26
|
Yu HG, Sizemore G, Martinez I, Perrotta P. Inhibition of SARS-CoV-2 Viral Channel Activity Using FDA-Approved Channel Modulators Independent of Variants. Biomolecules 2022; 12:1673. [PMID: 36421688 PMCID: PMC9687591 DOI: 10.3390/biom12111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SARS-CoV-2 has undergone mutations, yielding clinically relevant variants. HYPOTHESIS We hypothesized that in SARS-CoV-2, two highly conserved Orf3a and E channels directly related to the virus replication were a target for the detection and inhibition of the viral replication, independent of the variant, using FDA-approved ion channel modulators. METHODS A combination of a fluorescence potassium ion assay with channel modulators was developed to detect SARS-CoV-2 Orf3a/E channel activity. Two FDA-approved drugs, amantadine (an antiviral) and amitriptyline (an antidepressant), which are ion channel blockers, were tested as to whether they inhibited Orf3a/E channel activity in isolated virus variants and in nasal swab samples from COVID-19 patients. The variants were confirmed by PCR sequencing. RESULTS In isolated SARS-CoV-2 Alpha, Beta, and Delta variants, the channel activity of Orf3a/E was detected and inhibited by emodin and gliclazide (IC50 = 0.42 mM). In the Delta swab samples, amitriptyline and amantadine inhibited the channel activity of viral proteins, with IC50 values of 0.73 mM and 1.11 mM, respectively. In the Omicron swab samples, amitriptyline inhibited the channel activity, with an IC50 of 0.76 mM. CONCLUSIONS We developed an efficient method to screen FDA-approved ion channel modulators that could be repurposed to detect and inhibit SARS-CoV-2 viral replication, independent of variants.
Collapse
|
27
|
Ali Z, Qureshi KN, Mustafa K, Bukhsh R, Aslam S, Mujlid H, Ghafoor KZ. Edge Based Priority-Aware Dynamic Resource Allocation for Internet of Things Networks. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1607. [PMID: 36359697 PMCID: PMC9689225 DOI: 10.3390/e24111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The exponential growth of the edge-based Internet-of-Things (IoT) services and its ecosystems has recently led to a new type of communication network, the Low Power Wide Area Network (LPWAN). This standard enables low-power, long-range, and low-data-rate communications. Long Range Wide Area Network (LoRaWAN) is a recent standard of LPWAN that incorporates LoRa wireless into a networked infrastructure. Consequently, the consumption of smart End Devices (EDs) is a major challenge due to the highly dense network environment characterised by limited battery life, spectrum coverage, and data collisions. Intelligent and efficient service provisioning is an urgent need of a network to streamline the networks and solve these problems. This paper proposes a Dynamic Reinforcement Learning Resource Allocation (DRLRA) approach to allocate efficient resources such as channel, Spreading Factor (SF), and Transmit Power (Tp) to EDs that ultimately improve the performance in terms of consumption and reliability. The proposed model is extensively simulated and evaluated with the currently implemented algorithms such as Adaptive Data Rate (ADR) and Adaptive Priority-aware Resource Allocation (APRA) using standard and advanced evaluation metrics. The proposed work is properly cross validated to show completely unbiased results.
Collapse
|
28
|
Charlestin V, Fulkerson D, Arias Matus CE, Walker ZT, Carthy K, Littlepage LE. Aquaporins: New players in breast cancer progression and treatment response. Front Oncol 2022; 12:988119. [PMID: 36212456 PMCID: PMC9532844 DOI: 10.3389/fonc.2022.988119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaporins (AQPs) are a family of small transmembrane proteins that selectively transport water and other small molecules and ions following an osmotic gradient across cell plasma membranes. This enables them to regulate numerous functions including water homeostasis, fat metabolism, proliferation, migration, and adhesion. Previous structural and functional studies highlight a strong biological relationship between AQP protein expression, localization, and key biological functions in normal and cancer tissues, where aberrant AQP expression correlates with tumorigenesis and metastasis. In this review, we discuss the roles of AQP1, AQP3, AQP4, AQP5, and AQP7 in breast cancer progression and metastasis, including the role of AQPs in the tumor microenvironment, to highlight potential contributions of stromal-derived to epithelial-derived AQPs to breast cancer. Emerging evidence identifies AQPs as predictors of response to cancer therapy and as targets for increasing their sensitivity to treatment. However, these studies have not evaluated the requirements for protein structure on AQP function within the context of breast cancer. We also examine how AQPs contribute to a patient's response to cancer treatment, existing AQP inhibitors and how AQPs could serve as novel predictive biomarkers of therapy response in breast cancer. Future studies also should evaluate AQP redundancy and compensation as mechanisms used to overcome aberrant AQP function. This review highlights the need for additional research into how AQPs contribute molecularly to therapeutic resistance and by altering the tumor microenvironment.
