26
|
Stevens MM, Warren GN, Mo J. Topical and dietary toxicity of emamectin benzoate, chlorantraniliprole, cyantraniliprole and indoxacarb to larvae of the common armyworm Mythimna convecta (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2022; 78:1000-1007. [PMID: 34761507 DOI: 10.1002/ps.6711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The common armyworm Mythimna convecta is an important pest of pastures and graminaceous crops in Australia, but materials currently registered for its control are limited to broad-spectrum compounds incompatible with integrated pest management (IPM) systems. In this study we assessed the response of M. convecta larvae to four alternative compounds using topical and dietary bioassays. RESULTS Emamectin benzoate [LC50 (lethal concentration for 50% of insects tested) values 2.69 μg mL-1 topical, 0.017 μg active ingredient (AI) g-1 dietary] and chlorantraniliprole (LC50 values 4.87 μg mL-1 topical, 0.080 μg AI g-1 dietary) were significantly more active than either indoxacarb or cyantraniliprole. Our results showed strong parallels with data on the more extensively studied Australian strains of Helicoverpa armigera, with the most notable differences being the higher contact toxicity of emamectin benzoate to M. convecta and the lower acute dietary activity of formulated cyantraniliprole to this species, which was linked to feeding deterrence. Cyantraniliprole at dietary concentrations of ≥0.02 μg AI g-1 significantly reduced the weight of surviving larvae and frass production (an indirect measure of food consumption) over the seven-day exposure period. There was also some evidence of chlorantraniliprole deterring larval feeding, although to a much more limited extent. CONCLUSIONS Both emamectin benzoate and chlorantraniliprole are suitable for use against M. convecta. The decision as to which of these compounds should be prioritized for further development should be based on their potential effects on beneficial species once their optimal field rates have been determined.
Collapse
|
27
|
Tougeron K, Iltis C, Renoz F, Albittar L, Hance T, Demeter S, Le Goff GJ. Ecology and biology of the parasitoid Trechnites insidiosus and its potential for biological control of pear psyllids. PEST MANAGEMENT SCIENCE 2021; 77:4836-4847. [PMID: 34148291 DOI: 10.1002/ps.6517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 06/12/2023]
Abstract
Pear cultivation accounts for a large proportion of worldwide orchards, but its sustainability is controversial because it relies on intensive use of pesticides. It is therefore crucial and timely to find alternative methods to chemical control in pear orchards. The psyllids Cacopsylla pyri and Cacopsylla pyricola are the most important pests of pear trees in Europe and North America, respectively, because they infest all commercial varieties, causing damage directly through sap consumption or indirectly through the spread of diseases. A set of natural enemies exists, ranging from generalist predators to specialist parasitoids. Trechnites insidiosus (Crawford) is undoubtedly the most abundant specialist parasitoid of psyllids. In our literature review, we highlight the potential of this encyrtid species as a biological control agent of psyllid pests by first reviewing its biology and ecology, and then considering its potential at regulating psyllids. We show that the parasitoid can express fairly high parasitism rates in orchards, and almost perfectly matches the phenology of its host and is present early in the host infestation season, which is an advantage for controlling immature stages of psyllids. We propose new research directions and innovative approaches that would improve the use of T. insidiosus in integrated pest management strategies in the future, regarding both augmentative and conservation biocontrol. We conclude that T. insidiosus has many advantages and should be included as part of integrated biological control strategies of pear psyllids, along with predators, in-field habitat conservation, and the rational use of compatible chemicals. © 2021 Society of Chemical Industry.
Collapse
|
28
|
Laurenz S, Meyhöfer R. Conservation of Non-Pest Whiteflies and Natural Enemies of the Cabbage Whitefly Aleyrodes proletella on Perennial Plants for Use in Non-Crop Habitats. INSECTS 2021; 12:774. [PMID: 34564214 PMCID: PMC8468402 DOI: 10.3390/insects12090774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
Aleyrodes proletella causes severe economic damage to several Brassica crops. Its naturally occurring enemies often immigrate late in the season or appear in low numbers on cabbage. This field study aims to permanently increase the local abundance of A. proletella's natural enemies by providing the non-pest whitefly Aleyrodes lonicerae as an alternative and overwintering host/prey. Therefore, the population dynamics of natural enemies on different perennial herbaceous plants pre-infested with A. lonicerae were determined at two field locations over two winter periods. Most A. lonicerae colonized (on average 166.22 puparia per m²) and overwintered (342.19 adults per m²) on wood avens Geum urbanum. Furthermore, the abundance of A. proletella main parasitoid Encarsia tricolor (28.50 parasitized puparia per m²) and spiders (12.13 per m²) was 3-74 times and 3-14 times higher, respectively, on G. urbanum compared to the other experimental plants. Conclusively, G. urbanum pre-infested with A. lonicerae permanently promoted natural enemies of A. proletella by serving as shelter, reproduction, and overwintering habitat. A potential implementation of G. urbanum in conservation biological control strategies (e.g., tailored flower strips, hedgerows) against A. proletella are discussed and suggestions for future research are given.
