26
|
Bernson E, Huhn O, Karlsson V, Hawkes D, Lycke M, Cazzetta V, Mikulak J, Hall J, Piskorz AM, Portuesi R, Vitobello D, Fiamengo B, Siesto G, Horowitz A, Ghadially H, Mavilio D, Brenton JD, Sundfeldt K, Colucci F. Identification of Tissue-Resident Natural Killer and T Lymphocytes with Anti-Tumor Properties in Ascites of Ovarian Cancer Patients. Cancers (Basel) 2023; 15:3362. [PMID: 37444472 PMCID: PMC10340516 DOI: 10.3390/cancers15133362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Women with ovarian cancer have limited therapy options, with immunotherapy being unsatisfactory for a large group of patients. Tumor cells spread from the ovary or the fallopian tube into the abdominal cavity, which is commonly accompanied with massive ascites production. The ascites represents a unique peritoneal liquid tumor microenvironment with the presence of both tumor and immune cells, including cytotoxic lymphocytes. We characterized lymphocytes in ascites from patients with high-grade serous ovarian cancer. Our data reveal the presence of NK and CD8+ T lymphocytes expressing CD103 and CD49a, which are markers of tissue residency. Moreover, these cells express high levels of the inhibitory NKG2A receptor, with the highest expression level detected on tissue-resident NK cells. Lymphocytes with these features were also present at the primary tumor site. Functional assays showed that tissue-resident NK cells in ascites are highly responsive towards ovarian tumor cells. Similar results were observed in an in vivo mouse model, in which tissue-resident NK and CD8+ T cells were detected in the peritoneal fluid upon tumor growth. Together, our data reveal the presence of highly functional lymphocyte populations that may be targeted to improve immunotherapy for patients with ovarian cancer.
Collapse
|
27
|
Vietzen H, Staber PB, Berger SM, Furlano PL, Kühner LM, Lubowitzki S, Pichler A, Strassl R, Cornelissen JJ, Puchhammer-Stöckl E. Inhibitory NKG2A+ and absent activating NKG2C + NK cell responses are associated with the development of EBV + lymphomas. Front Immunol 2023; 14:1183788. [PMID: 37426645 PMCID: PMC10324562 DOI: 10.3389/fimmu.2023.1183788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus, which infects over 90% of the adult human population worldwide. After primary infections, EBV is recurrently reactivating in most adult individuals. It is, however, unclear, why these EBV reactivations progress to EBV+ Hodgkin (EBV+HL) or non-Hodgkin lymphomas (EBV+nHL) only in a minority of EBV-infected individuals. The EBV LMP-1 protein encodes for a highly polymorphic peptide, which upregulates the immunomodulatory HLA-E in EBV-infected cells, thereby stimulating the inhibitory NKG2A-, but also the activating NKG2C-receptor on natural killer (NK) cells. Using a genetic-association approach and functional NK cell analyses, we now investigated, whether these HLA-E-restricted immune responses impact the development of EBV+HL and EBV+nHL. Therefore, we recruited a study cohort of 63 EBV+HL and EBV+nHL patients and 192 controls with confirmed EBV reactivations, but without lymphomas. Here, we demonstrate that in EBV+ lymphoma patients exclusively the high-affine LMP-1 GGDPHLPTL peptide variant-encoding EBV-strains reactivate. In EBV+HL and EBV+nHL patients, the high-expressing HLA-E*0103/0103 genetic variant was significantly overrepresented. Combined, the LMP-1 GGDPHLPTL and HLA-E*0103/0103 variants efficiently inhibited NKG2A+ NK cells, thereby facilitating the in vitro spread of EBV-infected tumor cells. In addition, EBV+HL and EBV+nHL patients, showed impaired pro-inflammatory NKG2C+ NK cell responses, which accelerated the in vitro EBV-infected tumor cells spread. In contrast, the blocking of NKG2A by monoclonal antibodies (Monalizumab) resulted in efficient control of EBV-infected tumor cell growth, especially by NKG2A+NKG2C+ NK cells. Thus, the HLA-E/LMP-1/NKG2A pathway and individual NKG2C+ NK cell responses are associated with the progression toward EBV+ lymphomas.
Collapse
|
28
|
Greppi M, Obino V, Goda R, Rebaudi F, Carlomagno S, Della Chiesa M, Sivori S, Ubezio G, Agostini V, Bo A, Pesce S, Marcenaro E. Identification of a novel cord blood NK cell subpopulation expressing functional programmed death receptor-1. Front Immunol 2023; 14:1183215. [PMID: 37441071 PMCID: PMC10335745 DOI: 10.3389/fimmu.2023.1183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Background Natural Killer cells (NKs) represent the innate counterpart of TCRαβ lymphocytes and are characterized by a high anti-tumor and an anti-viral cytotoxic activity. Recently, it has been demonstrated that NKs can express PD-1 as an additional inhibitory receptor. Specifically, PD-1 was identified on a subpopulation of terminally differentiated NKs from healthy adults with previous HCMV infection. So far it is unknown whether PD-1 appears during NK-cell development and whether this process is directly or indirectly related to HCMV infection. Methods In this study, we analyzed the expression and function of PD-1 on Cord Blood derived NKs (CB-NKs) on a large cohort of newborns through multiparametric cytofluorimetric analysis. Results We identified PD-1 on CB-NKs in more than of half the newborns analyzed. PD-1 was present on CD56dim NKs, and particularly abundant on CD56neg NKs, but only rarely present on CD56bright NKs. Importantly, unlike in adult healthy donors, in CB-NKs PD-1 is co-expressed not only with KIR, but also with NKG2A. PD-1 expression was independent of HCMV mother seropositivity and occurs in the absence of HCMV infection/reactivation during pregnancy. Notably, PD-1 expressed on CB-NKs was functional and mediated negative signals when triggered. Conclusion To our understanding, this study is the first to report PD-1 expression on CB derived NKs and its features in perinatal conditions. These data may prove important in selecting the most suitable CB derived NK cell population for the development of different immunotherapeutic treatments.