Collapse
|
29
|
Saitoh Y, Suga M. Structure and function of a silicic acid channel Lsi1. FRONTIERS IN PLANT SCIENCE 2022; 13:982068. [PMID: 36172553 PMCID: PMC9510833 DOI: 10.3389/fpls.2022.982068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Silicon is a beneficial element for plant growth and production, especially in rice. Plant roots take up silicon in the form of silicic acid. Silicic acid channels, which belong to the NIP subfamily of aquaporins, are responsible for silicic acid uptake. Accumulated experimental results have deepened our understanding of the silicic acid channel for its uptake mechanism, physiological function, localization, and other aspects. However, how the silicic acid channel efficiently and selectively permeates silicic acid remains to be elucidated. Recently reported crystal structures of the silicic acid channel enabled us to discuss the mechanism of silicic acid uptake by plant roots at an atomic level. In this mini-review, we focus on the crystal structures of the silicic acid channel and provide a detailed description of the structural determinants of silicic acid permeation and its transport mechanism, which are crucial for the rational creation of secure and sustainable crops.
Collapse
|
30
|
The Dicarboxylate Transporters from the AceTr Family and Dct-02 Oppositely Affect Succinic Acid Production in S. cerevisiae. J Fungi (Basel) 2022; 8:jof8080822. [PMID: 36012810 PMCID: PMC9409672 DOI: 10.3390/jof8080822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Membrane transporters are important targets in metabolic engineering to establish and improve the production of chemicals such as succinic acid from renewable resources by microbial cell factories. We recently provided a Saccharomyces cerevisiae strain able to strongly overproduce succinic acid from glycerol and CO2 in which the Dct-02 transporter from Aspergillus niger, assumed to be an anion channel, was used to export succinic acid from the cells. In a different study, we reported a new group of succinic acid transporters from the AceTr family, which were also described as anion channels. Here, we expressed these transporters in a succinic acid overproducing strain and compared their impact on extracellular succinic acid accumulation with that of the Dct-02 transporter. The results show that the tested transporters of the AceTr family hinder succinic acid accumulation in the extracellular medium at low pH, which is in strong contrast to Dct-02. Data suggests that the AceTr transporters prefer monovalent succinate, whereas Dct-02 prefers divalent succinate anions. In addition, the results provided deeper insights into the characteristics of Dct-02, showing its ability to act as a succinic acid importer (thus being bidirectional) and verifying its capability of exporting malate.
Collapse
|
31
|
Lee HJ, Cho Y, Kang SW. Formation of Nano channels Using Polypropylene and Acetylcellulose for Stable Separators. MEMBRANES 2022; 12:764. [PMID: 36005680 PMCID: PMC9413914 DOI: 10.3390/membranes12080764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023]
Abstract
In this study, a polymer separator with enhanced thermal stability is prepared to solve the problem of thermal durability of lithium-ion battery separators. This separator is manufactured by coating a solution of acetyl cellulose and glycerin on polypropylene. The added glycerin reacts with the acetyl cellulose chains, helping the chains become flexible, and promotes the formation of many pores in the acetyl cellulose. To improve the thermal stability of the separator, a mixed solution of acetyl cellulose and glycerin was coated twice on the PP membrane film. Water pressure is applied using a water treatment equipment to partially connect the pores of a small size in each layer and for the interaction between the PP and acetyl cellulose. SEM is used to observe the shape, size, and quantity of pores. TGA and FT-IR are used to observe the interactions. Average water flux data of the separators is 1.42 LMH and the decomposition temperature increases by about 60 °C compared to the neat acetyl cellulose. It is confirmed that there is an interaction with PP between the functional groups of acetyl cellulose.