Collapse
|
29
|
Staton T, Walters RJ, Smith J, Breeze TD, Girling RD. Evaluating a trait-based approach to compare natural enemy and pest communities in agroforestry vs. arable systems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02294. [PMID: 33427350 DOI: 10.1002/eap.2294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Diversified farming systems, for example those that incorporate agroforestry elements, have been proposed as a solution that could maintain and improve multiple ecosystem services. However, habitat diversification in and around arable fields has complex and inconsistent effects on invertebrate crop pests and their natural enemies. This hinders the development of policy recommendations to promote the adoption of such management strategies for the provision of natural pest control services. Here, for the first time, we conducted a trait-based approach to investigate the effect of farming system on plant, invertebrate herbivore, and invertebrate natural enemy communities. We then evaluated this approach by comparing the results to those generated using a traditional taxonomic approach. At each of three working farms, we sampled within an agroforestry field (a diverse farming system comprising alleys of arable crops separated by tree rows), and within a paired non-diversified area of the farm (arable control field). Each of 96 sample points was sampled between 8 and 10 times, yielding 393,318 invertebrate specimens from 344 taxonomic groups. Diet specialization or granivory, lack of a pupal stage, and wing traits in invertebrates, along with late flowering, short flowering duration, creeping habit, and perenniality in plants, were traits more strongly associated with agroforestry crop alleys than the arable control fields. We hypothesize that this is a result of reduced habitat disturbance and increased habitat complexity in the agroforestry system. Taxonomic richness and diversity were higher in the agroforestry crop alleys compared to the arable control fields, but these effects were stronger at lower trophic levels. However, functional trait diversity of natural enemies was significantly higher in the agroforestry crop alleys than the arable control fields, suggesting an improved level of biocontrol, which was not detected by traditional diversity metrics. Of eight key pest taxa, three were significantly suppressed in the agroforestry system, while two were more abundant, compared to the arable control fields. Trait-based approaches can provide a better mechanistic understanding of farming system effects on pests and their natural enemies, therefore we recommend their application and testing in future studies of diversified farming systems.
Collapse
|
30
|
Clem CS, Harmon-Threatt AN. Field Borders Provide Winter Refuge for Beneficial Predators and Parasitoids: A Case Study on Organic Farms. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6272550. [PMID: 33964162 PMCID: PMC8106474 DOI: 10.1093/jisesa/ieab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Semi-natural field borders are frequently used in midwestern U.S. sustainable agriculture. These habitats are meant to help diversify otherwise monocultural landscapes and provision them with ecosystem services, including biological control. Predatory and parasitic arthropods (i.e., potential natural enemies) often flourish in these habitats and may move into crops to help control pests. However, detailed information on the capacity of semi-natural field borders for providing overwintering refuge for these arthropods is poorly understood. In this study, we used soil emergence tents to characterize potential natural enemy communities (i.e., predacious beetles, wasps, spiders, and other arthropods) overwintering in cultivated organic crop fields and adjacent field borders. We found a greater abundance, species richness, and unique community composition of predatory and parasitic arthropods in field borders compared to arable crop fields, which were generally poorly suited as overwintering habitat. Furthermore, potential natural enemies tended to be positively associated with forb cover and negatively associated with grass cover, suggesting that grassy field borders with less forb cover are less well-suited as winter refugia. These results demonstrate that semi-natural habitats like field borders may act as a source for many natural enemies on a year-to-year basis and are important for conserving arthropod diversity in agricultural landscapes.
Collapse
|
31
|
Naranjo SE, Hagler JR, Byers JA. Methyl Salicylate Fails to Enhance Arthropod Predator Abundance or Predator to Pest Ratios in Cotton. ENVIRONMENTAL ENTOMOLOGY 2021; 50:293-305. [PMID: 33399185 DOI: 10.1093/ee/nvaa175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 06/12/2023]
Abstract
Conservation biological control is a fundamental tactic in integrated pest management (IPM). Greater biological control services can be achieved by enhancing agroecosystems to be more favorable to the presence, survival, and growth of natural enemy populations. One approach that has been tested in numerous agricultural systems is the deployment of synthetic chemicals that mimic those produced by the plant when under attack by pests. These signals may attract arthropod natural enemies to crop habitats and thus potentially improve biological control activity locally. A 2-yr field study was conducted in the cotton agroecosystem to evaluate the potential of synthetic methyl salicylate (MeSA) to attract native arthropod natural enemies and to enhance biological control services on two key pests. Slow-release packets of MeSA were deployed in replicated cotton plots season long. The abundance of multiple taxa of natural enemies and two major pests were monitored weekly by several sampling methods. The deployment of MeSA failed to increase natural enemy abundance and pest densities did not decline. Predator to prey ratios, used as a proxy to estimate biological control function, also largely failed to increase with MeSA deployment. One exception was a season-long increase in the ratio of Orius tristicolor (White) (Hemiptera: Anthocoridae) to Bemisia argentifolii Bellows and Perring (= Bemisia tabaci MEAM1) (Hemiptera: Aleyrodidae) adults within the context of biological control informed action thresholds. Overall results suggest that MeSA would not likely enhance conservation biological control by the natural enemy community typical of U.S. western cotton production systems.
