26
|
Grieco JC, Romero B, Flood E, Cabo R, Visootsak J. A Conceptual Model of Angelman Syndrome and Review of Relevant Clinical Outcomes Assessments (COAs). THE PATIENT 2019; 12:97-112. [PMID: 29987743 PMCID: PMC6335381 DOI: 10.1007/s40271-018-0323-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Angelman syndrome (AS) is a rare, neurological genetic disorder for which no clinical outcomes assessments (COAs) or conceptual models (CM) have been developed. OBJECTIVE This study aimed to identify symptoms and impacts relevant and important in this patient population and develop a conceptual model of AS, and to evaluate the content validity of selected COA instruments with potential for inclusion in clinical studies of AS to capture treatment benefit. METHODS For both concept elicitation (CE) and cognitive interviews (CI), caregivers of children, adolescents, and adults with AS and clinicians with AS experience were targeted. For CI, clinicians discussed the Modified Performance-Oriented Mobility Assessment (MPOMA-G) and ProtoKinetics Zeno Walkway™ and caregivers reviewed the Pediatric Evaluation of Disability Inventory Computer Adaptive Test (PEDI-CAT), the Anxiety, Depression and Mood Scale (ADAMS), the Aberrant Behavior Checklist-Community (ABC-C), and the Morning Diary. RESULTS Four clinicians and 34 caregivers participated in CE interviews; three clinicians and 36 caregivers participated in CI. A conceptual model, initially informed by literature, was refined based on interview data. Five domains of symptoms, signs, and characteristics of AS were identified: cognitive and executive functioning, social-emotional, emotional-expressive behavior, sensory-compulsive behavior, and physical. Patient impacts were identified in three domains: activities of daily living, school, and social/community. Caregiver impacts were identified in five domains: mental health, physical health, work, home, and social. While all instruments demonstrated the ability to provide relevant data for the AS population, each instrument either contained some items irrelevant to individuals with AS or was missing important concepts based on the interviews. No single instrument covered all relevant domains specific to AS. CONCLUSION Future work should consider the adaptation of existing COAs and the development of a novel AS-specific instrument for use in clinical research to ensure outcomes important to this patient population are captured.
Collapse
|
27
|
Rotaru DC, van Woerden GM, Wallaard I, Elgersma Y. Adult Ube3a Gene Reinstatement Restores the Electrophysiological Deficits of Prefrontal Cortex Layer 5 Neurons in a Mouse Model of Angelman Syndrome. J Neurosci 2018; 38:8011-8030. [PMID: 30082419 PMCID: PMC6596147 DOI: 10.1523/jneurosci.0083-18.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022] Open
Abstract
E3 ubiquitin ligase (UBE3A) levels in the brain need to be tightly regulated, as loss of functional UBE3A protein is responsible for the severe neurodevelopmental disorder Angelman syndrome (AS), whereas increased activity of UBE3A is associated with nonsyndromic autism. Given the role of mPFC in neurodevelopmental disorders including autism, we aimed to identify the functional changes resulting from loss of UBE3A in infralimbic and prelimbic mPFC areas in a mouse model of AS. Whole-cell recordings from layer 5 mPFC pyramidal neurons obtained in brain slices from adult mice of both sexes revealed that loss of UBE3A results in a strong decrease of spontaneous inhibitory transmission and increase of spontaneous excitatory transmission potentially leading to a marked excitation/inhibition imbalance. Additionally, we found that loss of UBE3A led to decreased excitability and increased threshold for action potential of layer 5 fast spiking interneurons without significantly affecting the excitability of pyramidal neurons. Because we previously showed that AS mouse behavioral phenotypes are reversible upon Ube3a gene reactivation during a restricted period of early postnatal development, we investigated whether Ube3a gene reactivation in a fully mature brain could reverse any of the identified physiological deficits. In contrast to our previously reported behavioral findings, restoring UBE3A levels in adult animals fully rescued all the identified physiological deficits of mPFC neurons. Moreover, the kinetics of reversing these synaptic deficits closely followed the reinstatement of UBE3A protein level. Together, these findings show a striking dissociation between the rescue of behavioral and physiological deficits.SIGNIFICANCE STATEMENT Here we describe significant physiological deficits in the mPFC of an Angelman syndrome mouse model. We found a marked change in excitatory/inhibitory balance, as well as decreased excitability of fast spiking interneurons. A promising treatment strategy for Angelman syndrome is aimed at restoring UBE3A expression by activating the paternal UBE3A gene. Here we find that the physiological changes in the mPFC are fully reversible upon gene reactivation, even when the brain is fully mature. This indicates that there is no critical developmental window for reversing the identified physiological deficits in mPFC.