Collapse
|
32
|
Chen L, Peng G, Comollo TW, Zou X, Sampson KJ, Larsson HP, Kass RS. Two small-molecule activators share similar effector sites in the KCNQ1 channel pore but have distinct effects on voltage sensor movements. Front Physiol 2022; 13:903050. [PMID: 35957984 PMCID: PMC9359618 DOI: 10.3389/fphys.2022.903050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
ML277 and R-L3 are two small-molecule activators of KCNQ1, the pore-forming subunit of the slowly activating potassium channel IKs. KCNQ1 loss-of-function mutations prolong cardiac action potential duration and are associated with long QT syndrome, which predispose patients to lethal ventricular arrhythmia. ML277 and R-L3 enhance KCNQ1 current amplitude and slow deactivation. However, the presence of KCNE1, an auxiliary subunit of IKs channels, renders the channel insensitive to both activators. We found that ML277 effects are dependent on several residues in the KCNQ1 pore domain. Some of these residues are also necessary for R-L3 effects. These residues form a putative hydrophobic pocket located between two adjacent KCNQ1 subunits, where KCNE1 subunits are thought to dwell, thus providing an explanation for how KCNE1 renders the IKs channel insensitive to these activators. Our experiments showed that the effect of R-L3 on voltage sensor movement during channel deactivation was much more prominent than that of ML277. Simulations using a KCNQ1 kinetic model showed that the effects of ML277 and R-L3 could be reproduced through two different effects on channel gating: ML277 enhances KCNQ1 channel function through a pore-dependent and voltage sensor-independent mechanism, while R-L3 affects both channel pore and voltage sensor.
Collapse
|
33
|
Li X, Zhang J, Shi H, Li B, Li J. Rapid responses: Receptor-like kinases directly regulate the functions of membrane transport proteins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1303-1309. [PMID: 35546272 DOI: 10.1111/jipb.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Receptor-like kinases (RLKs) are a large group of plant-specific transmembrane proteins mainly acting as receptors or co-receptors of various extracellular signals. They usually turn extracellular signals into intracellular responses via altering gene expression profiles. However, recent studies confirmed that many RLKs can physically interact with diverse membrane-localized transport proteins and regulate their activities for speedy responses in limited tissues or cells. In this minireview, we highlight recent discoveries regarding how RLKs can work with membrane transport proteins collaboratively and thereby trigger cellular responses in a precise and rapid manner. It is anticipated that such regulation broadly presents in plants and more examples will be gradually revealed when in-depth analyses are conducted for the functions of RLKs.
Collapse
|
34
|
Mehinovic E, Gray T, Campbell M, Ekholm J, Wenger A, Rowell W, Grudo A, Grimwood J, Korlach J, Gurnett C, Constantino JN, Turner TN. Germline mosaicism of a missense variant in KCNC2 in a multiplex family with autism and epilepsy characterized by long-read sequencing. Am J Med Genet A 2022; 188:2071-2081. [PMID: 35366058 PMCID: PMC9197999 DOI: 10.1002/ajmg.a.62743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Currently, protein-coding de novo variants and large copy number variants have been identified as important for ~30% of individuals with autism. One approach to identify relevant variation in individuals who lack these types of events is by utilizing newer genomic technologies. In this study, highly accurate PacBio HiFi long-read sequencing was applied to a family with autism, epileptic encephalopathy, cognitive impairment, and mild dysmorphic features (two affected female siblings, unaffected parents, and one unaffected male sibling) with no known clinical variant. From our long-read sequencing data, a de novo missense variant in the KCNC2 gene (encodes Kv3.2) was identified in both affected children. This variant was phased to the paternal chromosome of origin and is likely a germline mosaic. In silico assessment revealed the variant was not in controls, highly conserved, and predicted damaging. This specific missense variant (Val473Ala) has been shown in both an ortholog and paralog of Kv3.2 to accelerate current decay, shift the voltage dependence of activation, and prevent the channel from entering a long-lasting open state. Seven additional missense variants have been identified in other individuals with neurodevelopmental disorders (p = 1.03 × 10-5 ). KCNC2 is most highly expressed in the brain; in particular, in the thalamus and is enriched in GABAergic neurons. Long-read sequencing was useful in discovering the relevant variant in this family with autism that had remained a mystery for several years and will potentially have great benefits in the clinic once it is widely available.