Collapse
|
32
|
Aparicio Y, Riudavets J, Gabarra R, Agustí N, Rodríguez-Gasol N, Alins G, Blasco-Moreno A, Arnó J. Can Insectary Plants Enhance the Presence of Natural Enemies of the Green Peach Aphid (Hemiptera: Aphididae) in Mediterranean Peach Orchards? JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:784-793. [PMID: 33480425 DOI: 10.1093/jee/toaa298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Conservation biological control could be an alternative to insecticides for the management of the aphid Myzus persicae (Sulzer). To develop sustainable strategies for M. persicae control in peach orchards in the Mediterranean, a 2-yr field experiment was conducted to identify the key predators of the aphid; to determine whether the proximity of insectary plants boost natural enemies of M. persicae in comparison to the resident vegetation; and whether selected insectary plants enhance natural enemy populations in the margins of peach orchards. Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) and Episyrphus balteatus De Geer (Diptera: Syrphidae) were the most abundant predators found among sentinel aphid colonies, accounting for 57% and 26%, respectively. Samplings during 2015 yielded twice as many hoverflies in M. persicae sentinel plants close to the insectary plants as those close to the resident vegetation. The abundance of other natural enemies in sentinel plants, depending on their proximity to the insectary plants, was not significantly different in either of the 2 yr. Hoverflies hovered more often over the insectary plants than over the resident vegetation and landed significantly more often on Lobularia maritima (L.) Desv., Moricandia arvensis (L.) DC., and Sinapis alba L. (Brassicales: Brassicaceae) than on Achillea millefollium L. (Asterales: Compositae). Parasitoids were significantly more abundant in L. maritima and A. millefollium. The vicinity of selected insectary plants to peach orchards could improve the presence of hoverflies, which might benefit the biological control of M. persicae.
Collapse
|
33
|
Land-Use Effect on Olive Groves Pest Prays oleae and on Its Potential Biocontrol Agent Chrysoperla carnea. INSECTS 2021; 12:insects12010046. [PMID: 33435550 PMCID: PMC7827753 DOI: 10.3390/insects12010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary To rethink the counterproductive effects of the recurrent use of pesticides to control pests, we examine how a conservation biological control approach can promote the necessary conditions for the development of a natural enemy (Chrysoperla carnea) that controls olive moth pest (Prays oleae) in 25 olive groves of the Portuguese Beira Interior region. Our study has the distinctive peculiarity of joining varied technical approaches, since the databases contained information related to the abundance records of both insect populations, the record of olive fruits infestation by the pest, and the information obtained after a geospatial analysis that resulted in landscape metrics. Overall, we corroborated the attraction of C. carnea to the olive moth, highlighted the possible biocontrol potential of C. carnea on this pest, asserted that the promotion of the diversity of land-uses has a significant effect in reducing the abundance of pest, and confirmed that landscapes dominated by olive groves promote the development of P. oleae. The implication of these results is of extreme importance for olive growers since promoting land-uses complexity and heterogeneity surrounding olive groves can reduce the likelihood of suffering pest outbreaks and help to avoid associated economic and environmental problems. Abstract Olive growing has been intensified through the simplification of agricultural landscapes. In order to rethink the environmental drawbacks of these practices, conservation biological control techniques have been examined. In this work, Prays oleae and its natural enemy Chrysoperla carnea were monitored to account for the effects of the amount and diversity of different land-uses. We found that C. carnea showed an attraction to areas with high abundances of P. oleae but this predator did not display any affection by the different land-uses. Inversely, P. oleae abundance was lower in diverse landscapes and higher in simplified ones. Importantly, higher abundances of C. carnea were related to lower infestation levels of P. oleae in the late part of the season. These results corroborate the attraction of C. carnea to the olive moth, highlighting the potential of C. carnea as a biological control agent of this pest, assert that the promotion of land-use diversity can reduce P. oleae and confirm that landscapes dominated by olive groves can promote this pest. The present study aims at contributing to the discussion about the management of agricultural ecosystems by providing farmers with sustainable alternatives that do not have harmful effects on the environment and public health.
Collapse
|
34
|
Effect of Weed Management on the Parasitoid Community in Mediterranean Vineyards. BIOLOGY 2020; 10:biology10010007. [PMID: 33374201 PMCID: PMC7823956 DOI: 10.3390/biology10010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
Simple Summary Parasitoid wasps control insect pests in agricultural crops, but often require additional resources from non-crop plants. Vineyard growers sometimes address this need by planting or sowing pre-selected herbs around the plots or between the vine rows. Here, we explored the simpler strategy of conserving spontaneously growing weeds within Mediterranean vineyards, and trimming them mechanically when they reach large size and interfere with farming activities. We compared this strategy with matched plots, in which resident weeds were sprayed regularly with herbicides, representing the conventional treatment. As predicted, overall parasitoid abundance and the number of parasitoid species were higher in the weed conservation plots. However, the direction and magnitude of the effect differed between the dominant parasitoid species, and populations of some potential pests increased in the weed conservation treatment. Conservation of weeds that grow spontaneously in vineyards is a low-cost practice that offers multiple benefits, such as reduced soil erosion, stabilization of soil temperatures, and diminished exposure of farmers to agrochemicals. Our results show that communities of important biological control agents may gain from this practice as well. Nevertheless, weed conservation within vineyards can only be sustainable if its benefits outweigh the risks of attracting crop pests. Abstract Enriching agroecosystems with non-crop vegetation is a popular strategy for conservation biocontrol. In vineyards, the effects of specific seeded or planted cover crops on natural enemies are well-studied, whereas conserving spontaneously developing weeds received less attention. We compared parasitoid communities between matched pairs of vineyard plots in northern Israel, differing in weed management practices: “herbicide”, repeated herbicide applications vs. “ground cover”, maintaining resident weeds and trimming them when needed. Using suction sampling, we assessed the parasitoids’ abundance, richness, and composition during three grape-growing seasons. Ground cover plots had greater parasitoid abundances and cumulative species richness than herbicide-treated plots, possibly because of their higher vegetation cover and richness. Dominant parasitoid species varied in their magnitude and direction of response to weed management. Their responses seem to combine tracking of host distributions with attraction to additional vegetation-provided resources. Parasitoid community composition was mildly yet significantly influenced by weed management, while season, year, and habitat (weeds vs. vine) had stronger effects. Vineyard weeds thus support local biocontrol agents and provide additional previously demonstrated benefits (e.g., soil conservation, lower agrochemical exposure) but might also attract some crop pests. When the benefits outweigh this risk, weed conservation seems a promising step towards more sustainable agricultural management.