Collapse
|
28
|
Adams D, Clarke S, Griffith G, Howlin P, Moss J, Petty J, Tunnicliffe P, Oliver C. Mental Health and Well-Being in Mothers of Children With Rare Genetic Syndromes Showing Chronic Challenging Behavior: A Cross-Sectional and Longitudinal Study. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2018; 123:241-253. [PMID: 29671635 DOI: 10.1352/1944-7558-123.3.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is well documented that mothers of children with challenging behavior (CB) experience elevated levels of stress and that this persists over time, but less is known about the experience of mothers of children with rare genetic syndromes. This article describes 2 studies, 1 cross-sectional and 1 longitudinal, comparing well-being in mothers of children with Angelman, Cornelia de Lange and Cri du Chat syndrome who have either shown chronic CB ( n = 18) or low/no CB ( n = 26) in the preceding 7 years. The presence of chronic, long-term CB increased maternal stress but not depression or anxiety, and did not influence positive well-being. Stress relating specifically to their child's genetic syndrome reduced with age, highlighting the need for further exploration in this area.
Collapse
|
29
|
Tones M, Cross M, Simons C, Napier KR, Hunter A, Bellgard MI, Heussler H. Research protocol: The initiation, design and establishment of the Global Angelman Syndrome Registry. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:431-443. [PMID: 29633452 DOI: 10.1111/jir.12482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/18/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurodevelopmental disorder affecting between 1 in 15 000 and 1 in 24 000 individuals. The condition results in severe developmental and expressive language delays, motor impairments and a unique behavioural phenotype consisting of excessive laughter, smiling and sociability. While many studies have contributed knowledge about the causes and natural history of the syndrome, large scale longitudinal studies are required to advance research and therapeutics for this rare syndrome. METHOD This article describes the protocol for the Global Angelman Syndrome Registry, and some initial findings. Due to the rarity of AS and the variability in symptom presentation, the registry team will strive for complete case ascertainment. Parents and caregivers will submit data to the registry via a secure internet connection. The registry consists of 10 modules that cover patient demographics; developmental, diagnostic, medical and surgical history, behaviour and development, epilepsy, medications and interventions and sleep. RESULTS Since its launch at https://angelmanregistry.info in September 2016, almost 470 individuals with AS have been signed up to the registry worldwide: 59% are from North and South America, 23% are from Europe, 17% are from the Asia Pacific region and 1% are from the Middle East or Africa. The majority of registrants are children, with only 16% aged over 20 years. Most participants indicated a chromosome deletion (76%), with fewer participants indicating a mutation, uniparental disomy or imprinting defect (20%). CONCLUSION Findings indicate a need to consider recruitment strategies that target caregivers of older children and adults, and parents and caregivers from non-English speaking backgrounds.
Collapse
|
30
|
Guzzetti S, Calzari L, Buccarello L, Cesari V, Toschi I, Cattaldo S, Mauro A, Pregnolato F, Mazzola SM, Russo S. Taurine Administration Recovers Motor and Learning Deficits in an Angelman Syndrome Mouse Model. Int J Mol Sci 2018; 19:ijms19041088. [PMID: 29621152 PMCID: PMC5979575 DOI: 10.3390/ijms19041088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Angelman syndrome (AS, MIM 105830) is a rare neurodevelopmental disorder affecting 1:10–20,000 children. Patients show moderate to severe intellectual disability, ataxia and absence of speech. Studies on both post-mortem AS human brains and mouse models revealed dysfunctions in the extra synaptic gamma-aminobutyric acid (GABA) receptors implicated in the pathogenesis. Taurine is a free intracellular sulfur-containing amino acid, abundant in brain, considered an inhibiting neurotransmitter with neuroprotective properties. As taurine acts as an agonist of GABA-A receptors, we aimed at investigating whether it might ameliorate AS symptoms. Since mice weaning, we orally administered 1 g/kg/day taurine in water to Ube3a-deficient mice. To test the improvement of motor and cognitive skills, Rotarod, Novel Object Recognition and Open Field tests were assayed at 7, 14, 21 and 30 weeks, while biochemical tests and amino acid dosages were carried out, respectively, by Western-blot and high-performance liquid chromatography (HPLC) on frozen whole brains. Treatment of Ube3am−/p+ mice with taurine significantly improved motor and learning skills and restored the levels of the post-synaptic PSD-95 and pERK1/2-ERK1/2 ratio to wild type values. No side effects of taurine were observed. Our study indicates taurine administration as a potential therapy to ameliorate motor deficits and learning difficulties in AS.