Collapse
|
35
|
Hempel C, Rosenthal R, Fromm A, Krug SM, Fromm M, Günzel D, Piontek J. Tight junction channels claudin-10b and claudin-15: Functional mapping of pore-lining residues. Ann N Y Acad Sci 2022; 1515:129-142. [PMID: 35650657 DOI: 10.1111/nyas.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although functional and structural models for paracellular channels formed by claudins have been reported, mechanisms regulating charge and size selectivity of these channels are unknown in detail. Here, claudin-15 and claudin-10b cation channels showing high-sequence similarity but differing channel properties were analyzed. Mutants of pore-lining residues were expressed in MDCK-C7 cells. In claudin-15, proposed ion interaction sites (D55 and E64) conserved between both claudins were neutralized. D55N and E64Q substitutions decreased ion permeabilities, and D55N/E64Q had partly additive effects. D55N increased cation dehydration capability and decreased pore diameter. Additionally, residues differing between claudin-15 and -10b close to pore center were analyzed. Claudin-10b-mimicking W63K affected neither assembly nor function of claudin-15 channels. In contrast, in claudin-10b, corresponding (claudin-15b-mimicking) K64W and K64M substitutions disturbed integration into tight junction and slightly altered relative permeabilities for differently sized monovalent cations. Removal of claudin-10b-specific negative charge (D36A substitution) was without effect. The data suggest that a common tetra-aspartate ring (D55/D56) in pore center of claudin-15/-10b channels directly attracts cations, while E64/D65 may be at least partly shielded by W63/K64. Charge at position W63/K64 affects assembly and properties for claudin-10b but not for claudin-15 channels. Our findings add to the mechanistic understanding of the determinants of paracellular cation permeability.
Collapse
|
36
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
|
37
|
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Wang YY, Huang JL, Yin XX. Corrigendum: A Novel Role of Connexin 40-Formed Channels in the Enhanced Efficacy of Photodynamic Therapy. Front Oncol 2022; 12:853278. [PMID: 35280752 PMCID: PMC8906186 DOI: 10.3389/fonc.2022.853278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
|
38
|
Chen X, Wang Y, Li Y, Lu X, Chen J, Li M, Wen T, Liu N, Chang S, Zhang X, Yang X, Shen Y. Cryo-EM structure of the human TACAN in a closed state. Cell Rep 2022; 38:110445. [PMID: 35235791 DOI: 10.1016/j.celrep.2022.110445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/22/2022] Open
Abstract
TACAN is an ion channel-like protein that may be involved in sensing mechanical pain. Here, we present the cryo-electron microscopic structure of human TACAN (hTACAN). hTACAN forms a dimer in which each protomer consists of a transmembrane globular domain (TMD) containing six helices and an intracellular domain (ICD) containing two helices. Molecular dynamic simulations suggest that each protomer contains a putative ion conduction pore. A single-point mutation of the key residue Met207 greatly increases membrane pressure-activated currents. In addition, each hTACAN subunit binds one cholesterol molecule. Our data show the molecular assembly of hTACAN and suggest that wild-type hTACAN is in a closed state.
