26
|
Sokabe M, Fraser CS. It's a competitive business. eLife 2024; 13:e96304. [PMID: 38393777 PMCID: PMC10890784 DOI: 10.7554/elife.96304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
A new in vitro system called Rec-Seq sheds light on how mRNA molecules compete for the machinery that translates their genetic sequence into proteins.
Collapse
|
27
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
28
|
López AR, Jørgensen MH, Havelund JF, Arendrup FS, Kolapalli SP, Nielsen TM, Pais E, Beese CJ, Abdul-Al A, Vind AC, Bartek J, Bekker-Jensen S, Montes M, Galanos P, Faergeman N, Happonen L, Frankel LB. Autophagy-mediated control of ribosome homeostasis in oncogene-induced senescence. Cell Rep 2023; 42:113381. [PMID: 37930887 DOI: 10.1016/j.celrep.2023.113381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Oncogene-induced senescence (OIS) is a persistent anti-proliferative response that acts as a barrier against malignant transformation. During OIS, cells undergo dynamic remodeling, which involves alterations in protein and organelle homeostasis through autophagy. Here, we show that ribosomes are selectively targeted for degradation by autophagy during OIS. By characterizing senescence-dependent alterations in the ribosomal interactome, we find that the deubiquitinase USP10 dissociates from the ribosome during the transition to OIS. This release of USP10 leads to an enhanced ribosome ubiquitination, particularly of small subunit proteins, including lysine 275 on RPS2. Both reinforcement of the USP10-ribosome interaction and mutation of RPS2 K275 abrogate ribosomal delivery to lysosomes without affecting bulk autophagy. We show that the selective recruitment of ubiquitinated ribosomes to autophagosomes is mediated by the p62 receptor. While ribophagy is not required for the establishment of senescence per se, it contributes to senescence-related metabolome alterations and facilitates the senescence-associated secretory phenotype.
Collapse
|
29
|
Kar D, Manna D, Manjunath LE, Singh A, Som S, Vasu K, Eswarappa SM. Kinetics of Translating Ribosomes Determine the Efficiency of Programmed Stop Codon Readthrough. J Mol Biol 2023; 435:168274. [PMID: 37714299 DOI: 10.1016/j.jmb.2023.168274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
During translation, a stop codon on the mRNA signals the ribosomes to terminate the process. In certain mRNAs, the termination fails due to the recoding of the canonical stop codon, and ribosomes continue translation to generate C-terminally extended protein. This process, termed stop codon readthrough (SCR), regulates several cellular functions. SCR is driven by elements/factors that act immediately downstream of the stop codon. Here, we have analysed the process of SCR using a simple mathematical model to investigate how the kinetics of translating ribosomes influences the efficiency of SCR. Surprisingly, the analysis revealed that the rate of translation inversely regulates the efficiency of SCR. We tested this prediction experimentally in mammalian AGO1 and MTCH2 mRNAs. Reduction in translation either globally by harringtonine or locally by rare codons caused an increase in the efficiency of SCR. Thus, our study has revealed a hitherto unknown mode of regulation of SCR.
Collapse
|
30
|
Mukai K, Shibayama T, Imai Y, Hosaka T. Phenomenological interpretations of the mechanism for the concentration-dependent positive effect of antibiotic lincomycin on Streptomyces coelicolor A3(2). Appl Environ Microbiol 2023; 89:e0113323. [PMID: 37732750 PMCID: PMC10617593 DOI: 10.1128/aem.01133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
The antibiotic lincomycin binds to the 23S ribosomal RNA peptidyl transferase loop region to inhibit protein synthesis. However, lincomycin can also stimulate the growth and secondary metabolism of actinomycetes in a concentration-dependent manner. In Streptomyces coelicolor A3(2), lincomycin stimulates the production of the blue-pigmented antibiotic actinorhodin at concentrations below the minimum inhibitory concentration. To better understand the molecular mechanism underlying these concentration-dependent positive effects, this study investigated how the target molecule, the ribosome, undergoes dynamic changes in the presence of lincomycin and explored the ribosome-related factors involved. Lincomycin, at a concentration that stimulates actinorhodin production of S. coelicolor A3(2), could restore temporarily arrested ribosome function by utilizing ribosome-related proteins and translation factors, presumably under the control of the transcription factor WblC protein that confers intrinsic resistance to multiple translation-inhibiting antibiotics, to eventually produce stable and active ribosomes even during the late growth phase. This qualitatively and quantitatively positive ribosome alteration can be advantageous for producing actinorhodin biosynthetic enzymes. A series of gene expression and biochemical analyses revealed that lincomycin at the concentration that induces ribosomal stabilization in S. coelicolor A3(2) could influence the localization of the 20S proteasome-related proteins, resulting in reduced proteasome activity. These findings suggest that the functional analysis of 20S proteasome represents a potential pivotal challenge for understanding the molecular mechanism of ribosome stabilization induced by lincomycin. Therefore, as lincomycin can dynamically alter its target molecule, the ribosome, we discuss the future issues and prospects for an increased understanding of the concentration-dependent properties of antibiotics. IMPORTANCE Antibiotics were originally defined as chemical compounds produced by a microbe that inhibits the growth of other microbes. However, an unexplained effect of this is that a low concentration of antibiotics, such as those below the minimum inhibitory concentration, can positively affect microbial growth and metabolism. The secondary metabolic activation of streptomycetes in the presence of the translation-inhibiting antibiotic lincomycin illustrates the concentration-dependent positive effect of the antibiotic. The significance of this study is that the phenomenological interpretation of the molecular mechanism of the concentration-dependent positive effect of lincomycin in Streptomyces coelicolor A3(2) has provided novel insight into the possible role of antibiotics in making their target molecules stable and active with the assistance of various related factors that benefit their function. Further exploration of this idea would lead to an essential understanding of antibiotics, including why actinomycetes make them and their role in nature.