Collapse
|
31
|
Hong MP, Guilfoyle JL, Mooney LN, Wink LK, Pedapati EV, Shaffer RC, Sweeney JA, Erickson CA. Eye gaze and pupillary response in Angelman syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 68:88-94. [PMID: 28750207 PMCID: PMC7169996 DOI: 10.1016/j.ridd.2017.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurological disorder characterized by severe developmental disability, communication impairment, elevated seizure risk, and motor system abnormalities. AIMS The aims of this study were to determine the feasibility of social scene eye tracking and pupillometry measures in individuals with AS and to compare the performance of AS participants to individuals with idiopathic Autism Spectrum Disorder (ASD) and typically developing controls (TDC). METHODS AND PROCEDURES Individuals with AS and age- and gender- matched controls completed a social eye tracking paradigm. Neurobehavioral characterization of AS participants was completed via a battery of psychological testing and caregiver behavioral evaluations. OUTCOMES AND RESULTS Eight of seventeen recruited AS participants completed the eye tracking paradigm. Compared to TDC, AS subjects demonstrated significantly less preference for social scenes than geometric shapes. Additionally, AS subjects showed less pupil dilation, compared to TDC, when viewing social scenes versus geometric shapes. There was no statistically significant difference found between AS and ASD subjects in either social eye tracking or pupillometry. CONCLUSIONS AND IMPLICATIONS The use of eye tracking and pupillometry may represent an innovative measure for quantifying AS-associated impairments in social salience.
Collapse
|
32
|
Sun J, Liu Y, Tran J, O'Neal P, Baudry M, Bi X. mTORC1-S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell Mol Life Sci 2016; 73:4303-4314. [PMID: 27173058 PMCID: PMC5056144 DOI: 10.1007/s00018-016-2269-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
Abstract
Emerging evidence is implicating abnormal activation of the mechanistic target of rapamycin (mTOR) pathway in several monogenetic neuropsychiatric disorders, including Angelman syndrome (AS), which is caused by deficiency in maternally inherited UBE3A. Using an AS mouse model, we show that semi-chronic rapamycin treatment improves long-term potentiation (LTP) and actin polymerization in hippocampal slices, spine morphology, and fear-conditioning learning. Activity of mTORC1 and of its downstream substrate, S6K1, was increased in hippocampus of AS mice. However, mTORC2 activity, as reflected by PKCα levels, was decreased. Both increased mTORC1 and decreased mTORC2 activities were reversed by semi-chronic rapamycin treatment. Acute treatment of hippocampal slices from AS mice with rapamycin or an S6K1 inhibitor, PF4708671, improved LTP, restored actin polymerization, and normalized mTORC1 and mTORC2 activity. These treatments also reduced Arc levels in AS mice. Treatment with Torin 1, an inhibitor of both mTORC1 and mTORC2, partially rescued LTP and actin polymerization in hippocampal slices from AS mice, while partially impairing them in wild-type (WT) mice. Torin 1 decreased mTORC1 and increased mTORC2 activity in slices from AS mice but inhibited both mTORC1 and mTORC2 in WT mice. Finally, an mTORC2 activator, A-443654, increased hippocampal LTP in AS mice and actin polymerization in both WT and AS mice. Collectively, these results indicate that events set in motion by increased mTORC1 and decreased mTORC2 activities, including increased Arc translation and impaired actin remodeling, are crucial in AS pathogenesis. Therefore, selectively targeting these two master kinase complexes may provide new therapeutic approaches for AS treatment.