Collapse
|
39
|
Klaus M, Labasque T, Botter G, Durighetto N, Schelker J. Unraveling the Contribution of Turbulence and Bubbles to Air-Water Gas Exchange in Running Waters. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 127:e2021JG006520. [PMID: 35860336 PMCID: PMC9285787 DOI: 10.1029/2021jg006520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Quantifying air-water gas exchange is critical for estimating greenhouse gas fluxes and metabolism in aquatic ecosystems. In high-energy streams, the gas exchange rate k is poorly constrained, due to an incomplete understanding of turbulence and bubble contributions to k. We performed a flume experiment with air bubble additions to evaluate the combined effects of turbulence and bubbles on k for helium, argon, xenon, and methane. We created contrasting hydraulic conditions by varying channel slope, bed roughness, water discharge, and bubble flux. We found that k increased from 1-4 to 17-66 m d-1 with increases in turbulence and bubble flux metrics. Mechanistic models that explicitly account for these metrics, as well as gas diffusivity and solubility, agreed well with the data and indicated that bubble-mediated gas exchange accounted for 64-93% of k. Bubble contributions increased with bubble flux but were independent of gas type, as bubbles did not equilibrate with the water. This was evident through modeled bubble life and equilibration times inferred from bubble size distributions obtained from underwater sound spectra. Sound spectral properties correlated well with turbulence and bubble flux metrics. Our results demonstrate that (a) mechanistic models can be applied to separate free surface- and bubble-mediated gas exchange in running waters, (b) bubble life and equilibration times are critical for accurate scaling of k between different gases, and (c) ambient sound spectra can be used to approximate contributions of turbulence and bubbles.
Collapse
|
40
|
Gap Junction-Dependent and -Independent Functions of Connexin43 in Biology. BIOLOGY 2022; 11:biology11020283. [PMID: 35205149 PMCID: PMC8869330 DOI: 10.3390/biology11020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
For the first time in animal evolution, the emergence of gap junctions allowed direct exchanges of cellular substances for communication between two cells. Innexin proteins constituted primordial gap junctions until the connexin protein emerged in deuterostomes and took over the gap junction function. After hundreds of millions of years of gene duplication, the connexin gene family now comprises 21 members in the human genome. Notably, GJA1, which encodes the Connexin43 protein, is one of the most widely expressed and commonly studied connexin genes. The loss of Gja1 in mice leads to swelling and a blockage of the right ventricular outflow tract and death of the embryos at birth, suggesting a vital role of Connexin43 gap junction in heart development. Since then, the importance of Connexin43-mediated gap junction function has been constantly expanded to other types of cells. Other than forming gap junctions, Connexin43 can also form hemichannels to release or uptake small molecules from the environment or even mediate many physiological processes in a gap junction-independent manner on plasma membranes. Surprisingly, Connexin43 also localizes to mitochondria in the cell, playing important roles in mitochondrial potassium import and respiration. At the molecular level, Connexin43 mRNA and protein are processed with very distinct mechanisms to yield carboxyl-terminal fragments with different sizes, which have their unique subcellular localization and distinct biological activities. Due to many exciting advancements in Connexin43 research, this review aims to start with a brief introduction of Connexin43 and then focuses on updating our knowledge of its gap junction-independent functions.
Collapse
|
41
|
Electrostatic influence on IL-1 transport through the GSDMD pore. Proc Natl Acad Sci U S A 2022; 119:2120287119. [PMID: 35115408 PMCID: PMC8833203 DOI: 10.1073/pnas.2120287119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
A variety of signals, including inflammasome activation, trigger the formation of large transmembrane pores by gasdermin D (GSDMD). There are primarily two functions of the GSDMD pore, to drive lytic cell death, known as pyroptosis, and to permit the release of leaderless interleukin-1 (IL-1) family cytokines, a process that does not require pyroptosis. We are interested in the mechanism by which the GSDMD pore channels IL-1 release from living cells. Recent studies revealed that electrostatic interaction, in addition to cargo size, plays a critical role in GSDMD-dependent protein release. Here, we determined computationally that to enable electrostatic filtering against pro-IL-1β, acidic lipids in the membrane need to effectively neutralize positive charges in the membrane-facing patches of the GSDMD pore. In addition, we predicted that salt has an attenuating effect on electrostatic filtering and then validated this prediction using a liposome leakage assay. A calibrated electrostatic screening factor is necessary to account for the experimental observations, suggesting that ion distribution within the pore may be different from the bulk solution. Our findings corroborate the electrostatic influence of IL-1 transport exerted by the GSDMD pore and reveal extrinsic factors, including lipid and salt, that affect the electrostatic environment.