Collapse
|
31
|
Lu Y, Wang S, Jiao Y. The Effects of Deregulated Ribosomal Biogenesis in Cancer. Biomolecules 2023; 13:1593. [PMID: 38002277 PMCID: PMC10669593 DOI: 10.3390/biom13111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Ribosomes are macromolecular ribonucleoprotein complexes assembled from RNA and proteins. Functional ribosomes arise from the nucleolus, require ribosomal RNA processing and the coordinated assembly of ribosomal proteins (RPs), and are frequently hyperactivated to support the requirement for protein synthesis during the self-biosynthetic and metabolic activities of cancer cells. Studies have provided relevant information on targeted anticancer molecules involved in ribosome biogenesis (RiBi), as increased RiBi is characteristic of many types of cancer. The association between unlimited cell proliferation and alterations in specific steps of RiBi has been highlighted as a possible critical driver of tumorigenesis and metastasis. Thus, alterations in numerous regulators and actors involved in RiBi, particularly in cancer, significantly affect the rate and quality of protein synthesis and, ultimately, the transcriptome to generate the associated proteome. Alterations in RiBi in cancer cells activate nucleolar stress response-related pathways that play important roles in cancer-targeted interventions and immunotherapies. In this review, we focus on the association between alterations in RiBi and cancer. Emphasis is placed on RiBi deregulation and its secondary consequences, including changes in protein synthesis, loss of RPs, adaptive transcription and translation, nucleolar stress regulation, metabolic changes, and the impaired ribosome biogenesis checkpoint.
Collapse
|
32
|
Zhang X, Eladawi MA, Ryan WG, Fan X, Prevoznik S, Devale T, Ramnani B, Malathi K, Sibille E, Mccullumsmith R, Tomoda T, Shukla R. Ribosomal dysregulation: A conserved pathophysiological mechanism in human depression and mouse chronic stress. PNAS NEXUS 2023; 2:pgad299. [PMID: 37822767 PMCID: PMC10563789 DOI: 10.1093/pnasnexus/pgad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
The underlying biological mechanisms that contribute to the heterogeneity of major depressive disorder (MDD) presentation remain poorly understood, highlighting the need for a conceptual framework that can explain this variability and bridge the gap between animal models and clinical endpoints. Here, we hypothesize that comparative analysis of molecular data from different experimental systems of chronic stress, and MDD has the potential to provide insight into these mechanisms and address this gap. Thus, we compared transcriptomic profiles of brain tissue from postmortem MDD subjects and from mice exposed to chronic variable stress (CVS) to identify orthologous genes. Ribosomal protein genes (RPGs) were down-regulated, and associated ribosomal protein (RP) pseudogenes were up-regulated in both conditions. A seeded gene co-expression analysis using altered RPGs common between the MDD and CVS groups revealed that down-regulated RPGs homeostatically regulated the synaptic changes in both groups through a RP-pseudogene-driven mechanism. In vitro analysis demonstrated that the RPG dysregulation was a glucocorticoid-driven endocrine response to stress. In silico analysis further demonstrated that the dysregulation was reversed during remission from MDD and selectively responded to ketamine but not to imipramine. This study provides the first evidence that ribosomal dysregulation during stress is a conserved phenotype in human MDD and chronic stress-exposed mouse. Our results establish a foundation for the hypothesis that stress-induced alterations in RPGs and, consequently, ribosomes contribute to the synaptic dysregulation underlying MDD and chronic stress-related mood disorders. We discuss the role of ribosomal heterogeneity in the variable presentations of depression and other mood disorders.
