. [PMID: 25457302 DOI: 10.1016/j.tmaid.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 12/15/2022]
Abstract
Tularemia is a bacterial zoonotic infection. The disease is endemic in most parts of the world, has been reported through the northern hemisphere between 30 and 71° N latitude. Francisella tularensis causes infection in a wide range of vertebrates (rodents, lagomorphs) and invertebrates (ticks, mosquitoes and other arthropods). Humans can acquire this infection through several routes including; a bite from an infected tick, deerfly or mosquito, contact with an infected animal or its dead body. It can also be spread to human by drinking contaminated water or breathing contaminated dirt or aerosol. Clinical manifestation of this disease varies depending on the biotype, inoculum and port of entry. Infection is potentially life threatening, but can effectively be treated with antibiotics. Travelers visiting rural and agricultural areas in endemic countries may be at greater risk. Appropriate clothing and use of insect repellants is essential to prevent tick borne illness. Travelers also should be aware of food and waterborne disease; avoid consuming potentially contaminated water and uncooked meat. Physicians should be aware of any clinical presentation of tularemia in the patients returning from endemic areas.
Collapse
|
Review |
11 |
24 |
42
|
Rodríguez-Pastor R, Escudero R, Vidal D, Mougeot F, Arroyo B, Lambin X, Vila-Coro AM, Rodríguez-Moreno I, Anda P, Luque-Larena JJ. Density-Dependent Prevalence of Francisella tularensis in Fluctuating Vole Populations, Northwestern Spain. Emerg Infect Dis 2018; 23:1377-1379. [PMID: 28726608 PMCID: PMC5547778 DOI: 10.3201/eid2308.161194] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tularemia in humans in northwestern Spain is associated with increases in vole populations. Prevalence of infection with Francisella tularensis in common voles increased to 33% during a vole population fluctuation. This finding confirms that voles are spillover agents for zoonotic outbreaks. Ecologic interactions associated with tularemia prevention should be considered.
Collapse
|
Journal Article |
7 |
24 |
43
|
Ziveri J, Barel M, Charbit A. Importance of Metabolic Adaptations in Francisella Pathogenesis. Front Cell Infect Microbiol 2017; 7:96. [PMID: 28401066 PMCID: PMC5368251 DOI: 10.3389/fcimb.2017.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Francisella tularensis is a highly infectious Gram-negative bacterium and the causative agent of the zoonotic disease tularemia. This bacterial pathogen can infect a broad variety of animal species and can be transmitted to humans in numerous ways with various clinical outcomes. Although, Francisella possesses the capacity to infect numerous mammalian cell types, the macrophage constitutes the main intracellular niche, used for in vivo bacterial dissemination. To survive and multiply within infected macrophages, Francisella must imperatively escape from the phagosomal compartment. In the cytosol, the bacterium needs to control the host innate immune response and adapt its metabolism to this nutrient-restricted niche. Our laboratory has shown that intracellular Francisella mainly relied on host amino acid as major gluconeogenic substrates and provided evidence that the host metabolism was also modified upon Francisella infection. We will review here our current understanding of how Francisella copes with the available nutrient sources provided by the host cell during the course of infection.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
23 |
44
|
Glynn AR, Alves DA, Frick O, Erwin-Cohen R, Porter A, Norris S, Waag D, Nalca A. Comparison of experimental respiratory tularemia in three nonhuman primate species. Comp Immunol Microbiol Infect Dis 2015; 39:13-24. [PMID: 25766142 PMCID: PMC4397973 DOI: 10.1016/j.cimid.2015.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/16/2015] [Accepted: 01/28/2015] [Indexed: 11/19/2022]
Abstract
Tularemia is a zoonotic disease caused by Francisella tularensis, which is transmitted to humans most commonly by contact with infected animals, tick bites, or inhalation of aerosolized bacteria. F. tularensis is highly infectious via the aerosol route; inhalation of as few as 10-50 organisms can cause pneumonic tularemia. Left untreated, the pneumonic form has more than >30% case-fatality rate but with early antibiotic intervention can be reduced to 3%. This study compared tularemia disease progression across three species of nonhuman primates [African green monkey (AGM), cynomolgus macaque (CM), and rhesus macaque (RM)] following aerosolized F. tularensis Schu S4 exposure. Groups of the animals exposed to various challenge doses were observed for clinical signs of infection and blood samples were analyzed to characterize the disease pathogenesis. Whereas the AGMs and CMs succumbed to disease following challenge doses of 40 and 32 colony forming units (CFU), respectively, the RM lethal dose was 276,667 CFU. Following all challenge doses that caused disease, the NHPs experienced weight loss, bacteremia, fever as early as 4 days post exposure, and tissue burden. Necrotizing-to-pyogranulomatous lesions were observed most commonly in the lung, lymph nodes, spleen, and bone marrow. Overall, the CM model consistently manifested pathological responses similar to those resulting from inhalation of F. tularensis in humans and thereby most closely emulates human tularemia disease. The RM model displayed a higher tolerance to infection and survived exposures of up to 15,593 CFU of aerosolized F. tularensis.