Collapse
|
35
|
Uefune M, Abe J, Shiojiri K, Urano S, Nagasaka K, Takabayashi J. Targeting diamondback moths in greenhouses by attracting specific native parasitoids with herbivory-induced plant volatiles. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201592. [PMID: 33391814 PMCID: PMC7735346 DOI: 10.1098/rsos.201592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
We investigated the recruitment of specific parasitoids using a specific blend of synthetic herbivory-induced plant volatiles (HIPVs) as a novel method of pest control in greenhouses. In the Miyama rural area in Kyoto, Japan, diamondback moth (DBM) (Plutella xylostella, Lepidoptera: Plutellidae) larvae are an important pest of cruciferous crops in greenhouses, and Cotesia vestalis (Hymenoptera: Braconidae), a larval parasitoid of DBM, is found in the surrounding areas. Dispensers of HIPVs that attracted C. vestalis and honey feeders were set inside greenhouses (treated greenhouses). The monthly incidence of DBMs in the treated greenhouses was significantly lower than that in the untreated greenhouses over a 2-year period. The monthly incidences of C. vestalis and DBMs were not significantly different in the untreated greenhouses, whereas monthly C. vestalis incidence was significantly higher than monthly DBM incidence in the treated greenhouses. Poisson regression analyses showed that, in both years, a significantly higher number of C. vestalis was recorded in the treated greenhouses than in the untreated greenhouses when the number of DBM adults increased. We concluded that DBMs were suppressed more effectively by C. vestalis in the treated greenhouses than in the untreated greenhouses.
Collapse
|
36
|
How Effective Is Conservation Biological Control in Regulating Insect Pest Populations in Organic Crop Production Systems? INSECTS 2020; 11:insects11110744. [PMID: 33138249 PMCID: PMC7692856 DOI: 10.3390/insects11110744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/27/2022]
Abstract
Simple Summary Organic crop production systems typically rely on conservation biological control to increase and sustain natural enemies including parasitoids and predators that will regulate insect pest populations below damaging levels. The use of flowering plants or floral resources to attract and retain natural enemies in organic crop production systems has not been consistent, based on the scientific literature, and most importantly, many studies do not correlate an increase in natural enemies with a reduction in plant damage. This may be associated with the effects of intraguild predation or the negative effects that can occur when multiple natural enemies are present in an ecosystem. Consequently, although incorporating flowering plants into organic crop production systems may increase the natural enemy assemblages, more robust scientific studies are warranted to determine the actual effects of natural enemies in reducing plant damage associated with insect pest populations. Abstract Organic crop production systems are designed to enhance or preserve the presence of natural enemies, including parasitoids and predators, by means of conservation biological control, which involves providing environments and habitats that sustain natural enemy assemblages. Conservation biological control can be accomplished by providing flowering plants (floral resources) that will attract and retain natural enemies. Natural enemies, in turn, will regulate existing insect pest populations to levels that minimize plant damage. However, evidence is not consistent, based on the scientific literature, that providing natural enemies with flowering plants will result in an abundance of natural enemies sufficient to regulate insect pest populations below economically damaging levels. The reason that conservation biological control has not been found to sufficiently regulate insect pest populations in organic crop production systems across the scientific literature is associated with complex interactions related to intraguild predation, the emission of plant volatiles, weed diversity, and climate and ecosystem resources across locations where studies have been conducted.
Collapse
|
37
|
Reich I, Jessie C, Ahn SJ, Choi MY, Williams C, Gormally M, Mc Donnell R. Assessment of the Biological Control Potential of Common Carabid Beetle Species for Autumn- and Winter-Active Pests (Gastropoda, Lepidoptera, Diptera: Tipulidae) in Annual Ryegrass in Western Oregon. INSECTS 2020; 11:insects11110722. [PMID: 33105729 PMCID: PMC7690374 DOI: 10.3390/insects11110722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Simple Summary Many studies have shown that ground beetles feed on different agricultural pests, but little is known about their species communities from US cropping systems. We assessed the biological control potential of the most common carabid beetle species in Oregon annual ryegrass grown for seed by investigating spatial and temporal overlap of the most common species with those of the most damaging autumn- and winter-active pests (slugs, caterpillars and cranefly larvae) and determined the number of field-collected specimens that had fed on the respective pests using molecular gut content analysis. Only the non-native Nebria brevicollis was abundant during pest emergence and tested positive for all three pest groups. While the other common carabid beetle species—Agonum muelleri, Calosoma cancellatum and Poecilus laetulus—were also found to have consumed pests, they were active only during spring and summer, when crop damage by pests is less critical. We also show that disk tilling did not affect any of the four common carabid beetle species and that only N. brevicollis was significantly associated with a vegetated field margin. This study contributes to expanding our knowledge on conservation biological control in a system where chemical pesticides are still the mainstay of control against invertebrate pests. Abstract While carabid beetles have been shown to feed on a variety of crop pests, little is known about their species assemblages in US annual ryegrass crops, where invertebrate pests, particularly slugs, lepidopteran larvae and craneflies, incur major financial costs. This study assesses the biological control potential of carabid beetles for autumn- and winter-active pests in annual ryegrass grown for seed by: (a) investigating the spatial and temporal overlap of carabids with key pests; and (b) molecular gut content analysis using qPCR. Introduced Nebria brevicollis was the only common carabid that was active during pest emergence in autumn, with 18.6% and 8.3% of N. brevicollis collected between September and October testing positive for lepidopteran and cranefly DNA, respectively, but only 1.7% testing positive for slug DNA. While pest DNA was also detected in the guts of the other common carabid species—Agonum muelleri, Calosoma cancellatum and Poecilus laetulus—these were active only during spring and summer, when crop damage by pests is less critical. None of the four carabid species was affected by disk tilling and only N. brevicollis was significantly associated with a vegetated field margin. However, as its impact on native ecosystems is unknown, we do not recommend managing for this species.