Collapse
|
33
|
Trautmann HS, Schmidt SS, Gregory ST, Ramsey KM. Ribosome heterogeneity results in leader sequence-mediated regulation of protein synthesis in Francisella tularensis. J Bacteriol 2023; 205:e0014023. [PMID: 37676009 PMCID: PMC10521369 DOI: 10.1128/jb.00140-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/07/2023] [Indexed: 09/08/2023] Open
Abstract
Although ribosomes are generally examined in aggregate, ribosomes can be heterogenous in composition. Evidence is accumulating that changes in ribosome composition may result in altered function, such that ribosome heterogeneity may provide a mechanism to regulate protein synthesis. Ribosome heterogeneity in the human pathogen Francisella tularensis results from incorporation of one of three homologs of bS21, a small ribosomal subunit protein demonstrated to regulate protein synthesis in other bacteria. Loss of one homolog, bS21-2, results in genome-wide post-transcriptional changes in protein abundance. This suggests that bS21-2 can, either directly or indirectly, lead to preferential translation of particular mRNAs. Here, we examine the potential of bS21-2 to function in a leader sequence-dependent manner and to function indirectly, via Hfq. We found that the 5´ untranslated region (UTR) of some bS21-2-responsive genes, including key virulence genes, is sufficient to alter translation in cells lacking bS21-2. We further identify features of a 5´ UTR that allow responsiveness to bS21-2. These include an imperfect Shine-Dalgarno sequence and a particular six nucleotide sequence. Our results are consistent with a model in which a bS21 homolog increases the efficiency of translation initiation through interactions with specific leader sequences. With respect to bS21-2 indirectly regulating translation via the RNA-binding protein Hfq, we found that Hfq controls transcript abundance rather than protein synthesis, impacting virulence gene expression via a distinct mechanism. Together, we determined that ribosome composition in F. tularensis regulates translation in a leader sequence-dependent manner, a regulatory mechanism which may be used in other bacteria. IMPORTANCE Ribosome heterogeneity is common in bacteria, and there is mounting evidence that ribosome composition plays a regulatory role in protein synthesis. However, mechanisms of ribosome-driven gene regulation are not well understood. In the human pathogen Francisella tularensis, which encodes multiple homologs for the ribosomal protein bS21, loss of one homolog impacts protein synthesis and virulence. Here, we explore the mechanism behind bS21-mediated changes in protein synthesis, finding that they can be linked to altered translation initiation and are dependent on specific sequences in the leaders of transcripts. Our data support a model in which ribosome composition regulates gene expression through translation, a strategy that may be conserved in diverse organisms with various sources of ribosome heterogeneity.
Collapse
|
34
|
Homberg B, Rehling P, Cruz-Zaragoza LD. The multifaceted mitochondrial OXA insertase. Trends Cell Biol 2023; 33:765-772. [PMID: 36863885 DOI: 10.1016/j.tcb.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and transported into mitochondria by protein translocases. Yet, mitochondria contain their own genome and gene expression system, which generates proteins that are inserted in the inner membrane by the oxidase assembly (OXA) insertase. OXA contributes to targeting proteins from both genetic origins. Recent data provides insights into how OXA cooperates with the mitochondrial ribosome during synthesis of mitochondrial-encoded proteins. A picture of OXA emerges in which it coordinates insertion of OXPHOS core subunits and their assembly into protein complexes but also participates in the biogenesis of select imported proteins. These functions position the OXA as a multifunctional protein insertase that facilitates protein transport, assembly, and stability at the inner membrane.
Collapse
|
35
|
Fernández-García L, Tomás M, Wood TK. Ribosome inactivation by Escherichia coli GTPase RsgA inhibits T4 phage. Front Microbiol 2023; 14:1242163. [PMID: 37670987 PMCID: PMC10475562 DOI: 10.3389/fmicb.2023.1242163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Bacteria must combat phages, and myriad bacterial anti-phage systems have been discovered that reduce host metabolism, for example, by depleting energetic compounds like ATP and NAD+. Hence, these systems indirectly inhibit protein production. Surprisingly, direct reduction of ribosome activity has not been demonstrated to thwart phage. Methods Here, by producing each of the 4,287 Escherichia coli proteins and selecting for anti-phage activity that leads to enhanced growth, we investigated the role of host proteins in phage inhibition. Results and discussion We identified that E. coli GTPase RsgA inhibits lytic phage T4 by inactivating ribosomes.
Collapse
|
36
|
Islam RA, Rallis C. Ribosomal Biogenesis and Heterogeneity in Development, Disease, and Aging. EPIGENOMES 2023; 7:17. [PMID: 37606454 PMCID: PMC10443367 DOI: 10.3390/epigenomes7030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Although reported in the literature, ribosome heterogeneity is a phenomenon whose extent and implications in cell and organismal biology is not fully appreciated. This has been the case due to the lack of the appropriate techniques and approaches. Heterogeneity can arise from alternative use and differential content of protein and RNA constituents, as well as from post-transcriptional and post-translational modifications. In the few examples we have, it is apparent that ribosomal heterogeneity offers an additional level and potential for gene expression regulation and might be a way towards tuning metabolism, stress, and growth programs to external and internal stimuli and needs. Here, we introduce ribosome biogenesis and discuss ribosomal heterogeneity in various reported occasions. We conclude that a systematic approach in multiple organisms will be needed to delineate this biological phenomenon and its contributions to growth, aging, and disease. Finally, we discuss ribosome mutations and their roles in disease.