Collapse
|
29
|
Graninger M, Vietzen H, Puchhammer-Stöckl E. Association between human genetic variants affecting the host NK cell response and the development of herpes simplex virus type 1 encephalitis. J Med Virol 2023; 95:e28759. [PMID: 37212301 DOI: 10.1002/jmv.28759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
Herpes simplex virus encephalitis (HSE) is a rare complication of herpes simplex virus type 1 (HSV-1) infection or reactivation. It is so far unclear why only few patients develop HSE. As natural killer (NK) cells provide an important defense against HSV-1, we investigated whether there is an association between distinct human genetic variants associated with the host NK cell response and HSE. Forty-nine adult patients with confirmed HSE and 247 matched controls were analyzed for the distribution of the following genotypes: CD16A (FcγRIIIA) V/F and IGHG1 G1m3/17, both influencing antibody-dependent cellular cytotoxicity; HLA-E*0101/*0103, associated with NK cell activation; and SLFN13 rs9916629C/T associated with NK cell response. Homozygous HLA-E*0101:0101 and HLA-E*0103:0103 variants as well as the rs9916629CC genotype were overrepresented in HSE patients compared to controls (p ≤ 0.001). Notably, cooccurrence of the homozygous HLA-E*0101 and rs9916629CC genotypes was present in 19% of patients but totally absent in controls (p ≤ 0.0001). Distribution of CD16A and IGHG1 variants did not differ between patients and controls. Our data show that the rare combination of HLA-E*0101:0101 and rs9916629CC is significantly associated with HSE. Possibly, these genetic variations could be useful as clinical markers predicting HSE prognosis and helping to adapt the treatment of HSE in the individual patient.
Collapse
|
30
|
Beelen NA, Ehlers FAI, Bos GMJ, Wieten L. Inhibitory receptors for HLA class I as immune checkpoints for natural killer cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Cancer Immunol Immunother 2023; 72:797-804. [PMID: 36261539 PMCID: PMC10025219 DOI: 10.1007/s00262-022-03299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells mediate potent anti-tumor responses, which makes them attractive targets for immunotherapy. The anti-tumor response of endogenous- or allogeneic NK cells can be enhanced through clinically available monoclonal antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is regulated by interaction of inhibitory receptors with classical- and non-classical human leukocyte antigens (HLA) class I molecules. Inhibitory receptors of the killer immunoglobulin-like receptor (KIR) family interact with HLA-A, -B or -C epitopes, while NKG2A interacts with the non-classical HLA-E molecule. Both types of inhibitory interactions may influence the strength of the ADCC response. In the present review, we provide an overview of the effect of inhibitory KIRs and NKG2A on NK cell-mediated ADCC, which highlights the rationale for combination strategies with ADCC triggering antibodies and interference with the NK cell relevant inhibitory immune checkpoints, such as KIR and NKG2A.
Collapse
|
31
|
Lu YC, Ho CH, Hong JH, Kuo MC, Liao YA, Jaw FS, Cheng JCH, Huang CY, Chang KP, Chen CH, Lin JA, Hsiao A, Kung HN. NKG2A and circulating extracellular vesicles are key regulators of natural killer cell activity in prostate cancer after prostatectomy. Mol Oncol 2023. [PMID: 36931723 PMCID: PMC10399716 DOI: 10.1002/1878-0261.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/05/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Extracellular vesicles (EVs) are an important regulatory factor for natural killer cell activity (NKA) in the tumor microenvironment. The relationship between circulating EVs in the peripheral blood and natural killer (NK) cells in prostate cancer is unclear. This study aims to investigate the key regulators in the interaction between circulating EVs and NK cells in prostate cancer patients before and after tumor removal. NK-cell characteristics were prospectively assessed in 79 patients treated with robot-assisted laparoscopic radical prostatectomy (RARP) preoperatively and postoperatively. Compared with healthy donors, the existence of prostate tumors increased the number of circulating EVs and altered ligand expression of EVs. Circulating EVs extracted from cancer patients significantly decreased NKA of NK cells compared to those extracted from healthy donors. Upon treatment with an inhibiting antibody or small interfering RNA (siRNA), natural killer cell protein group 2A (NKG2A) was identified as the main NKA regulator in cancer patients for accepting the signal from circulating EVs. After surgery, NKA was increased and NKG2A expression on NK cells was significantly reduced. The expression of ligands for NKG2D on EVs and the level of circulation EVs both significantly increased. With the decrease in NKG2A levels on NK cells and the increase in total NKG2D ligands on circulating EVs, which was increased postoperatively, both NKG2A on NK cells and NKG2D ligands on circulating exosomes are main regulators of NKA restoration after prostatectomy.
Collapse
|
32
|
Choi SJ, Koh JY, Rha MS, Seo IH, Lee H, Jeong S, Park SH, Shin EC. KIR +CD8 + and NKG2A+CD8 + T cells are distinct innate-like populations in humans. Cell Rep 2023; 42:112236. [PMID: 36897779 DOI: 10.1016/j.celrep.2023.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Subsets of the human CD8+ T cell population express inhibitory NK cell receptors, such as killer immunoglobulin-like receptors (KIRs) and NKG2A. In the present study, we examine the phenotypic and functional characteristics of KIR+CD8+ T cells and NKG2A+CD8+ T cells. KIRs and NKG2A tend to be expressed by human CD8+ T cells in a mutually exclusive manner. In addition, TCR clonotypes of KIR+CD8+ T cells barely overlap with those of NKG2A+CD8+ T cells, and KIR+CD8+ T cells are more terminally differentiated and replicative senescent than NKG2A+CD8+ T cells. Among cytokine receptors, IL12Rβ1, IL12Rβ2, and IL18Rβ are highly expressed by NKG2A+CD8+ T cells, whereas IL2Rβ is expressed by KIR+CD8+ T cells. IL-12/IL-18-induced production of IFN-γ is prominent in NKG2A+CD8+ T cells, whereas IL-15-induced NK-like cytotoxicity is prominent in KIR+CD8+ T cells. These findings suggest that KIR+CD8+ and NKG2A+CD8+ T cells are distinct innate-like populations with different cytokine responsiveness.