Collapse
|
42
|
Unmanned Aerial Vehicle Propagation Channel over Vegetation and Lake Areas: First- and Second-Order Statistical Analysis. SENSORS 2021; 22:s22010065. [PMID: 35009608 PMCID: PMC8747279 DOI: 10.3390/s22010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
The use of unmanned aerial vehicles (UAV) to provide services such as the Internet, goods delivery, and air taxis has become a reality in recent years. The use of these aircraft requires a secure communication between the control station and the UAV, which demands the characterization of the communication channel. This paper aims to present a measurement setup using an unmanned aircraft to acquire data for the characterization of the radio frequency channel in a propagation environment with particular vegetation (Caatinga) and a lake. This paper presents the following contributions: identification of the communication channel model that best describes the characteristics of communication; characterization of the effects of large-scale fading, such as path loss and log-normal shadowing; characterization of small-scale fading (multipath and Doppler); and estimation of the aircraft speed from the identified Doppler frequency.
Collapse
|
43
|
Schmidt JDR, Beitz E. Mutational Widening of Constrictions in a Formate-Nitrite/H + Transporter Enables Aquaporin-Like Water Permeability and Proton Conductance. J Biol Chem 2021; 298:101513. [PMID: 34929166 PMCID: PMC8749060 DOI: 10.1016/j.jbc.2021.101513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
The unrelated protein families of the microbial formate–nitrite transporters (FNTs) and aquaporins (AQP) likely adapted the same protein fold through convergent evolution. FNTs facilitate weak acid anion/H+ cotransport, whereas AQP water channels strictly exclude charged substrates including protons. The FNT channel–like transduction pathway bears two lipophilic constriction sites that sandwich a highly conserved histidine residue. Because of lacking experiments, the function of these constrictions is unclear, and the protonation status of the central histidine during substrate transport remains a matter of debate. Here, we introduced constriction-widening mutations into the prototypical FNT from Escherichia coli, FocA, and assayed formate/H+ transport properties, water/solute permeability, and proton conductance. We found that enlargement of these constrictions concomitantly decreased formate/formic acid transport. In contrast to wildtype FocA, the mutants were unable to make use of a transmembrane proton gradient as a driving force. A construct in which both constrictions were eliminated exhibited water permeability, similar to AQPs, although accompanied by a proton conductance. Our data indicate that the lipophilic constrictions mainly act as barriers to isolate the central histidine from the aqueous bulk preventing protonation via proton wires. These results are supportive of an FNT transport model in which the central histidine is uncharged, and weak acid substrate anion protonation occurs in the vestibule regions of the transporter before passing the constrictions.
Collapse
|
44
|
Fu S, Luo S. Quantifying Decoherence via Increases in Classicality. ENTROPY 2021; 23:e23121594. [PMID: 34945900 PMCID: PMC8700208 DOI: 10.3390/e23121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
As a direct consequence of the interplay between the superposition principle of quantum mechanics and the dynamics of open systems, decoherence is a recurring theme in both foundational and experimental exploration of the quantum realm. Decoherence is intimately related to information leakage of open systems and is usually formulated in the setup of "system + environment" as information acquisition of the environment (observer) from the system. As such, it has been mainly characterized via correlations (e.g., quantum mutual information, discord, and entanglement). Decoherence combined with redundant proliferation of the system information to multiple fragments of environment yields the scenario of quantum Darwinism, which is now a widely recognized framework for addressing the quantum-to-classical transition: the emergence of the apparent classical reality from the enigmatic quantum substrate. Despite the half-century development of the notion of decoherence, there are still many aspects awaiting investigations. In this work, we introduce two quantifiers of classicality via the Jordan product and uncertainty, respectively, and then employ them to quantify decoherence from an information-theoretic perspective. As a comparison, we also study the influence of the system on the environment.