Collapse
|
33
|
Judson MC, Wallace ML, Sidorov MS, Burette AC, Gu B, van Woerden GM, King IF, Han JE, Zylka MJ, Elgersma Y, Weinberg RJ, Philpot BD. GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility. Neuron 2016; 90:56-69. [PMID: 27021170 DOI: 10.1016/j.neuron.2016.02.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 01/17/2016] [Accepted: 02/24/2016] [Indexed: 11/19/2022]
Abstract
Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS.
Collapse
|
34
|
Bruinsma CF, Schonewille M, Gao Z, Aronica EM, Judson MC, Philpot BD, Hoebeek FE, van Woerden GM, De Zeeuw CI, Elgersma Y. Dissociation of locomotor and cerebellar deficits in a murine Angelman syndrome model. J Clin Invest 2015; 125:4305-15. [PMID: 26485287 PMCID: PMC4639977 DOI: 10.1172/jci83541] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022] Open
Abstract
Angelman syndrome (AS) is a severe neurological disorder that is associated with prominent movement and balance impairments that are widely considered to be due to defects of cerebellar origin. Here, using the cerebellar-specific vestibulo-ocular reflex (VOR) paradigm, we determined that cerebellar function is only mildly impaired in the Ube3am-/p+ mouse model of AS. VOR phase-reversal learning was singularly impaired in these animals and correlated with reduced tonic inhibition between Golgi cells and granule cells. Purkinje cell physiology, in contrast, was normal in AS mice as shown by synaptic plasticity and spontaneous firing properties that resembled those of controls. Accordingly, neither VOR phase-reversal learning nor locomotion was impaired following selective deletion of Ube3a in Purkinje cells. However, genetic normalization of αCaMKII inhibitory phosphorylation fully rescued locomotor deficits despite failing to improve cerebellar learning in AS mice, suggesting extracerebellar circuit involvement in locomotor learning. We confirmed this hypothesis through cerebellum-specific reinstatement of Ube3a, which ameliorated cerebellar learning deficits but did not rescue locomotor deficits. This double dissociation of locomotion and cerebellar phenotypes strongly suggests that the locomotor deficits of AS mice do not arise from impaired cerebellar cortex function. Our results provide important insights into the etiology of the motor deficits associated with AS.
Collapse
|
35
|
Abstract
In this review we summarize the clinical and genetic aspects of Angelman syndrome (AS), its molecular and cellular underpinnings, and current treatment strategies. AS is a neurodevelopmental disorder characterized by severe cognitive disability, motor dysfunction, speech impairment, hyperactivity, and frequent seizures. AS is caused by disruption of the maternally expressed and paternally imprinted UBE3A, which encodes an E3 ubiquitin ligase. Four mechanisms that render the maternally inherited UBE3A nonfunctional are recognized, the most common of which is deletion of the maternal chromosomal region 15q11-q13. Remarkably, duplication of the same chromosomal region is one of the few characterized persistent genetic abnormalities associated with autistic spectrum disorder, occurring in >1-2% of all cases of autism spectrum disorder. While the overall morphology of the brain and connectivity of neural projections appear largely normal in AS mouse models, major functional defects are detected at the level of context-dependent learning, as well as impaired maturation of hippocampal and neocortical circuits. While these findings demonstrate a crucial role for ubiquitin protein ligase E3A in synaptic development, the mechanisms by which deficiency of ubiquitin protein ligase E3A leads to AS pathophysiology in humans remain poorly understood. However, recent efforts have shown promise in restoring functions disrupted in AS mice, renewing hope that an effective treatment strategy can be found.