Collapse
|
Comparative Study |
10 |
23 |
45
|
Mostafavi E, Shahraki AH, Japoni-Nejad A, Esmaeili S, Darvish J, Sedaghat MM, Mohammadi A, Mohammadi Z, Mahmoudi A, Pourhossein B, Ghasemi A, Gyuranecz M, Carniel E. A Field Study of Plague and Tularemia in Rodents, Western Iran. Vector Borne Zoonotic Dis 2017; 17:247-253. [PMID: 28165869 DOI: 10.1089/vbz.2016.2053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Kurdistan Province in Iran is a historical focus for plague and tularemia. This study aimed at assessing the current status of these two foci by studying their rodent reservoirs. MATERIALS AND METHODS Rodents were trapped and their ectoparasites were collected. The genus and species of both rodents and ectoparasites were determined. Serological analyses of rodent blood samples were done by enzyme-linked immunosorbent assay for plague and by standard tube agglutination assay for tularemia. Rodent spleen samples were subjected to bacterial culture, microscopic examination, and real-time PCR to search for active plague or tularemia infection. RESULTS During this study, 245 rodents were trapped, of which the most abundant genera were Apodemus (40%), Mus (24.49%), and Meriones (12.65%). One hundred fifty-three fleas, 37 mites, and 54 ticks were collected on these rodents. The results of all direct and indirect tests were negative for plague. Serological tests were positive for tularemia in 4.8% of trapped rodents. DISCUSSION This study is the first report on the presence of tularemia infection in rodents in Western Iran. Since Meriones persicus is a known reservoir for plague and tularemia, and this rodent carried plague and tularemia vectors in Marivan and Sanandaj districts, there is a real potential for the occurrence of these two diseases in this region.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
22 |
46
|
Dwibedi C, Birdsell D, Lärkeryd A, Myrtennäs K, Öhrman C, Nilsson E, Karlsson E, Hochhalter C, Rivera A, Maltinsky S, Bayer B, Keim P, Scholz HC, Tomaso H, Wittwer M, Beuret C, Schuerch N, Pilo P, Hernández Pérez M, Rodriguez-Lazaro D, Escudero R, Anda P, Forsman M, Wagner DM, Larsson P, Johansson A. Long-range dispersal moved Francisella tularensis into Western Europe from the East. Microb Genom 2016; 2:e000100. [PMID: 28348839 PMCID: PMC5359409 DOI: 10.1099/mgen.0.000100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 01/31/2023] Open
Abstract
For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
21 |
47
|
Abstract
Francisella tularensis is a highly virulent bacterial pathogen that is easily aerosolized and has a low infectious dose. As an intracellular pathogen, entry of Francisella into host cells is critical for its survival and virulence. However, the initial steps of attachment and internalization of Francisella into host cells are not well characterized, and little is known about bacterial factors that promote these processes. This review highlights our current understanding of Francisella attachment and internalization into host cells. In particular, we emphasize the host cell types Francisella has been shown to interact with, as well as specific receptors and signaling processes involved in the internalization process. This review will shed light on gaps in our current understanding and future areas of investigation.
Collapse
|
Review |
12 |
21 |
48
|
Dryselius R, Hjertqvist M, Mäkitalo S, Lindblom A, Lilja T, Eklöf D, Lindström A. Large outbreak of tularaemia, central Sweden, July to September 2019. ACTA ACUST UNITED AC 2020; 24. [PMID: 31640844 PMCID: PMC6807254 DOI: 10.2807/1560-7917.es.2019.24.42.1900603] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
On 31 of July 2019, the Public Health Agency of Sweden was alerted about an increasing number of tularaemia cases in Gävleborg, a county in central Sweden. The number of cases increased thereafter peaking at about 150 reports of illnesses every week. As at 6 October, a total of 979 cases (734 laboratory-confirmed) have been reported, mainly from counties in central Sweden. The outbreak is now considered over (as at 14 October).
Collapse
|
Journal Article |
5 |
21 |
49
|
Jia Q, Horwitz MA. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis. Front Cell Infect Microbiol 2018; 8:154. [PMID: 29868510 PMCID: PMC5963219 DOI: 10.3389/fcimb.2018.00154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed "Foshay" vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals-especially mice-but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated-but not killed or subunit-vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development-safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the higher standard of having efficacy ≥LVS in the demanding mouse model of tularemia. These latter include LVS with deletions in purMCD, sodBFt , capB or wzy; LVS ΔcapB that also overexpresses Type VI Secretion System (T6SS) proteins; FSC200 with a deletion in clpB; the single deletional purMCD mutant of F. tularensis SCHU S4, and a heterologous prime-boost vaccine comprising LVS ΔcapB and Listeria monocytogenes expressing T6SS proteins.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
21 |
50
|
David J, Sayer NM, Sarkar-Tyson M. The use of a three-dimensional cell culture model to investigate host-pathogen interactions of Francisella tularensis in human lung epithelial cells. Microbes Infect 2014; 16:735-45. [PMID: 24796635 DOI: 10.1016/j.micinf.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 01/14/2014] [Accepted: 04/07/2014] [Indexed: 01/25/2023]
Abstract
Francisella tularensis inhalation results in bacterial interaction with numerous lung cell types, including those of the epithelium. This work investigates a three-dimensional cell-culture system to characterise the epithelial response to F. tularensis. Immortalised human pneumocytes (A549s) grown in rotating-wall vessel (RWV) bioreactors display an in vivo-like phenotype, which has been confirmed to be driven by specific transcriptional events (8454 genes, p ≤ 0.05). These data support the RWV model as a more in vivo-like culture system to investigate the lung epithelium, compared to monolayer counterparts. RWV-cultured A549s were infected with F. tularensis SchuS4 and LVS and intracellular replication mapped over 22 h compared to monolayer cells. The RWV-cultured A549s were more resistant to SchuS4 and LVS infection (p ≤ 0.05). Transcriptomics identified 2086 genes (p ≤ 0.05) as candidates for host-pathogen interactions which result in the observed increase in resistance of the RWV-cultured A549 cells. Gene and pathway analysis identified processes involved in MMP modulation, endocytosis, mucin production and the complement pathway amongst others. The role of these pathways during infection was further characterised using chemical inhibitors. This work has revealed several new hypotheses worthy of further testing in order to understand the epithelial host response to F. tularensis infection.
Collapse
|
Journal Article |
11 |
20 |