Collapse
|
38
|
Pan H, Liu B, Jaworski CC, Yang L, Liu Y, Desneux N, Thomine E, Lu Y. Effects of Aphid Density and Plant Taxa on Predatory Ladybeetle Abundance at Field and Landscape Scales. INSECTS 2020; 11:insects11100695. [PMID: 33066204 PMCID: PMC7602106 DOI: 10.3390/insects11100695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary In agroecosystems, predatory ladybeetles play an important role in suppressing aphid populations. How ladybeetles make use of host plant diversity in multicropping landscapes has rarely been documented in China. In this study, we examined the relationship between aphid densities and ladybeetle densities at both the local field and landscape scales. Overall, we found that there was a positive correlation between aphid densities and ladybeetle densities. However, plant taxa had no significant influence on predatory ladybeetle abundance at the local field scale. In addition, the effect of aphids on ladybeetles abundance was influenced by the crop type and growing season at the regional landscape scale. There was a significant positive correlation between aphid and ladybeetle populations on cotton only in July and August, whereas the correlation was significant for maize throughout the whole growing season. The δ13C value indicated that most prey aphids for ladybeetles originated from crops where aphids are abundant (cotton in June and July; both maize and cotton in August). These findings improved our understanding of the migration and dispersal of ladybeetles among different habitats and plant species and provided insight into the promotion of regional conservation and pest control of natural enemies in Northern China. Abstract In agroecosystems, predatory ladybeetles play an important role in restraining aphid population growth and suppressing aphid populations. They can adapt to various habitats and make use of various aphid species associated with multiple host plants during their life cycle. Agricultural landscapes in China are composed of a mosaic of small fields with a diverse range of crops, and how ladybeetles make use of host plant diversity in such landscapes has rarely been documented. In this study, we examined the relationship between aphid densities and ladybeetle densities in two different settings: (i) on the majority of plant species (including crops, trees, and weeds) at a local field scale in 2013 and 2014, and (ii) in paired cotton and maize crop fields at a regional landscape scale in 2013. Overall, we found that aphid abundance determined predatory ladybeetle abundance at both the local field and landscape scales, and there was a positive correlation between aphid densities and ladybeetle densities. However, plant taxa had no significant influence on the predatory ladybeetle abundance at the local field scale. In addition, the effect of aphids on ladybeetles abundance was influenced by the crop type and growing season at the regional landscape scale. There was a significant positive correlation between aphids and ladybeetles populations on cotton only in July and August, whereas the correlation was significant for maize throughout the whole growing season. We also conducted an analysis of the stable carbon isotope ratios of the adult ladybeetles caught in cotton and maize fields (C3 and C4 crops, respectively) in a regional landscape-scale survey in 2013. The δ13Cvalue indicated that most prey aphids for ladybeetles originated from crops where aphids are abundant (cotton in June and July; both maize and cotton in August).These findings improved our understanding of the migration and dispersal of ladybeetles among different habitats and plant species and provided insight into the promotion of the regional conservation and pest control of natural enemies in northern China.
Collapse
|
39
|
Biological Control of Tephritid Fruit Flies in the Americas and Hawaii: A Review of the Use of Parasitoids and Predators. INSECTS 2020; 11:insects11100662. [PMID: 32993000 PMCID: PMC7600837 DOI: 10.3390/insects11100662] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/03/2023]
Abstract
Simple Summary Biological control has been the most commonly researched control tactic within fruit fly management programs, and parasitoids have been the main natural enemies used against pestiferous fruit fly species. In view of this fact, it is important to highlight and compile the data on parasitoids with a certain frequency, aiming to facilitate the knowledge of all the researchers. Information regarding the activities of parasitoids and predators on pestiferous fruit flies in the Americas is limited; therefore, this study aimed to compile the diversity of parasitoids and predators associated with tephritid fruit flies, as well as providing the scientific evidence about the use of parasitoids and predators as biological control agents for fruit flies im the Americas and Hawaii. Abstract Biological control has been the most commonly researched control tactic within fruit fly management programs. For the first time, a review is carried out covering parasitoids and predators of fruit flies (Tephritidae) from the Americas and Hawaii, presenting the main biological control programs in this region. In this work, 31 species of fruit flies of economic importance are considered in the genera Anastrepha (11), Rhagoletis (14), Bactrocera (4), Ceratitis (1), and Zeugodacus (1). In this study, a total of 79 parasitoid species of fruit flies of economic importance are listed and, from these, 50 are native and 29 are introduced. A total of 56 species of fruit fly predators occur in the Americas and Hawaii.