Collapse
|
36
|
Mandel-Brehm C, Salogiannis J, Dhamne SC, Rotenberg A, Greenberg ME. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression. Proc Natl Acad Sci U S A 2015; 112:5129-34. [PMID: 25848016 PMCID: PMC4413330 DOI: 10.1073/pnas.1504809112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder arising from loss-of-function mutations in the maternally inherited copy of the UBE3A gene, and is characterized by an absence of speech, excessive laughter, cognitive delay, motor deficits, and seizures. Despite the fact that the symptoms of AS occur in early childhood, behavioral characterization of AS mouse models has focused primarily on adult phenotypes. In this report we describe juvenile behaviors in AS mice that are strain-independent and clinically relevant. We find that young AS mice, compared with their wild-type littermates, produce an increased number of ultrasonic vocalizations. In addition, young AS mice have defects in motor coordination, as well as abnormal brain activity that results in an enhanced seizure-like response to an audiogenic challenge. The enhanced seizure-like activity, but not the increased ultrasonic vocalizations or motor deficits, is rescued in juvenile AS mice by genetically reducing the expression level of the activity-regulated cytoskeleton-associated protein, Arc. These findings suggest that therapeutic interventions that reduce the level of Arc expression have the potential to reverse the seizures associated with AS. In addition, the identification of aberrant behaviors in young AS mice may provide clues regarding the neural circuit defects that occur in AS and ultimately allow new approaches for treating this disorder.
Collapse
|
37
|
Silva-Santos S, van Woerden GM, Bruinsma CF, Mientjes E, Jolfaei MA, Distel B, Kushner SA, Elgersma Y. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J Clin Invest 2015; 125:2069-76. [PMID: 25866966 DOI: 10.1172/jci80554] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/05/2015] [Indexed: 01/15/2023] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder that results from loss of function of the maternal ubiquitin protein ligase E3A (UBE3A) allele. Due to neuron-specific imprinting, the paternal UBE3A copy is silenced. Previous studies in murine models have demonstrated that strategies to activate the paternal Ube3a allele are feasible; however, a recent study showed that pharmacological Ube3a gene reactivation in adulthood failed to rescue the majority of neurocognitive phenotypes in a murine AS model. Here, we performed a systematic study to investigate the possibility that neurocognitive rescue can be achieved by reinstating Ube3a during earlier neurodevelopmental windows. We developed an AS model that allows for temporally controlled Cre-dependent induction of the maternal Ube3a allele and determined that there are distinct neurodevelopmental windows during which Ube3a restoration can rescue AS-relevant phenotypes. Motor deficits were rescued by Ube3a reinstatement in adolescent mice, whereas anxiety, repetitive behavior, and epilepsy were only rescued when Ube3a was reinstated during early development. In contrast, hippocampal synaptic plasticity could be restored at any age. Together, these findings suggest that Ube3a reinstatement early in development may be necessary to prevent or rescue most AS-associated phenotypes and should be considered in future clinical trial design.
Collapse
|
38
|
Shi SQ, Bichell TJ, Ihrie RA, Johnson CH. Ube3a imprinting impairs circadian robustness in Angelman syndrome models. Curr Biol 2015; 25:537-45. [PMID: 25660546 PMCID: PMC4348236 DOI: 10.1016/j.cub.2014.12.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/24/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND The paternal allele of Ube3a is silenced by imprinting in neurons, and Angelman syndrome (AS) is a disorder arising from a deletion or mutation of the maternal Ube3a allele, which thereby eliminates Ube3a neuronal expression. Sleep disorders such as short sleep duration and increased sleep onset latency are very common in AS. RESULTS We found a unique link between neuronal imprinting of Ube3a and circadian rhythms in two mouse models of AS, including enfeebled circadian activity behavior and slowed molecular rhythms in ex vivo brain tissues. As a consequence of compromised circadian behavior, metabolic homeostasis is also disrupted in AS mice. Unsilencing the paternal Ube3a allele restores functional circadian periodicity in neurons deficient in maternal Ube3a but does not affect periodicity in peripheral tissues that are not imprinted for uniparental Ube3a expression. The ubiquitin ligase encoded by Ube3a interacts with the central clock components BMAL1 and BMAL2. Moreover, inactivation of Ube3a expression elevates BMAL1 levels in brain regions that control circadian behavior of AS-model mice, indicating an important role for Ube3a in modulating BMAL1 turnover. CONCLUSIONS Ube3a expression constitutes a direct mechanistic connection between symptoms of a human neurological disorder and the central circadian clock mechanism. The lengthened circadian period leads to delayed phase, which could explain the short sleep duration and increased sleep onset latency of AS subjects. Moreover, we report the pharmacological rescue of an AS phenotype, in this case, altered circadian period. These findings reveal potential treatments for sleep disorders in AS patients.