Collapse
|
37
|
Prochownik EV, Wang H. Lessons in aging from Myc knockout mouse models. Front Cell Dev Biol 2023; 11:1244321. [PMID: 37621775 PMCID: PMC10446843 DOI: 10.3389/fcell.2023.1244321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Despite MYC being among the most intensively studied oncogenes, its role in normal development has not been determined as Myc-/- mice do not survival beyond mid-gestation. Myc ± mice live longer than their wild-type counterparts and are slower to accumulate many age-related phenotypes. However, Myc haplo-insufficiency likely conceals other important phenotypes as many high-affinity Myc targets genes continue to be regulated normally. By delaying Myc inactivation until after birth it has recently been possible to study the consequences of its near-complete total body loss and thus to infer its normal function. Against expectation, these "MycKO" mice lived significantly longer than control wild-type mice but manifested a marked premature aging phenotype. This seemingly paradoxical behavior was potentially explained by a >3-fold lower lifetime incidence of cancer, normally the most common cause of death in mice and often Myc-driven. Myc loss accelerated the accumulation of numerous "Aging Hallmarks", including the loss of mitochondrial and ribosomal structural and functional integrity, the generation of reactive oxygen species, the acquisition of genotoxic damage, the detrimental rewiring of metabolism and the onset of senescence. In both mice and humans, normal aging in many tissues was accompaniued by the downregulation of Myc and the loss of Myc target gene regulation. Unlike most mouse models of premature aging, which are based on monogenic disorders of DNA damage recognition and repair, the MycKO mouse model directly impacts most Aging Hallmarks and may therefore more faithfully replicate the normal aging process of both mice and humans. It further establishes that the strong association between aging and cancer can be genetically separated and is maintained by a single gene.
Collapse
|
38
|
Harold C. All these screens that we've done: how functional genetic screens have informed our understanding of ribosome biogenesis. Biosci Rep 2023; 43:BSR20230631. [PMID: 37335083 PMCID: PMC10329186 DOI: 10.1042/bsr20230631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023] Open
Abstract
Ribosome biogenesis is the complex and essential process that ultimately leads to the synthesis of cellular proteins. Understanding each step of this essential process is imperative to increase our understanding of basic biology, but also more critically, to provide novel therapeutic avenues for genetic and developmental diseases such as ribosomopathies and cancers which can arise when this process is impaired. In recent years, significant advances in technology have made identifying and characterizing novel human regulators of ribosome biogenesis via high-content, high-throughput screens. Additionally, screening platforms have been used to discover novel therapeutics for cancer. These screens have uncovered a wealth of knowledge regarding novel proteins involved in human ribosome biogenesis, from the regulation of the transcription of the ribosomal RNA to global protein synthesis. Specifically, comparing the discovered proteins in these screens showed interesting connections between large ribosomal subunit (LSU) maturation factors and earlier steps in ribosome biogenesis, as well as overall nucleolar integrity. In this review, a discussion of the current standing of screens for human ribosome biogenesis factors through the lens of comparing the datasets and discussing the biological implications of the areas of overlap will be combined with a look toward other technologies and how they can be adapted to discover more factors involved in ribosome synthesis, and answer other outstanding questions in the field.
Collapse
|
39
|
Aviner R, Lidsky PV, Xiao Y, Tasseto M, Zhang L, McAlpine PL, Elias J, Frydman J, Andino R. SARS-CoV-2 Nsp1 regulates translation start site fidelity to promote infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547902. [PMID: 37461541 PMCID: PMC10350044 DOI: 10.1101/2023.07.05.547902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A better mechanistic understanding of virus-host interactions can help reveal vulnerabilities and identify opportunities for therapeutic interventions. Of particular interest are essential interactions that enable production of viral proteins, as those could target an early step in the virus lifecycle. Here, we use subcellular proteomics, ribosome profiling analyses and reporter assays to detect changes in polysome composition and protein synthesis during SARS-CoV-2 (CoV2) infection. We identify specific translation factors and molecular chaperones whose inhibition impairs infectious particle production without major toxicity to the host. We find that CoV2 non-structural protein Nsp1 selectively enhances virus translation through functional interactions with initiation factor EIF1A. When EIF1A is depleted, more ribosomes initiate translation from an upstream CUG start codon, inhibiting translation of non-structural genes and reducing viral titers. Together, our work describes multiple dependencies of CoV2 on host biosynthetic networks and identifies druggable targets for potential antiviral development.