Collapse
|
33
|
NKG2A Immune Checkpoint in Vδ2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15041264. [PMID: 36831606 PMCID: PMC9954046 DOI: 10.3390/cancers15041264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Immune regulation has revolutionized cancer treatment with the introduction of T-cell-targeted immune checkpoint inhibitors (ICIs). This successful immunotherapy has led to a more complete view of cancer that now considers not only the cancer cells to be targeted and destroyed but also the immune environment of the cancer cells. Current challenges associated with the enhancement of ICI effects are increasing the fraction of responding patients through personalized combinations of multiple ICIs and overcoming acquired resistance. This requires a complete overview of the anti-tumor immune response, which depends on a complex interplay between innate and adaptive immune cells with the tumor microenvironment. The NKG2A was revealed to be a key immune checkpoint for both Natural Killer (NK) cells and T cells. Monalizumab, a humanized anti-NKG2A antibody, enhances NK cell activity against various tumor cells and rescues CD8 αβ T cell function in combination with PD-1/PD-L1 blockade. In this review, we discuss the potential for targeting NKG2A expressed on tumor-sensing human γδ T cells, mostly on the specific Vδ2 T cell subset, in order to emphasize its importance and potential in the development of new ICI-based therapeutic approaches.
Collapse
|
34
|
Hosseini E, Minagar A, Ghasemzadeh M, Arabkhazaeli A, Ghasemzadeh A. HLA-E*01:01 + HLA-E*01:01 genotype confers less susceptibility to COVID-19, while HLA-E*01:03 + HLA-E*01:03 genotype is associated with more severe disease. Hum Immunol 2023; 84:263-271. [PMID: 36822912 PMCID: PMC9922572 DOI: 10.1016/j.humimm.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND HLA-E interaction with inhibitory receptor, NKG2A attenuates NK-mediated cytotoxicity. NKG2A overexpression by SARS-CoV-2 exhausts NK cells function, whereas virus-induced down-regulation of MHC-Ia reduces its derived-leader sequence peptide levels required for proper binding of HLA-E to NKG2A. This leads HLA-E to become more complex with viral antigens and delivers them to CD8+ T cells, which facilitates cytolysis of infected cells. Now, the fact that alleles of HLA-E have different levels of expression and affinity for MHC Ia-derived peptide raises the question of whether HLA-E polymorphisms affect susceptibility to COVID-19 or its severity. METHODS 104 COVID-19 convalescent plasma donors with/without history of hospitalization and 18 blood donors with asymptomatic COVID-19, all were positive for anti-SARS-CoV-2 IgG antibody as well as a group of healthy control including 68 blood donors with negative antibody were subjected to HLA-E genotyping. As a privilege, individuals hadn't been vaccinated against COVID-19 and therefore naturally exposed to the SARS-CoV-2. RESULTS The absence of HLA-E*01:03 allele significantly decreases the odds of susceptibility to SARS-CoV-2 infection [p = 0.044; OR (95 %CI) = 0.530 (0.286 - 0.983)], suggesting that HLA-E*01:01 + HLA-E*01:01 genotype favors more protection against SARS-CoV-2 infection. HLA-E*01:03 + HLA-E*01:03 genotype was also significantly associated with more severe COVID-19 [p = 0.020; 2.606 (1.163 - 5.844) CONCLUSION: Here, our observation about lower susceptibility of HLA-E*01:01 + HLA-E*01:01 genotype to COVID-19 could be clinical evidence in support of some previous studies suggesting that the lower affinity of HLA-E*01:01 to peptides derived from the leader sequence of MHC class Ia may instead shift its binding to virus-derived peptides, which then facilitates target recognition by restricted conventional CD8+ T cells and leads to efficient cytolysis. On the other hand, according to other studies, less reactivity of HLA-E*01:01 with NKG2A abrogates NK cells or T cells inhibition, which may also lead to a greater cytotoxicity against SARS-CoV-2 infected cells compared to HLA-E*01:03. Taken together given HLA-E polymorphisms, the data presented here may be useful in identifying more vulnerable individuals to COVID-19 for better care and management. Especially since along with other risk factors in patients, having HLA-E*01:03 + HLA-E*01:03 genotype may also be associated with the possibility of severe cases of the disease.
Collapse
|
35
|
Rascle P, Woolley G, Jost S, Manickam C, Reeves RK. NK cell education: Physiological and pathological influences. Front Immunol 2023; 14:1087155. [PMID: 36742337 PMCID: PMC9896005 DOI: 10.3389/fimmu.2023.1087155] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Natural killer (NK) cells represent a critical defense against viral infections and cancers. NK cells require integration of activating and inhibitory NK cell receptors to detect target cells and the balance of these NK cell inputs defines the global NK cell response. The sensitivity of the response is largely defined by interactions between self-major histocompatibility complex class I (MHC-I) molecules and specific inhibitory NK cell receptors, so-called NK cell education. Thus, NK cell education is a crucial process to generate tuned effector NK cell responses in different diseases. In this review, we discuss the relationship between NK cell education and physiologic factors (type of self-MHC-I, self-MHC-I allelic variants, variant of the self-MHC-I-binding peptides, cytokine effects and inhibitory KIR expression) underlying NK cell education profiles (effector function or metabolism). Additionally, we describe the broad-spectrum of effector educated NK cell functions on different pathologies (such as HIV-1, CMV and tumors, among others).