Collapse
|
45
|
Iliff AJ, Wang C, Ronan EA, Hake AE, Guo Y, Li X, Zhang X, Zheng M, Liu J, Grosh K, Duncan RK, Xu XZS. The nematode C. elegans senses airborne sound. Neuron 2021; 109:3633-3646.e7. [PMID: 34555314 PMCID: PMC8602785 DOI: 10.1016/j.neuron.2021.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
Unlike olfaction, taste, touch, vision, and proprioception, which are
widespread across animal phyla, hearing is found only in vertebrates and some
arthropods. The vast majority of invertebrate species are thus considered
insensitive to sound. Here, we challenge this conventional view by showing that
the earless nematode C. elegans senses airborne sound at
frequencies reaching the kHz range. Sound vibrates C. elegans
skin, which acts as a pressure-to-displacement transducer similar to vertebrate
eardrum, activates sound-sensitive FLP/PVD neurons attached to the skin, and
evokes phonotaxis behavior. We identified two nAChRs that transduce sound
signals independently of ACh, revealing an unexpected function of nAChRs in
mechanosensation. Thus, the ability to sense airborne sound is not restricted to
vertebrates and arthropods as previously thought, and might have evolved
multiple times independently in the animal kingdom, suggesting convergent
evolution. Our studies also demonstrate that animals without ears may not be
presumed to be sound insensitive. Hearing is thought to exist only in vertebrates and some arthropods, but
not other animal phyla. Here, Xu and colleagues report that the earless nematode
C. elegans senses airborne sound and engages in phonotaxis.
Thus, hearing might have evolved multiple times independently in the animal
kingdom, suggesting convergent evolution.
Collapse
|
46
|
Hanssens LS, Duchateau J, Casimir GJ. CFTR Protein: Not Just a Chloride Channel? Cells 2021; 10:2844. [PMID: 34831067 PMCID: PMC8616376 DOI: 10.3390/cells10112844] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in a gene encoding a protein called Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). The CFTR protein is known to acts as a chloride (Cl-) channel expressed in the exocrine glands of several body systems where it also regulates other ion channels, including the epithelial sodium (Na+) channel (ENaC) that plays a key role in salt absorption. This function is crucial to the osmotic balance of the mucus and its viscosity. However, the pathophysiology of CF is more challenging than a mere dysregulation of epithelial ion transport, mainly resulting in impaired mucociliary clearance (MCC) with consecutive bronchiectasis and in exocrine pancreatic insufficiency. This review shows that the CFTR protein is not just a chloride channel. For a long time, research in CF has focused on abnormal Cl- and Na+ transport. Yet, the CFTR protein also regulates numerous other pathways, such as the transport of HCO3-, glutathione and thiocyanate, immune cells, and the metabolism of lipids. It influences the pH homeostasis of airway surface liquid and thus the MCC as well as innate immunity leading to chronic infection and inflammation, all of which are considered as key pathophysiological characteristics of CF.
Collapse
|
47
|
Li J, Yu K, Bao X, Liu X, Yao J. Patterns of eHealth Website User Engagement Based on Cross-site Clickstream Data: Correlational Study. J Med Internet Res 2021; 23:e29299. [PMID: 34397392 PMCID: PMC8398706 DOI: 10.2196/29299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND User engagement is a key performance variable for eHealth websites. However, most existing studies on user engagement either focus on a single website or depend on survey data. To date, we still lack an overview of user engagement on multiple eHealth websites derived from objective data. Therefore, it is relevant to provide a holistic view of user engagement on multiple eHealth websites based on cross-site clickstream data. OBJECTIVE This study aims to describe the patterns of user engagement on eHealth websites and investigate how platforms, channels, sex, and income influence user engagement on eHealth websites. METHODS The data used in this study were the clickstream data of 1095 mobile users, which were obtained from a large telecom company in Shanghai, China. The observation period covered 8 months (January 2017 to August 2017). Descriptive statistics, two-tailed t tests, and an analysis of variance were used for data analysis. RESULTS The medical category accounted for most of the market share of eHealth website visits (134,009/184,826, 72.51%), followed by the lifestyle category (46,870/184,826, 25.36%). The e-pharmacy category had the smallest market share, accounting