Collapse
|
40
|
Dick F, Johanson GS, Tzoulis C. Neuronal loss drives differentially expressed protein-pathways in the PSP globus pallidus. Clin Transl Med 2023; 13:e1280. [PMID: 37427490 PMCID: PMC10331573 DOI: 10.1002/ctm2.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 07/11/2023] Open
|
41
|
Barros GC, Guerrero S, Silva GM. The central role of translation elongation in response to stress. Biochem Soc Trans 2023; 51:959-969. [PMID: 37318088 PMCID: PMC11160351 DOI: 10.1042/bst20220584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Protein synthesis is essential to support homeostasis, and thus, must be highly regulated during cellular response to harmful environments. All stages of translation are susceptible to regulation under stress, however, the mechanisms involved in translation regulation beyond initiation have only begun to be elucidated. Methodological advances enabled critical discoveries on the control of translation elongation, highlighting its important role in translation repression and the synthesis of stress-response proteins. In this article, we discuss recent findings on mechanisms of elongation control mediated by ribosome pausing and collisions and the availability of tRNAs and elongation factors. We also discuss how elongation intersects with distinct modes of translation control, further supporting cellular viability and gene expression reprogramming. Finally, we highlight how several of these pathways are reversibly regulated, emphasizing the dynamics of translation control during stress-response progression. A comprehensive understanding of translation regulation under stress will produce fundamental knowledge of protein dynamics while opening new avenues and strategies to overcome dysregulated protein production and cellular sensitivity to stress.
Collapse
|
42
|
Ghosh A, Bharmal MHM, Ghaleb AM, Nandana V, Schrader JM. Initiator AUGs Are Discriminated from Elongator AUGs Predominantly through mRNA Accessibility in C. crescentus. J Bacteriol 2023; 205:e0042022. [PMID: 37092987 PMCID: PMC10210977 DOI: 10.1128/jb.00420-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
The initiation of translation in bacteria is thought to occur upon base pairing between the Shine-Dalgarno (SD) site in the mRNA and the anti-SD site in the rRNA. However, in many bacterial species, such as Caulobacter crescentus, a minority of mRNAs have SD sites. To examine the functional importance of SD sites in C. crescentus, we analyzed the transcriptome and found that more SD sites exist in the coding sequence than in the preceding start codons. To examine the function of SD sites in initiation, we designed a series of mutants with altered ribosome accessibility and SD content in translation initiation regions (TIRs) and in elongator AUG regions (EARs). A lack of mRNA structure content is required for initiation in TIRs, and, when introduced into EARs, can stimulate initiation, thereby suggesting that low mRNA structure content is a major feature that is required for initiation. SD sites appear to stimulate initiation in TIRs, which generally lack structure content, but SD sites only stimulate initiation in EARs if RNA secondary structures are destabilized. Taken together, these results suggest that the difference in secondary structure between TIRs and EARs directs ribosomes to start codons where SD base pairing can tune the efficiency of initiation, but SDs in EARs do not stimulate initiation, as they are blocked by stable secondary structures. This highlights the importance of studying translation initiation mechanisms in diverse bacterial species. IMPORTANCE Start codon selection is an essential process that is thought to occur via the base pairing of the rRNA to the SD site in the mRNA. This model is based on studies in E. coli, yet whole-genome sequencing revealed that SD sites are absent at start codons in many species. By examining the transcriptome of C. crescentus, we found more SD-AUG pairs in the CDS of mRNAs than preceding start codons, yet these internal sites do not initiate. Instead, start codon regions have lower mRNA secondary structure content than do internal SD-AUG regions. Therefore, we find that start codon selection is not controlled by the presence of SD sites, which tune initiation efficiency, but by lower mRNA structure content surrounding the start codon.
Collapse
|
43
|
Ray KK, Kinz-Thompson CD, Fei J, Wang B, Lin Q, Gonzalez RL. Entropic control of the free-energy landscape of an archetypal biomolecular machine. Proc Natl Acad Sci U S A 2023; 120:e2220591120. [PMID: 37186858 PMCID: PMC10214133 DOI: 10.1073/pnas.2220591120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Biomolecular machines are complex macromolecular assemblies that utilize thermal and chemical energy to perform essential, multistep, cellular processes. Despite possessing different architectures and functions, an essential feature of the mechanisms of action of all such machines is that they require dynamic rearrangements of structural components. Surprisingly, biomolecular machines generally possess only a limited set of such motions, suggesting that these dynamics must be repurposed to drive different mechanistic steps. Although ligands that interact with these machines are known to drive such repurposing, the physical and structural mechanisms through which ligands achieve this remain unknown. Using temperature-dependent, single-molecule measurements analyzed with a time-resolution-enhancing algorithm, here, we dissect the free-energy landscape of an archetypal biomolecular machine, the bacterial ribosome, to reveal how its dynamics are repurposed to drive distinct steps during ribosome-catalyzed protein synthesis. Specifically, we show that the free-energy landscape of the ribosome encompasses a network of allosterically coupled structural elements that coordinates the motions of these elements. Moreover, we reveal that ribosomal ligands which participate in disparate steps of the protein synthesis pathway repurpose this network by differentially modulating the structural flexibility of the ribosomal complex (i.e., the entropic component of the free-energy landscape). We propose that such ligand-dependent entropic control of free-energy landscapes has evolved as a general strategy through which ligands may regulate the functions of all biomolecular machines. Such entropic control is therefore an important driver in the evolution of naturally occurring biomolecular machines and a critical consideration for the design of synthetic molecular machines.