Collapse
|
36
|
Ridgley LA, Caron J, Dalgleish A, Bodman-Smith M. Releasing the restraints of Vγ9Vδ2 T-cells in cancer immunotherapy. Front Immunol 2023; 13:1065495. [PMID: 36713444 PMCID: PMC9880221 DOI: 10.3389/fimmu.2022.1065495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Vγ9Vδ2 T-cells are a subset of T-cells with a crucial role in immunosurveillance which can be activated and expanded by multiple means to stimulate effector responses. Little is known about the expression of checkpoint molecules on this cell population and whether the ligation of these molecules can regulate their activity. The aim of this study was to assess the expression of both activatory and inhibitory receptors on Vγ9Vδ2 T-cells to assess potential avenues of regulation to target with immunotherapy. Methods Expression of various activatory and inhibitory receptors was assessed on Vγ9Vδ2 T-cells by flow cytometry following activation and expansion using zoledronic acid (ZA) and Bacillus Calmette-Guérin (BCG). Expression of these markers and production of effector molecules was also examined following co-culture with various tumour cell targets. The effect of immune checkpoint blockade on Vγ9Vδ2 T-cells was also explored. Results Vγ9Vδ2 T-cells expressed high levels of activatory markers both at baseline and following stimulation. Vγ9Vδ2 T-cells expressed variable levels of inhibitory checkpoint receptors with many being upregulated following stimulation. Expression of these markers is further modulated upon co-culture with tumour cells with changes reflecting activation and effector functions. Despite their high expression of inhibitory receptors when cultured with tumour cells expressing cognate ligands there was no effect on Vδ2+ T-cell cytotoxic capacity or cytokine production with immune checkpoint blockade. Conclusions Our work suggests the expression of checkpoint receptors present on Vγ9Vδ2 T-cells which may provide a mechanism with the potential to be utilised by tumour cells to subvert Vγ9Vδ2 T-cell cytotoxicity. This work suggests important candidates for blockade by ICI therapy in order to increase the successful use of Vγ9Vδ2 T-cells in immunotherapy.
Collapse
|
37
|
Yu L, Sun L, Liu X, Wang X, Yan H, Pu Q, Xie Y, Jiang Y, Du J, Yang Z. The imbalance between NKG2A and NKG2D expression is involved in NK cell immunosuppression and tumor progression of patients with hepatitis B virus-related hepatocellular carcinoma. Hepatol Res 2023; 53:417-431. [PMID: 36628564 DOI: 10.1111/hepr.13877] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Immunosuppression in a tumor microenvironment is associated with enhanced tumor progression. Natural killer group 2 (NKG2) family proteins, including inhibitory receptors and activators, can be used as attractive targets for immunotherapy of immune checkpoint inhibition. We further explore the expression level prognostic value of NKG2A and NKG2D in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). METHODS This study was a prospective study involving 92 patients with HBV-HCC, 16 patients with HBV-related liver cirrhosis, 18 patients with CHB, and 38 healthy donors. We analyzed the expression and related functions of NKG2A, NKG2D, and the NKG2A/NKG2D ratio in the peripheral blood of patients with HBV-HCC and analyzed tumor progression. The tissue samples from patients with HBV-HCC were further used for multiple immunofluorescence and immunohistochemistry. RESULTS In patients with HBV-HCC with tumor progression, the ratio of NKG2A/NKG2D is higher in NK cells and T cells. The Kaplan-Meier survival curve showed that the NKG2A/NKG2D ratio on NK cells could predict tumor progression in patients with HBV-HCC, and that an increase in this ratio was associated with inhibition of NK cell function. The Cancer Genome Atlas (TCGA) database was further used to verify that the higher the NKG2A/NKG2D ratio, the shorter the progression-free survival of patients with HCC, and the more likely the immune function was suppressed. CONCLUSIONS The imbalance between NKG2A and NKG2D of NK cells is involved in NK cell immunosuppression, and the increase of the NKG2A/NKG2D ratio is related to the tumor progression of HBV-HCC.
Collapse
|
38
|
Shirane M, Yawata N, Motooka D, Shibata K, Khor SS, Omae Y, Kaburaki T, Yanai R, Mashimo H, Yamana S, Ito T, Hayashida A, Mori Y, Numata A, Murakami Y, Fujiwara K, Ohguro N, Hosogai M, Akiyama M, Hasegawa E, Paley M, Takeda A, Maenaka K, Akashi K, Yokoyama WM, Tokunaga K, Yawata M, Sonoda KH. Corrigendum: Intraocular human cytomegaloviruses of ocular diseases are distinct from those of viremia and are capable of escaping from innate and adaptive immunity by exploiting HLA-E-mediated peripheral and central tolerance. Front Immunol 2023; 13:1124440. [PMID: 36685570 PMCID: PMC9851041 DOI: 10.3389/fimmu.2022.1124440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fimmu.2022.1008220.].
Collapse
|
39
|
Cianga VA, Rusu C, Pavel-Tanasa M, Dascalescu A, Danaila C, Harnau S, Aanei CM, Cianga P. Combined flow cytometry natural killer immunophenotyping and KIR/HLA-C genotyping reveal remarkable differences in acute myeloid leukemia patients, but suggest an overall impairment of the natural killer response. Front Med (Lausanne) 2023; 10:1148748. [PMID: 36960339 PMCID: PMC10028202 DOI: 10.3389/fmed.2023.1148748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Natural killer (NK) cells are key anti-tumor effectors of the innate immunity. Phenotypic differences allow us to discriminate in between three functional stages of maturation, named immature, mature and hypermature that are distinctive in terms of receptor expression, cytokine secretion, cytotoxic properties and organ trafficking. NKs display an impressive repertoire of highly polymorphic germline encoded receptors that can be either activating, triggering the effector's function, or inhibitory, limiting the immune response. In our study, we have investigated peripheral blood NK cells of acute myeloid leukemia (AML) patients. Methods The Killer Immunoglobulin-like receptors (KIRs) and the HLA-C genotypes were assessed, as HLA-C molecules are cognate antigens for inhibitory KIRs. Results The AA mainly inhibitory KIR haplotype was found in a higher proportion in AML, while a striking low frequency of the 2DS3 characterized the mainly activating Bx haplotype. Flow cytometry immunophenotyping evidenced a lower overall count of NK cells in AML versus healthy controls, with lower percentages of the immature and mature subpopulations, but with a markedly increase of the hypermature NKs. The analysis of the KIR2DL1, KIR2DL2, KIR2DL3, KIR3DL1, and NKG2A inhibitory receptors surface expression revealed a remarkable heterogeneity. However, an overall trend for a higher expression in AML patients could be noticed in all maturation subpopulations. Some of the AML patients with complex karyotypes or displaying a FLT3 gene mutation proved to be extreme outliers in terms of NK cells percentages or inhibitory receptors expression. Discussion We conclude that while the genetic background investigation in AML offers important pieces of information regarding susceptibility to disease or prognosis, it is flow cytometry that is able to offer details of finesse in terms of NK numbers and phenotypes, necessary for an adequate individual evaluation of these patients.