Collapse
|
40
|
Segoli M, Kishinevsky M, Rozenberg T, Hoffmann I. Parasitoid Abundance and Community Composition in Desert Vineyards and Their Adjacent Natural Habitats. INSECTS 2020; 11:insects11090580. [PMID: 32882792 PMCID: PMC7565741 DOI: 10.3390/insects11090580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022]
Abstract
Parasitoids are important natural enemies of many agricultural pests. Preserving natural habitats around agricultural fields may support parasitoid populations. However, the success of such an approach depends on the ability of parasitoids to utilize both crop and natural habitats. While these aspects have been studied extensively in temperate regions, very little is known about parasitoid communities in desert agroecosystems. We took one step in this direction by sampling parasitoids in six vineyards and their surrounding natural desert habitat in a hyper-arid region of the Negev Desert Highlands, Israel. We predicted that due to the high contrast in environmental conditions, parasitoid abundance and community composition would differ greatly between the crop and the natural desert habitats. We found that parasitoid abundance differed between the habitats; however, the exact distribution pattern depended on the time of year-with higher numbers of parasitoids in the natural habitat at the beginning of the vine growth season and higher numbers in the vineyard at the middle and end of the season. Although parasitoid community composition significantly differed between the vineyard and desert habitats, this only accounted for ~4% of the total variation. Overall, our results do not strongly support the notion of distinct parasitoid communities in the crop vs. the desert environment, suggesting that despite environmental contrasts, parasitoids may move between and utilize resources in both habitats.
Collapse
|
41
|
Albrecht M, Kleijn D, Williams NM, Tschumi M, Blaauw BR, Bommarco R, Campbell AJ, Dainese M, Drummond FA, Entling MH, Ganser D, Arjen de Groot G, Goulson D, Grab H, Hamilton H, Herzog F, Isaacs R, Jacot K, Jeanneret P, Jonsson M, Knop E, Kremen C, Landis DA, Loeb GM, Marini L, McKerchar M, Morandin L, Pfister SC, Potts SG, Rundlöf M, Sardiñas H, Sciligo A, Thies C, Tscharntke T, Venturini E, Veromann E, Vollhardt IMG, Wäckers F, Ward K, Westbury DB, Wilby A, Woltz M, Wratten S, Sutter L. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol Lett 2020; 23:1488-1498. [PMID: 32808477 PMCID: PMC7540530 DOI: 10.1111/ele.13576] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 01/09/2023]
Abstract
Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.
Collapse
|
42
|
Rand TA, Waters DK. Aphid Honeydew Enhances Parasitoid Longevity to the Same Extent as a High-Quality Floral Resource: Implications for Conservation Biological Control of the Wheat Stem Sawfly (Hymenoptera: Cephidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2022-2025. [PMID: 32333021 DOI: 10.1093/jee/toaa076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 06/11/2023]
Abstract
Providing sugar resources for parasitoids is an important component of habitat management approaches to bolster biological control. We screened three flowering cover crop species, and one aphid species, for their potential to increase the longevity of the parasitoid wasp, Bracon cephi (Gahan) (Hymenoptera: Braconidae), an important biological control agent of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae). We found that buckwheat and honeydew from the cereal aphid, Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae), increased longevity of B. cephi females by over threefold, while longevity on sunflower and coriander was not significantly different from controls on wheat. The results suggest that incorporating buckwheat into cover crop mixes could enhance parasitoid performance. However, the finding that honeydew associated with a common aphid in wheat provides a suitable resource suggests that a better understanding of the varying quality, and spatial and temporal availability, of aphid honeydew will be a critical consideration in evaluating the potential benefits of managing floral resources for parasitoid conservation in this system.
Collapse
|
43
|
Navarro-Campos C, Beltrà A, Calabuig A, Garcia-Marí F, Wäckers FL, Pekas A. Augmentative releases of the soil predatory mite Gaeolaelaps aculeifer reduce fruit damage caused by an invasive thrips in Mediterranean citrus. PEST MANAGEMENT SCIENCE 2020; 76:2500-2504. [PMID: 32061024 DOI: 10.1002/ps.5791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Soil-dwelling predatory mites of the family Laelapidae are augmentatively released for the biological control of several pests with an edaphic phase in numerous greenhouse crops. Yet, there is no information about the potential of releasing these predators to control pests in open field crops. We tested, during two consecutive years, the potential of augmentative releases of Gaeolaelaps aculeifer, alone or in combination with coco fiber discs as mulch, to reduce the damage caused on citrus fruits by the invasive thrips Pezothrips kellyanus in Mediterranean citrus. In a separate trial, we also compared different mulch types (coco fiber discs, rice husks or a mixture of sawdust and wheat bran) for their potential to support the establishment and population development of the predatory mites after their release. RESULTS The percentage of unmarketable fruits caused by P. kellyanus was significantly reduced in the plots where G. aculeifer was released. The addition of coco fiber discs did not reduce further the percentage of unmarketable fruits. Sawdust + bran mulch was the most effective in preserving immature and adult predatory mite population after their release. CONCLUSION Augmentative releases of G. aculeifer have the potential to reduce fruit damage caused by P. kellyanus in citrus. © 2020 Society of Chemical Industry.