Collapse
|
44
|
Ohlson MB, Eitson JL, Wells AI, Kumar A, Jang S, Ni C, Xing C, Buszczak M, Schoggins JW. Genome-Scale CRISPR Screening Reveals Host Factors Required for Ribosome Formation and Viral Replication. mBio 2023; 14:e0012723. [PMID: 36809113 PMCID: PMC10128003 DOI: 10.1128/mbio.00127-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Viruses are known to co-opt host machinery for translation initiation, but less is known about which host factors are required for the formation of ribosomes used to synthesize viral proteins. Using a loss-of-function CRISPR screen, we show that synthesis of a flavivirus-encoded fluorescent reporter depends on multiple host factors, including several 60S ribosome biogenesis proteins. Viral phenotyping revealed that two of these factors, SBDS, a known ribosome biogenesis factor, and the relatively uncharacterized protein SPATA5, were broadly required for replication of flaviviruses, coronaviruses, alphaviruses, paramyxoviruses, an enterovirus, and a poxvirus. Mechanistic studies revealed that loss of SPATA5 caused defects in rRNA processing and ribosome assembly, suggesting that this human protein may be a functional ortholog of yeast Drg1. These studies implicate specific ribosome biogenesis proteins as viral host dependency factors that are required for synthesis of virally encoded protein and accordingly, optimal viral replication. IMPORTANCE Viruses are well known for their ability to co-opt host ribosomes to synthesize viral proteins. The specific factors involved in translation of viral RNAs are not fully described. In this study, we implemented a unique genome-scale CRISPR screen to identify previously uncharacterized host factors that are important for the synthesis of virally encoded protein. We found that multiple genes involved in 60S ribosome biogenesis were required for viral RNA translation. Loss of these factors severely impaired viral replication. Mechanistic studies on the AAA ATPase SPATA5 indicate that this host factor is required for a late step in ribosome formation. These findings reveal insight into the identity and function of specific ribosome biogenesis proteins that are critical for viral infections.
Collapse
|
45
|
Johansen VBI, Snieckute G, Vind AC, Blasius M, Bekker-Jensen S. Computational and Functional Analysis of Structural Features in the ZAKα Kinase. Cells 2023; 12:cells12060969. [PMID: 36980309 PMCID: PMC10047201 DOI: 10.3390/cells12060969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The kinase ZAKα acts as the proximal sensor of translational impairment and ribotoxic stress, which results in the activation of the MAP kinases p38 and JNK. Despite recent insights into the functions and binding partners of individual protein domains in ZAKα, the mechanisms by which ZAKα binds ribosomes and becomes activated have remained elusive. Here, we highlight a short, thrice-repeated, and positively charged peptide motif as critical for the ribotoxic stress-sensing function of the Sensor (S) domain of ZAKα. We use this insight to demonstrate that the mutation of the SAM domain uncouples ZAKα activity from ribosome binding. Finally, we use 3D structural comparison to identify and functionally characterize an additional folded domain in ZAKα with structural homology to YEATS domains. These insights allow us to formulate a model for ribosome-templated ZAKα activation based on the re-organization of interactions between modular protein domains. In sum, our work both advances our understanding of the protein domains and 3D architecture of the ZAKα kinase and furthers our understanding of how the ribotoxic stress response is activated.
Collapse
|
46
|
Smith MA, Sexton CL, Smith KA, Osburn SC, Godwin JS, Beausejour JP, Ruple BA, Goodlett MD, Edison JL, Fruge AD, Robinson AT, Gladden LB, Young KC, Roberts MD. Molecular predictors of resistance training outcomes in young untrained female adults. J Appl Physiol (1985) 2023; 134:491-507. [PMID: 36633866 PMCID: PMC10190845 DOI: 10.1152/japplphysiol.00605.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
We sought to determine if the myofibrillar protein synthetic (MyoPS) response to a naïve resistance exercise (RE) bout, or chronic changes in satellite cell number and muscle ribosome content, were associated with hypertrophic outcomes in females or differed in those who classified as higher (HR) or lower (LR) responders to resistance training (RT). Thirty-four untrained college-aged females (23.4 ± 3.4 kg/m2) completed a 10-wk RT protocol (twice weekly). Body composition and leg imaging assessments, a right leg vastus lateralis biopsy, and strength testing occurred before and following the intervention. A composite score, which included changes in whole body lean/soft tissue mass (LSTM), vastus lateralis (VL) muscle cross-sectional area (mCSA), midthigh mCSA, and deadlift strength, was used to delineate upper and lower HR (n = 8) and LR (n = 8) quartiles. In all participants, training significantly (P < 0.05) increased LSTM, VL mCSA, midthigh mCSA, deadlift strength, mean muscle fiber cross-sectional area, satellite cell abundance, and myonuclear number. Increases in LSTM (P < 0.001), VL mCSA (P < 0.001), midthigh mCSA (P < 0.001), and deadlift strength (P = 0.001) were greater in HR vs. LR. The first-bout 24-hour MyoPS response was similar between HR and LR (P = 0.367). While no significant responder × time interaction existed for muscle total RNA concentrations (i.e., ribosome content) (P = 0.888), satellite cell abundance increased in HR (P = 0.026) but not LR (P = 0.628). Pretraining LSTM (P = 0.010), VL mCSA (P = 0.028), and midthigh mCSA (P < 0.001) were also greater in HR vs. LR. Female participants with an enhanced satellite cell response to RT, and more muscle mass before RT, exhibited favorable resistance training adaptations.NEW & NOTEWORTHY This study continues to delineate muscle biology differences between lower and higher responders to resistance training and is unique in that a female population was interrogated. As has been reported in prior studies, increases in satellite cell numbers are related to positive responses to resistance training. Satellite cell responsivity, rather than changes in muscle ribosome content per milligrams of tissue, may be a more important factor in delineating resistance-training responses in women.