Collapse
|
40
|
Hasan MZ, Höltermann C, Petersen B, Schrod A, Mätz-Rensing K, Kaul A, Salinas G, Dressel R, Walter L. Detailed phenotypic and functional characterization of CMV-associated adaptive NK cells in rhesus macaques. Front Immunol 2022; 13:1028788. [PMID: 36518759 PMCID: PMC9742600 DOI: 10.3389/fimmu.2022.1028788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Previous research on adaptive NK cells in rhesus macaques suffered from the lack of specific antibodies to differentiate between inhibitory CD94/NKG2A and stimulatory CD94/NKG2C heterodimeric receptors. Recently we reported an expansion of NKG2C receptor-encoding genes in rhesus macaques, but their expression and functional role on primary NK cells remained unknown due to this deficit. Thus, we established monoclonal antibodies 4A8 and 7B1 which show identical specificities and bind to both NKG2C-1 and NKG2C-2 but neither react with NKG2C-3 nor NKG2A on transfected cells. Using a combination of 4A8 and Z199 antibodies in multicolor flow cytometry we detected broad expression (4-73%) of NKG2C-1 and/or NKG2C-2 (NKG2C-1/2) on primary NK cells in rhesus macaques from our breeding colony. Stratifying our data to CMV-positive and CMV-negative animals, we noticed a higher proportion (23-73%) of primary NK cells expressing NKG2C-1/2 in CMV+ as compared to CMV- macaques (4-5%). These NKG2C-1/2-positive NK cells in CMV+ macaques are characterized by lower expression of IL12RB2, ZBTB16, SH2D1B, but not FCER1G, as well as high expression of IFNG, indicating that antibody 4A8 detects CMV-associated adaptive NK cells. Single cell RNA seq data of 4A8-positive NK cells from a rhCMV-positive macaque demonstrated that a high proportion of these adaptive NK cells transcribe in addition to NKG2C-1 and NKG2C-2 also NKG2C-3, but interestingly NKG2A as well. Remarkably, in comparison to NKG2A, NKG2C-1 and in particular NKG2C-2 bind Mamu-E with higher avidity. Primary NK cells exposed to Mamu-E-expressing target cells displayed strong degranulation as well as IFN-gamma expression of 4A8+ adaptive NK cells from rhCMV+ animals. Thus, despite co-expression of inhibitory and stimulatory CD94/NKG2 receptors the higher number of different stimulatory NKG2C receptors and their higher binding avidity to Mamu-E outreach inhibitory signaling via NKG2A. These data demonstrate the evolutionary conservation of the CMV-driven development of NKG2C-positive adaptive NK cells with particular molecular signatures in primates and with changes in gene copy numbers and ligand-binding strength of NKG2C isotypes. Thus, rhesus macaques represent a suitable and valuable nonhuman primate animal model to study the CMV-NKG2C liaison in vivo.
Collapse
|
41
|
Fisher JG, Doyle ADP, Graham LV, Khakoo SI, Blunt MD. Disruption of the NKG2A:HLA-E Immune Checkpoint Axis to Enhance NK Cell Activation against Cancer. Vaccines (Basel) 2022; 10:1993. [PMID: 36560403 PMCID: PMC9783329 DOI: 10.3390/vaccines10121993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Ligation of the inhibitory receptor NKG2A by its ligand HLA-E negatively regulates the activation of natural killer (NK) cells, as well as subsets of CD8+ T cells and innate T cell populations. NKG2A has recently become a novel immune checkpoint target for the treatment of cancer and direct antibody mediated blockade of NKG2A function is currently under assessment in two phase 3 clinical trials. In addition to direct targeting, the NKG2A:HLA-E axis can also be disrupted indirectly via multiple different targeted cancer agents that were not previously recognised to possess immunomodulatory properties. Increased understanding of immune cell modulation by targeted cancer therapies will allow for the design of rational and more efficacious drug combination strategies to improve cancer patient outcomes. In this review, we summarise and discuss the various strategies currently in development which either directly or indirectly disrupt the NKG2A:HLA-E interaction to enhance NK cell activation against cancer.