Collapse
|
44
|
Sow A, Haran J, Benoit L, Galan M, Brévault T. DNA Metabarcoding as a Tool for Disentangling Food Webs in Agroecosystems. INSECTS 2020; 11:E294. [PMID: 32403224 PMCID: PMC7290477 DOI: 10.3390/insects11050294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022]
Abstract
Better knowledge of food webs and related ecological processes is fundamental to understanding the functional role of biodiversity in ecosystems. This is particularly true for pest regulation by natural enemies in agroecosystems. However, it is generally difficult to decipher the impact of predators, as they often leave no direct evidence of their activity. Metabarcoding via high-throughput sequencing (HTS) offers new opportunities for unraveling trophic linkages between generalist predators and their prey, and ultimately identifying key ecological drivers of natural pest regulation. Here, this approach proved effective in deciphering the diet composition of key predatory arthropods (nine species.; 27 prey taxa), insectivorous birds (one species, 13 prey taxa) and bats (one species; 103 prey taxa) sampled in a millet-based agroecosystem in Senegal. Such information makes it possible to identify the diet breadth and preferences of predators (e.g., mainly moths for bats), to design a qualitative trophic network, and to identify patterns of intraguild predation across arthropod predators, insectivorous vertebrates and parasitoids. Appropriateness and limitations of the proposed molecular-based approach for assessing the diet of crop pest predators and trophic linkages are discussed.
Collapse
|
45
|
Holland JM, Jeanneret P, Moonen AC, van der Werf W, Rossing WA, Antichi D, Entling MH, Giffard B, Helsen H, Szalai M, Rega C, Gibert C, Veromann E. Approaches to Identify the Value of Seminatural Habitats for Conservation Biological Control. INSECTS 2020; 11:insects11030195. [PMID: 32244905 PMCID: PMC7143897 DOI: 10.3390/insects11030195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
Invertebrates perform many vital functions in agricultural production, but many taxa are in decline, including pest natural enemies. Action is needed to increase their abundance if more sustainable agricultural systems are to be achieved. Conservation biological control (CBC) is a key component of integrated pest management yet has failed to be widely adopted in mainstream agriculture. Approaches to improving conservation biological control have been largely ad hoc. Two approaches are described to improve this process, one based upon pest natural enemy ecology and resource provision while the other focusses on the ecosystem service delivery using the QuESSA (Quantification of Ecological Services for Sustainable Agriculture) project as an example. In this project, a predictive scoring system was developed to show the potential of five seminatural habitat categories to provide biological control, from which predictive maps were generated for Europe. Actual biological control was measured in a series of case studies using sentinel systems (insect or seed prey), trade-offs between ecosystem services were explored, and heatmaps of biological control were generated. The overall conclusion from the QuESSA project was that results were context specific, indicating that more targeted approaches to CBC are needed. This may include designing new habitats or modifying existing habitats to support the types of natural enemies required for specific crops or pests.
Collapse
|
46
|
Cohen Y, Bar-David S, Nielsen M, Bohmann K, Korine C. An appetite for pests: Synanthropic insectivorous bats exploit cotton pest irruptions and consume various deleterious arthropods. Mol Ecol 2020; 29:1185-1198. [PMID: 32153071 DOI: 10.1111/mec.15393] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
Conservation biological control (CBC) seeks to minimize the deleterious effects of agricultural pests by enhancing the efficiency of natural enemies. Despite the documented potential of insectivorous bats to consume pests, many synanthropic bat species are still underappreciated as beneficial species. We investigated the diet of Kuhl's pipistrelle (Pipistrellus kuhlii), a common synanthropic insectivorous bat that forages in urban and agricultural areas, to determine whether it may function as a natural enemy in CBC. Faecal samples of P. kuhlii were collected throughout the cotton-growing season from five roost sites near cotton fields located in a Mediterranean agroecosystem, Israel, and analyzed using DNA metabarcoding. Additionally, data on estimated abundance of major cotton pests were collected. We found that the diet of P. kuhlii significantly varied according to sites and dates and comprised 27 species of agricultural pests that were found in 77.2% of the samples, including pests of key economic concern. The dominant prey was the widespread cotton pest, the pink bollworm, Pectinophora gossypiella, found in 31% of the samples and in all the roosts. Pink bollworm abundance was positively correlated with its occurrence in the bat diet. Furthermore, the bats' dietary breadth narrowed, while temporal dietary overlap increased, in relation to increasing frequencies of pink bollworms in the diet. This suggests that P. kuhlii exploits pink bollworm irruptions by opportunistic feeding. We suggest that synanthropic bats provide important pest suppression services, may function as CBC agents of cotton pests and potentially contribute to suppress additional deleterious arthropods found in their diet in high frequencies.