Collapse
|
47
|
Peptidyl tRNA Hydrolase Is Required for Robust Prolyl-tRNA Turnover in Mycobacterium tuberculosis. mBio 2023; 14:e0346922. [PMID: 36695586 PMCID: PMC9973355 DOI: 10.1128/mbio.03469-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Enzymes involved in rescuing stalled ribosomes and recycling translation machinery are ubiquitous in bacteria and required for growth. Peptidyl tRNA drop-off is a type of abortive translation that results in the release of a truncated peptide that is still bound to tRNA (peptidyl tRNA) into the cytoplasm. Peptidyl tRNA hydrolase (Pth) recycles the released tRNA by cleaving off the unfinished peptide and is essential in most bacteria. We developed a sequencing-based strategy called copper sulfate-based tRNA sequencing (Cu-tRNAseq) to study the physiological role of Pth in Mycobacterium tuberculosis (Mtb). While most peptidyl tRNA species accumulated in a strain with impaired Pth expression, peptidyl prolyl-tRNA was particularly enriched, suggesting that Pth is required for robust peptidyl prolyl-tRNA turnover. Reducing Pth levels increased Mtb's susceptibility to tRNA synthetase inhibitors that are in development to treat tuberculosis (TB) and rendered this pathogen highly susceptible to macrolides, drugs that are ordinarily ineffective against Mtb. Collectively, our findings reveal the potency of Cu-tRNAseq for profiling peptidyl tRNAs and suggest that targeting Pth would open new therapeutic approaches for TB. IMPORTANCE Peptidyl tRNA hydrolase (Pth) is an enzyme that cuts unfinished peptides off tRNA that has been prematurely released from a stalled ribosome. Pth is essential in nearly all bacteria, including the pathogen Mycobacterium tuberculosis (Mtb), but it has not been clear why. We have used genetic and novel biochemical approaches to show that when Pth levels decline in Mtb, peptidyl tRNA accumulates to such an extent that usable tRNA pools drop. Thus, Pth is needed to maintain normal tRNA levels, most strikingly for prolyl-tRNAs. Many antibiotics act on protein synthesis and could be affected by altering the availability of tRNA. This is certainly true for tRNA synthetase inhibitors, several of which are drug candidates for tuberculosis. We find that their action is potentiated by Pth depletion. Furthermore, Pth depletion results in hypersensitivity to macrolides, drugs that are not active enough under ordinary circumstances to be useful for tuberculosis.