Collapse
|
42
|
Romero-Martín L, Duran-Castells C, Olivella M, Rosás-Umbert M, Ruiz-Riol M, Sanchez J, Hartigan-O Connor D, Mothe B, Olvera À, Brander C. Disruption of the HLA-E/NKG2X axis is associated with uncontrolled HIV infections. Front Immunol 2022; 13:1027855. [PMID: 36466823 PMCID: PMC9716355 DOI: 10.3389/fimmu.2022.1027855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 09/28/2023] Open
Abstract
The contribution of the HLA-E/NKG2X axis in NK-mediated control of HIV infection remains unclear. We have studied the relationship between HLA-E expression and phenotypical as well as functional characteristics of NK cells, in the context of chronic HIV infection and in an in vitro model of acute infection. High viremia in HIV+ individuals was related to increased HLA-E expression, and changes in NK subpopulations, especially a reduction of the CD56bright as well as an increase in adaptive NK subpopulation. Uncontrolled HIV infection was also characterized by a reversion of the NKG2A/NKG2C expression ratio and a loss of positive and negative regulation of NK mediated by HLA-E. This was reflected in a lower cytotoxic, degranulation and cytokine production capacity, especially in CD56bright and adaptive NK. In line with these results, HLA-E expression showed a positive correlation with viral growth inhibition in an in vitro model of acute infection at day 7, which was lost after 14 days of culture. Using HLA-E expressing K562 cells, we determined that only one out of 11 described HIV-derived HLA-E epitopes increased HLA-E surface stability. In spite of that, eight of the 11 epitopes were capable of increasing degranulation and three drove differences in NK-cell mediated cell lysis or cytokine secretion. In conclusion, our results indicate that HLA-E molecules presenting HIV-derived epitopes may sensitize target cells for NK lysis in early HIV infection. However, prolonged exposure to elevated HLA-E expression levels in vivo may lead to NK cell dysfunction and reduced viral control In chronic infection.
Collapse
|
43
|
Ureña-Bailén G, Dobrowolski JM, Hou Y, Dirlam A, Roig-Merino A, Schleicher S, Atar D, Seitz C, Feucht J, Antony JS, Mohammadian Gol T, Handgretinger R, Mezger M. Preclinical Evaluation of CRISPR-Edited CAR-NK-92 Cells for Off-the-Shelf Treatment of AML and B-ALL. Int J Mol Sci 2022; 23:12828. [PMID: 36361619 PMCID: PMC9655234 DOI: 10.3390/ijms232112828] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 08/10/2023] Open
Abstract
Acute myeloid leukemia (AML) and B-cell acute lymphocytic leukemia (B-ALL) are severe blood malignancies affecting both adults and children. Chimeric antigen receptor (CAR)-based immunotherapies have proven highly efficacious in the treatment of leukemia. However, the challenge of the immune escape of cancer cells remains. The development of more affordable and ready-to-use therapies is essential in view of the costly and time-consuming preparation of primary cell-based treatments. In order to promote the antitumor function against AML and B-ALL, we transduced NK-92 cells with CD276-CAR or CD19-CAR constructs. We also attempted to enhance cytotoxicity by a gene knockout of three different inhibitory checkpoints in NK cell function (CBLB, NKG2A, TIGIT) with CRISPR-Cas9 technology. The antileukemic activity of the generated cell lines was tested with calcein and luciferase-based cytotoxicity assays in various leukemia cell lines. Both CAR-NK-92 exhibited targeted cytotoxicity and a significant boost in antileukemic function in comparison to parental NK-92. CRISPR-Cas9 knock-outs did not improve B-ALL cytotoxicity. However, triple knock-out CD276-CAR-NK-92 cells, as well as CBLB or TIGIT knock-out NK-92 cells, showed significantly enhanced cytotoxicity against U-937 or U-937 CD19/tag AML cell lines. These results indicate that the CD19-CAR and CD276-CAR-NK-92 cell lines' cytotoxic performance is suitable for leukemia killing, making them promising off-the-shelf therapeutic candidates. The knock-out of CBLB and TIGIT in NK-92 and CD276-CAR-NK-92 should be further investigated for the treatment of AML.
Collapse
MESH Headings
- Humans
- Antigens, CD19
- B7 Antigens/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Lymphoma, B-Cell
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Receptors, Chimeric Antigen
Collapse
|
44
|
Shirane M, Yawata N, Motooka D, Shibata K, Khor SS, Omae Y, Kaburaki T, Yanai R, Mashimo H, Yamana S, Ito T, Hayashida A, Mori Y, Numata A, Murakami Y, Fujiwara K, Ohguro N, Hosogai M, Akiyama M, Hasegawa E, Paley M, Takeda A, Maenaka K, Akashi K, Yokoyama WM, Tokunaga K, Yawata M, Sonoda KH. Intraocular human cytomegaloviruses of ocular diseases are distinct from those of viremia and are capable of escaping from innate and adaptive immunity by exploiting HLA-E-mediated peripheral and central tolerance. Front Immunol 2022; 13:1008220. [PMID: 36341392 PMCID: PMC9626817 DOI: 10.3389/fimmu.2022.1008220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) infections develop into CMV diseases that result in various forms of manifestations in local organs. CMV-retinitis is a form of CMV disease that develops in immunocompromised hosts with CMV-viremia after viruses in the peripheral circulation have entered the eye. In the HCMV genome, extensive diversification of the UL40 gene has produced peptide sequences that modulate NK cell effector functions when loaded onto HLA-E and are subsequently recognized by the NKG2A and NKG2C receptors. Notably, some HCMV strains carry UL40 genes that encode peptide sequences identical to the signal peptide sequences of specific HLA-A and HLA-C allotypes, which enables these CMV strains to escape HLA-E-restricted CD8+T cell responses. Variations in UL40 sequences have been studied mainly in the peripheral blood of CMV-viremia cases. In this study, we sought to investigate how ocular CMV disease develops from CMV infections. CMV gene sequences were compared between the intraocular fluids and peripheral blood of 77 clinical cases. UL40 signal peptide sequences were more diverse, and multiple sequences were typically present in CMV-viremia blood compared to intraocular fluid. Significantly stronger NK cell suppression was induced by UL40-derived peptides from intraocular HCMV compared to those identified only in peripheral blood. HCMV present in intraocular fluids were limited to those carrying a UL40 peptide sequence corresponding to the leader peptide sequence of the host's HLA class I, while UL40-derived peptides from HCMV found only in the peripheral blood were disparate from any HLA class I allotype. Overall, our analyses of CMV-retinitis inferred that specific HCMV strains with UL40 signal sequences matching the host's HLA signal peptide sequences were those that crossed the blood-ocular barrier to enter the intraocular space. UL40 peptide repertoires were the same in the intraocular fluids of all ocular CMV diseases, regardless of host immune status, implying that virus type is likely to be a common determinant in ocular CMV disease development. We thus propose a mechanism for ocular CMV disease development, in which particular HCMV types in the blood exploit peripheral and central HLA-E-mediated tolerance mechanisms and, thus, escape the antivirus responses of both innate and adaptive immunity.