Collapse
|
47
|
Ge Y, Liu P, Zhang L, Snyder WE, Smith OM, Shi W. A sticky situation: honeydew of the pear psylla disrupts feeding by its predator Orius sauteri. PEST MANAGEMENT SCIENCE 2020; 76:75-84. [PMID: 31140683 DOI: 10.1002/ps.5498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Honeydew is valuable food source for predators that can build predator numbers and strengthen biological control. Honeydew excreted by hemipterans often supplements the diets of their predators and parasitoids. However, dense sticky honeydew also creates a difficult foraging environment, potentially limiting predator efficiency. RESULTS We examined the benefits and costs of honeydew excreted by the pear psylla (Cacopsylla chinensis [Yang and Li]) for its key predator in much of Asia, the anthocorid bug Orius sauteri (Poppius). We found these predators spent more time foraging and laid more eggs in the presence of psyllid honeydew compared to the control. However, predators more often foraged among psylla without honeydew than those coated in honeydew. This suggests that while O. sauteri recognized honeydew as a useful cue to prey presence, the predators were more likely to attack pear psylla lacking the sugary excretion. In foraging trials, honeydew consistently reduced the number of psyllids killed by the predator, suggesting it limited O. sauteri mobility or reduced the nutritional value of psyllids as prey. We also found slowed development, reduced longevity, and reduced fecundity of O. sauteri reared on moth eggs (Sitotroga cerealella [Olivier]) coated in honeydew compared to those reared on moth eggs alone. CONCLUSION Altogether, our results suggest that psyllid honeydew could serve as a prey-location and oviposition cue for O. sauteri. However, honeydew also limited predator foraging with the potential to limit biological control. More generally, honeydew might form an important type of defense for stationary feeders like psyllids. © 2019 Society of Chemical Industry.
Collapse
|
48
|
Bouvet JPR, Urbaneja A, Monzó C. Effects of Citrus Overwintering Predators, Host Plant Phenology and Environmental Variables on Aphid Infestation Dynamics in Clementine Citrus. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1587-1597. [PMID: 31038668 DOI: 10.1093/jee/toz101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The Spirea citrus aphid, Aphis spiraecola Patch, and the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), are key pests of clementine mandarines in the Mediterranean basin. Severity of aphid infestations is determined by environmental variables, host plant phenology patterns, and the biological control exerted by their associated natural enemies. However, there is no information about the role these limiting and regulating factors play. Aphid densities, citrus phenology, and associated predators that overwinter in the crop were monitored weekly throughout two flush growth periods (February to July) in four clementine mandarin groves; relationships between these parameters and environmental variables (temperature and precipitation) were studied. Our results show exponential increase in aphid infestation levels to coincide with citrus phenological stages B3 and B4; shoots offer more space and nutritional resources for colony growth at these stages. Duration of these phenological stages, which was mediated by mean temperature, seems to importantly determine the severity of aphid infestations in the groves. Among those studied, the micro-coccinellids, mostly Scymnus species, were the only group of predators with the ability to efficiently regulate aphid populations. These natural enemies had the highest temporal and spatial demographic stability. Aphid regulation success was only achieved through early presence of natural enemies in the grove, at the aphid colonization phase. Our results suggest that conservation strategies aimed at preserving and enhancing Scymnus sp. populations may make an important contribution to the future success of the biological control of these key citrus pests.
Collapse
|
49
|
Local and Landscape Effects to Biological Controls in Urban Agriculture-A Review. INSECTS 2019; 10:insects10070215. [PMID: 31336586 PMCID: PMC6681219 DOI: 10.3390/insects10070215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022]
Abstract
Urban agriculture is widely practiced throughout the world. Urban agriculture practitioners have diverse motivations and circumstances, but one problem is ubiquitous across all regions: insect pests. Many urban farmers and gardeners either choose to, or are required to forego, the use of chemical controls for pest outbreaks because of costs, overspray in populated areas, public health, and environmental concerns. An alternative form of pest control is conservation biological control (CBC)—a form of ecological pest management—that can reduce the severity of pest outbreaks and crop damage. Urban farmers relying on CBC often assume that diversification practices similar to those used in rural farms may reduce insect pest populations and increase populations of beneficial insects, yet these management practices may be inappropriate for applications in fragmented urban environments. In this review, we assess urban CBC research and provide a synthesis for urban agriculture practitioners. Our findings indicate that local and landscape factors differentially affect insect pests and beneficial arthropods across the reviewed studies, and we identify several on-farm practices that can be implemented to increase biological control in urban agriculture.
Collapse
|
50
|
Fidelis EG, Farias ES, Silva RS, Lopes MC, Silva NR, Picanço MC. Natural factors regulating mustard aphid dynamics in cabbage. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:325-332. [PMID: 29973304 DOI: 10.1017/s0007485318000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lipaphis erysimi (L.) Kaltenbach (Hemiptera: Aphididae) is one of the most important pests of brassica crops, mainly causing losses due to sap sucking, toxin injection and viral transmission. Knowledge about the main natural factors that regulate populations of this pest, as well as its critical mortality stage, is crucial for the development of integrated pest management of L. erysimi. Here, we determined the critical stage and key mortality factors for L. erysimi in cabbage using an ecological life table. Causes of mortality at each stage of L. erysimi development were monitored daily in the field for seven seasons. From the experimental data, we determined the key factor and critical stage of mortality through correlation and regression analyses. The nymphal stage, especially first instar nymphs, was critical for L. erysimi mortality. The key mortality factors were, in descending order of importance, physiological disturbances and predation by Syrphidae, Coccinellidae and Solenopsis ants. Therefore, control measures should target early stages of L. erysimi and the use of cabbage cultivars that have negative effects against L. erysimi may be a promising strategy for its management. Our results may be useful for plant geneticists who could develop new cabbage cultivars based on these findings. In addition, conservation measures of the main predators of L. erysimi may contribute to the natural control of this pest.
Collapse
|