Collapse
|
48
|
Buckley ME, Ndukwe ARN, Nair PC, Rana S, Fairfull-Smith KE, Gandhi NS. Comparative Assessment of Docking Programs for Docking and Virtual Screening of Ribosomal Oxazolidinone Antibacterial Agents. Antibiotics (Basel) 2023; 12:463. [PMID: 36978331 PMCID: PMC10044086 DOI: 10.3390/antibiotics12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Oxazolidinones are a broad-spectrum class of synthetic antibiotics that bind to the 50S ribosomal subunit of Gram-positive and Gram-negative bacteria. Many crystal structures of the ribosomes with oxazolidinone ligands have been reported in the literature, facilitating structure-based design using methods such as molecular docking. It would be of great interest to know in advance how well docking methods can reproduce the correct ligand binding modes and rank these correctly. We examined the performance of five molecular docking programs (AutoDock 4, AutoDock Vina, DOCK 6, rDock, and RLDock) for their ability to model ribosomal-ligand interactions with oxazolidinones. Eleven ribosomal crystal structures with oxazolidinones as the ligands were docked. The accuracy was evaluated by calculating the docked complexes' root-mean-square deviation (RMSD) and the program's internal scoring function. The rankings for each program based on the median RMSD between the native and predicted were DOCK 6 > AD4 > Vina > RDOCK >> RLDOCK. Results demonstrate that the top-performing program, DOCK 6, could accurately replicate the ligand binding in only four of the eleven ribosomes due to the poor electron density of said ribosomal structures. In this study, we have further benchmarked the performance of the DOCK 6 docking algorithm and scoring in improving virtual screening (VS) enrichment using the dataset of 285 oxazolidinone derivatives against oxazolidinone binding sites in the S. aureus ribosome. However, there was no clear trend between the structure and activity of the oxazolidinones in VS. Overall, the docking performance indicates that the RNA pocket's high flexibility does not allow for accurate docking prediction, highlighting the need to validate VS. protocols for ligand-RNA before future use. Later, we developed a re-scoring method incorporating absolute docking scores and molecular descriptors, and the results indicate that the descriptors greatly improve the correlation of docking scores and pMIC values. Morgan fingerprint analysis was also used, suggesting that DOCK 6 underpredicted molecules with tail modifications with acetamide, n-methylacetamide, or n-ethylacetamide and over-predicted molecule derivatives with methylamino bits. Alternatively, a ligand-based approach similar to a field template was taken, indicating that each derivative's tail groups have strong positive and negative electrostatic potential contributing to microbial activity. These results indicate that one should perform VS. campaigns of ribosomal antibiotics with care and that more comprehensive strategies, including molecular dynamics simulations and relative free energy calculations, might be necessary in conjunction with VS. and docking.
Collapse
|
49
|
Ultrastructural and Immunohistochemical Detection of Hydroxyapatite Nucleating Role by rRNA and Nuclear Chromatin Derivatives in Aortic Valve Calcification: In Vitro and In Vivo Pro-Calcific Animal Models and Actual Calcific Disease in Humans. Int J Mol Sci 2023; 24:ijms24032667. [PMID: 36768988 PMCID: PMC9916520 DOI: 10.3390/ijms24032667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Calcification starts with hydroxyapatite (HA) crystallization on cell membranous components, as with aortic valve interstitial cells (AVICs), wherein a cell-membrane-derived substance containing acidic phospholipids (PPM/PPLs) acts as major crystal nucleator. Since nucleic acid removal is recommended to prevent calcification in valve biosubstitutes derived from decellularized valve scaffolds, the involvement of ribosomal RNA (rRNA) and nuclear chromatin (NC) was here explored in three distinct contexts: (i) bovine AVIC pro-calcific cultures; (ii) porcine aortic valve leaflets that had undergone accelerated calcification after xenogeneic subdermal implantation; and (iii) human aortic valve leaflets affected by calcific stenosis. Ultrastructurally, shared AVIC degenerative patterns included (i) the melting of ribosomes with PPM/PPLs, and the same for apparently well-featured NC; (ii) selective precipitation of silver particles on all three components after adapted von Kossa reactions; and (iii) labelling by anti-rRNA immunogold particles. Shared features were also provided by parallel light microscopy. In conclusion, the present results indicate that rRNA and NC contribute to AVIC mineralization in vitro and in vivo, with their anionic charges enhancing the HA nucleation capacity exerted by PPM/PPL substrates, supporting the concept that nucleic acid removal is needed for valve pre-implantation treatments, besides better elucidating the modality of pro-calcific cell death.
Collapse
|
50
|
Utilization of Cancer Cell Line Screening to Elucidate the Anticancer Activity and Biological Pathways Related to the Ruthenium-Based Therapeutic BOLD-100. Cancers (Basel) 2022; 15:cancers15010028. [PMID: 36612025 PMCID: PMC9817855 DOI: 10.3390/cancers15010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BOLD-100 (sodium trans-[tetrachlorobis(1H indazole)ruthenate(III)]) is a ruthenium-based anticancer compound currently in clinical development. The identification of cancer types that show increased sensitivity towards BOLD-100 can lead to improved developmental strategies. Sensitivity profiling can also identify mechanisms of action that are pertinent for the bioactivity of complex therapeutics. Sensitivity to BOLD-100 was measured in a 319-cancer-cell line panel spanning 24 tissues. BOLD-100's sensitivity profile showed variation across the tissue lineages, including increased response in esophageal, bladder, and hematologic cancers. Multiple cancers, including esophageal, bile duct and colon cancer, had higher relative response to BOLD-100 than to cisplatin. Response to BOLD-100 showed only moderate correlation to anticancer compounds in the Genomics of Drug Sensitivity in Cancer (GDSC) database, as well as no clear theme in bioactivity of correlated hits, suggesting that BOLD-100 may have a differentiated therapeutic profile. The genomic modalities of cancer cell lines were modeled against the BOLD-100 sensitivity profile, which revealed that genes related to ribosomal processes were associated with sensitivity to BOLD-100. Machine learning modeling of the sensitivity profile to BOLD-100 and gene expression data provided moderative predictive value. These findings provide further mechanistic understanding around BOLD-100 and support its development for additional cancer types.
Collapse
|