for only 2.14% (3947/184,826) of the total visits. eHealth websites were characterized by very low visit penetration and relatively high user penetration. The distribution of engagement intensity followed a power law distribution. Visits to eHealth websites were highly concentrated. User engagement was generally high on weekdays but low on weekends. Furthermore, user engagement gradually increased from morning to noon. After noon, user engagement declined until it reached its lowest level at midnight. Lifestyle websites, followed by medical websites, had the highest customer loyalty. e-Pharmacy websites had the lowest customer loyalty. Popular eHealth websites, such as medical websites, can effectively provide referral traffic for lifestyle and e-pharmacy websites. However, the opposite is also true. Android users were more engaged in eHealth websites than iOS users. The engagement volume of app users was 4.85 times that of browser users, and the engagement intensity of app users was 4.22 times that of browser users. Male users had a higher engagement intensity than female users. Income negatively moderated the influence that platforms (Android vs iOS) had on user engagement. Low-income Android users were the most engaged in eHealth websites. Conversely, low-income iOS users were the least engaged in eHealth websites. CONCLUSIONS Clickstream data provide a new way to derive an overview of user engagement patterns on eHealth websites and investigate the influence that various factors (eg, platform, channel, sex, and income) have on engagement behavior. Compared with self-reported data from a questionnaire, cross-site clickstream data are more objective, accurate, and appropriate for pattern discovery. Many user engagement patterns and findings regarding the influential factors revealed by cross-site clickstream data have not been previously reported.
Collapse
|
48
|
Monasky MM, Micaglio E, Ignaccolo S, Pappone C. Further Considerations in Childhood-Onset Hypertrophic Cardiomyopathy Genetic Testing. Front Cardiovasc Med 2021; 8:698078. [PMID: 34235191 PMCID: PMC8255358 DOI: 10.3389/fcvm.2021.698078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022] Open
|
49
|
Li Q, Montell C. Mechanism for food texture preference based on grittiness. Curr Biol 2021; 31:1850-1861.e6. [PMID: 33657409 DOI: 10.1016/j.cub.2021.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
An animal's decision to accept or reject a prospective food is based only, in part, on its chemical composition. Palatability is also greatly influenced by textural features including smoothness versus grittiness, which is influenced by particle sizes. Here, we demonstrate that Drosophila melanogaster is endowed with the ability to discriminate particle sizes in food and uses this information to decide whether a food is appealing. The decision depends on a mechanically activated channel, OSCA/TMEM63, which is conserved from plants to humans. We found that tmem63 is expressed in a multidendritic neuron (md-L) in the fly tongue. Loss of tmem63 impairs the activation of md-L by mechanical stimuli and the ability to choose food based on particle size. These findings reveal the first role for this evolutionarily conserved, mechanically activated TMEM63 channel in an animal and provide an explanation of how flies can sense and behaviorally respond to the texture of food provided by particles.
Collapse
|
50
|
Salm EJ, Dunn PJ, Shan L, Yamasaki M, Malewicz NM, Miyazaki T, Park J, Sumioka A, Hamer RRL, He WW, Morimoto-Tomita M, LaMotte RH, Tomita S. TMEM163 Regulates ATP-Gated P2X Receptor and Behavior. Cell Rep 2021; 31:107704. [PMID: 32492420 DOI: 10.1016/j.celrep.2020.107704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Fast purinergic signaling is mediated by ATP and ATP-gated ionotropic P2X receptors (P2XRs), and it is implicated in pain-related behaviors. The properties exhibited by P2XRs vary between those expressed in heterologous cells and in vivo. Several modulators of ligand-gated ion channels have recently been identified, suggesting that there are P2XR functional modulators in vivo. Here, we establish a genome-wide open reading frame (ORF) collection and perform functional screening to identify modulators of P2XR activity. We identify TMEM163, which specifically modulates the channel properties and pharmacology of P2XRs. We also find that TMEM163 is required for full function of the neuronal P2XR and a pain-related ATP-evoked behavior. These results establish TMEM163 as a critical modulator of P2XRs in vivo and a potential target for the discovery of drugs for treating pain.
Collapse
|