Collapse
|
45
|
Salomé B, Sfakianos JP, Ranti D, Daza J, Bieber C, Charap A, Hammer C, Banchereau R, Farkas AM, Ruan DF, Izadmehr S, Geanon D, Kelly G, de Real RM, Lee B, Beaumont KG, Shroff S, Wang YA, Wang YC, Thin TH, Garcia-Barros M, Hegewisch-Solloa E, Mace EM, Wang L, O'Donnell T, Chowell D, Fernandez-Rodriguez R, Skobe M, Taylor N, Kim-Schulze S, Sebra RP, Palmer D, Clancy-Thompson E, Hammond S, Kamphorst AO, Malmberg KJ, Marcenaro E, Romero P, Brody R, Viard M, Yuki Y, Martin M, Carrington M, Mehrazin R, Wiklund P, Mellman I, Mariathasan S, Zhu J, Galsky MD, Bhardwaj N, Horowitz A. NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer. Cancer Cell 2022; 40:1027-1043.e9. [PMID: 36099881 PMCID: PMC9479122 DOI: 10.1016/j.ccell.2022.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022]
Abstract
Programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1)-blockade immunotherapies have limited efficacy in the treatment of bladder cancer. Here, we show that NKG2A associates with improved survival and responsiveness to PD-L1 blockade immunotherapy in bladder tumors that have high abundance of CD8+ T cells. In bladder tumors, NKG2A is acquired on CD8+ T cells later than PD-1 as well as other well-established immune checkpoints. NKG2A+ PD-1+ CD8+ T cells diverge from classically defined exhausted T cells through their ability to react to human leukocyte antigen (HLA) class I-deficient tumors using T cell receptor (TCR)-independent innate-like mechanisms. HLA-ABC expression by bladder tumors is progressively diminished as disease progresses, framing the importance of targeting TCR-independent anti-tumor functions. Notably, NKG2A+ CD8+ T cells are inhibited when HLA-E is expressed by tumors and partly restored upon NKG2A blockade in an HLA-E-dependent manner. Overall, our study provides a framework for subsequent clinical trials combining NKG2A blockade with other T cell-targeted immunotherapies, where tumors express higher levels of HLA-E.
Collapse
|
46
|
Battin C, Kaufmann G, Leitner J, Tobias J, Wiedermann U, Rölle A, Meyer M, Momburg F, Steinberger P. NKG2A-checkpoint inhibition and its blockade critically depends on peptides presented by its ligand HLA-E. Immunology 2022; 166:507-521. [PMID: 35596615 PMCID: PMC9426624 DOI: 10.1111/imm.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Abstract
NKG2A has emerged as a new immunotherapy target and its blockade with the novel immune checkpoint inhibitor (ICI) monalizumab can boost both NK cell and CD8+ T cell responses. NKG2A forms heterodimers with CD94 and binds to the human non-classical MHC class I molecule HLA-E. HLA-E forms complexes with a limited set of peptides mainly derived from the leader sequences of the classical MHC class I molecules (HLA-A, HLA-B and HLA-C) and the non-classical class I paralogue HLA-G, and it is well established that the interaction between CD94/NKG2x receptors and its ligand HLA-E is peptide-sensitive. Here, we have evaluated peptide dependence of NKG2A-mediated inhibition and the efficiency of interference by monalizumab in a transcriptional T cell reporter system. NKG2A inhibition was mediated by cell-expressed HLA-E molecules stably presenting disulfate-trapped peptide ligands. We show that different HLA-class I leader peptides mediate varying levels of inhibition. We have used NKG2A/NKG2C chimeric receptors to map the binding site of NKG2A and NKG2C blocking antibodies. Furthermore, we determined the functional EC50 values of blocking NKG2A antibodies and show that they greatly depend on the HLA-leader peptide presented by HLA-E. Monalizumab was less effective in augmenting NK cell-mediated killing of target cells displaying HLA-G peptide on HLA-E, than cells expressing HLA-E complexed with HLA-A, HLA-B and HLA-C peptides. Our results indicate that peptides displayed by HLA-E molecules on tumour cells might influence the effectivity of NKG2A-ICI therapy and potentially suggest novel approaches for patient stratification, for example, based on tumoral HLA-G levels.
Collapse
|
47
|
Hosseini E, Sarraf Kazerooni E, Azarkeivan A, Sharifi Z, Shahabi M, Ghasemzadeh M. HLA-E*01:01 allele is associated with better response to anti-HCV therapy while homozygous status for HLA-E*01:03 allele increases the resistance to anti-HCV treatments in frequently transfused thalassemia patients. Hum Immunol 2022; 83:556-563. [PMID: 35570067 DOI: 10.1016/j.humimm.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND HLA-E binding to NKG2A/CD94 induces inhibitory signals that modulate NK cells cytotoxicity against infected targets. HCV-derived peptides stabilize HLA-E molecule that favours its higher expression. However, HLA-E stability and expression vary in different genotypes where the presence of HLA-E*01:03 allele is associated with higher HLA-E expression on targets that enhances NK cells inhibition and increases the chance of virus to escape from innate immune system. Here, we aimed to investigate whether HLA-E polymorphism affects HCV infection status or its treatment in major thalassemia patients who are more vulnerable to hepatitis C. METHODS AND MATERIALS Study included 89 cases of major thalassemia positive for HCV-antibody; of those 17 patients were negative for HCV-PCR (spontaneously cleared) and 72 patients were HCV-PCR positive (persistent hepatitis under different anti-viral treatment). 16 major thalassemia patients without hepatitis, negative for HCV-antibody were also considered as patients control group. Genomic DNAs extracted from whole bloods were genotyped for HLA-E locus using a sequence specific primer-PCR strategy. RESULTS In thalassemia patients, HLA-E*01:03 allele increased susceptibility to HCV infection [p = 0.02; 4.74(1.418-15.85)]. In addition, HLA-E*01:03/*01:03 genotype predicted more resistance to HCV treatment compared to other genotypes [p = 0.037; 3.5(1.1-11.4)]. In other words, we found that the presence of HLA-E*01:01 allele favors better response to anti-HCV therapy [p = 0.037; 3.5(1.1-11.4)]. CONCLUSION From a mechanistic point of view, the associations between HLA-E polymorphisms and susceptibility to HCV infection or its therapeutic resistance in thalassemia patients may suggest potential roles for the innate and adaptive immune responses to this infection, which are manifested by the acts of HLA-E - NKG2A/CD94 axis in the modulation of NK cell inhibitory function as well as HLA-E associated CD8+ T cell cytolytic activity against HCV, respectively. Notably, from a clinical point of view, paying attention to these associations may not only be useful in increasing the effectiveness of current anti-HCV regimens comprising direct acting antivirals (DAAs) in more complicated patients, but may also suggest antiviral prophylaxis for patients more vulnerable to HCV infection.
Collapse
|
48
|
Xu Z, Yin J, Sun Q, Hu J, Hong M, Qian S, Liu W. The prognostic role of NKG2A expression for patients with chronic myeloid leukemia after treatment discontinuation. Leuk Lymphoma 2022; 63:2616-2626. [PMID: 35758278 DOI: 10.1080/10428194.2022.2090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study aims to evaluate the possibility of tyrosine kinase inhibitors (TKIs) discontinuation in chronic myeloid leukemia (CML) patients who obtained sustained deep molecular response (DMR) and to explore the prognostic role of NK cells in treatment-free remission (TFR). Sixty CML patients who discontinued TKI treatment were enrolled, and we also investigated the immune profiles in 27 CML patients after TKI cessation. Of the 60 patients, the estimated TFR rate was 60.8% [95% CI: 49.5-74.8%] at 12 months. Patients who had longer TKI duration, major molecular response, and DMR maintenance time had a significantly higher TFR rate. And a higher percentage of NKG2A+NK cells and NKG2A+CD56brightCD16-NK cells were independent prognostic factors of TFR in multivariate analysis. These results indicate the practicality of the cessation of TKIs and patients with stable NK cell counts accompanied by higher cytotoxicity and increased killing capacity are more inclined to get sustained treatment-free survival.
Collapse
|
49
|
Walters LC, Rozbesky D, Harlos K, Quastel M, Sun H, Springer S, Rambo RP, Mohammed F, Jones EY, McMichael AJ, Gillespie GM. Primary and secondary functions of HLA-E are determined by stability and conformation of the peptide-bound complexes. Cell Rep 2022; 39:110959. [PMID: 35705051 PMCID: PMC9380258 DOI: 10.1016/j.celrep.2022.110959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
MHC-E regulates NK cells by displaying MHC class Ia signal peptides (VL9) to NKG2A:CD94 receptors. MHC-E can also present sequence-diverse, lower-affinity, pathogen-derived peptides to T cell receptors (TCRs) on CD8+ T cells. To understand these affinity differences, human MHC-E (HLA-E)-VL9 versus pathogen-derived peptide structures are compared. Small-angle X-ray scatter (SAXS) measures biophysical parameters in solution, allowing comparison with crystal structures. For HLA-E-VL9, there is concordance between SAXS and crystal parameters. In contrast, HLA-E-bound pathogen-derived peptides produce larger SAXS dimensions that reduce to their crystallographic dimensions only when excess peptide is supplied. Further crystallographic analysis demonstrates three amino acids, exclusive to MHC-E, that not only position VL9 close to the α2 helix, but also allow non-VL9 peptide binding with re-configuration of a key TCR-interacting α2 region. Thus, non-VL9-bound peptides introduce an alternative peptide-binding motif and surface recognition landscape, providing a likely basis for VL9- and non-VL9-HLA-E immune discrimination.
Collapse
|
50
|
Jaiswal SR, Arunachalam J, Saifullah A, Lakhchaura R, Tailor D, Mehta A, Bhagawati G, Aiyer H, Khamar B, Malhotra SV, Chakrabarti S. Impact of an Immune Modulator Mycobacterium-w on Adaptive Natural Killer Cells and Protection Against COVID-19. Front Immunol 2022; 13:887230. [PMID: 35603154 PMCID: PMC9115578 DOI: 10.3389/fimmu.2022.887230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
The kinetics of NKG2C+ adaptive natural killer (ANK) cells and NKG2A+inhibitory NK (iNK) cells with respect to the incidence of SARS-CoV-2 infection were studied for 6 months in a cohort of healthcare workers following the administration of the heat-killed Mycobacterium w (Mw group) in comparison to a control group. In both groups, corona virus disease 2019 (COVID-19) correlated with lower NKG2C+ANK cells at baseline. There was a significant upregulation of NKG2C expression and IFN-γ release in the Mw group (p=0.0009), particularly in those with a lower baseline NKG2C expression, along with the downregulation of iNK cells (p<0.0001). This translated to a significant reduction in the incidence and severity of COVID-19 in the Mw group (incidence risk ratio-0.15, p=0.0004). RNA-seq analysis at 6 months showed an upregulation of the ANK pathway genes and an enhanced ANK-mediated antibody-dependent cellular cytotoxicity (ADCC) signature. Thus, Mw was observed to have a salutary impact on the ANK cell profile and a long-term upregulation of ANK-ADCC pathways, which could have provided protection against COVID-19 in a non-immune high-risk population.
Collapse
|