Collapse
|
39
|
Mertz LGB, Christensen R, Vogel I, Hertz JM, Østergaard JR. Eating behavior, prenatal and postnatal growth in Angelman syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:2681-2690. [PMID: 25064682 DOI: 10.1016/j.ridd.2014.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
The objectives of the present study were to investigate eating behavior and growth parameters in Angelman syndrome. We included 39 patients with Angelman syndrome. Twelve cases had a larger Class I deletion, eighteen had a smaller Class II deletion, whereas paternal uniparental disomy (pUPD) or a verified UBE3A mutation were present in five and four cases, respectively. Eating behavior was assessed by a questionnaire. Anthropometric measures were obtained from medical records and compared to Danish reference data. Children with pUPD had significantly larger birth weight and birth length than children carrying a deletion or a UBE3A mutation. We found no difference in birth weight or length in children with Class I or Class II deletions. When maternal birth weight and/or birth weight of siblings were taken into consideration, children with Class I deletion had a lower weight at birth than expected, and the weight continued to be reduced during the investigated initial five years of life. In contrast, children with pUPD showed hyperphagic behavior and their weight increased significantly after the age of two years. Accordingly, their body mass index was significantly increased as compared to children with a deletion. At birth, one child showed microcephaly. At five years of age, microcephaly was observed in half of the deletion cases, but in none of the cases with a UBE3A mutation or pUPD. The apparently normal cranial growth in the UBE3A and pUPD patients should however be regarded as the result of a generally increased growth. Eating behavior, pre- and postnatal growth in children with Angelman syndrome depends on genotype.
Collapse
|
40
|
Leyser M, Penna PS, de Almeida AC, Vasconcelos MM, Nascimento OJM. Revisiting epilepsy and the electroencephalogram patterns in Angelman syndrome. Neurol Sci 2014; 35:701-5. [PMID: 24395242 DOI: 10.1007/s10072-013-1586-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/12/2013] [Indexed: 11/30/2022]
Abstract
Angelman syndrome is a neurogenetic disorder that severely affects global neurodevelopment due to modifications in the structure or functioning of UBE3A gene. Its prevalence ranges from 1:10,000 to 1:40,000. There are four main genetic types of AS transmission. A maternal deletion in 15q11.2-q13 is the most common type. There are three well-established electroencephalogram (EEG) patterns used as an ancillary tool for AS diagnosis. The main objectives are to scrutinize the EEG patterns in Angelman syndrome, their correlation to different types of seizures and to review the role of the EEG as an ancillary screening tool in the diagnosis of clinically suspected patients. Forty-three patients' charts and their previously recorded EEGs were reviewed. A set of 34 patients with deletion type, paternal uniparental disomy type and imprint defect type AS were enrolled. AS diagnosis was confirmed either by fluorescent in situ hybridization test or Methylation Specific-Multiplex Ligation Probe Amplification test. Sequencing of UBE3A was not available. Frequencies and Chi-square tests were used for statistic analysis. Pattern I type EEG was observed in 22 (64.7 %) individuals. Pattern II accounted for 6 (17.6 %); Pattern III was evident in 11 (32.4 %). The three distinguished EEG patterns, more frequently Pattern I, when observed in the appropriate clinical setting, may heighten the index of suspicion for selecting patients who will need a molecular biology test to confirm the diagnosis of AS.
Collapse
|
41
|
Rusińska A, Dzwonek AB, Chlebna-Sokół D. Recurrent fractures as a new skeletal problem in the course of Angelman syndrome. Bone 2013; 55:461-4. [PMID: 23747006 DOI: 10.1016/j.bone.2013.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 11/26/2022]
Abstract
Angelman syndrome is a genetically inherited syndrome with severe retardation of psychomotor development and speech disturbances, usually accompanied by epilepsy, typical dysmorphic features, and some skeletal symptoms. The aim of the current report is to present new skeletal symptoms which may occur in the course of AS, based on a case report of an 8-year-old girl with confirmed 15q11;12 microdeletion and recurrent low-trauma bone fractures. According to our knowledge it is the first report of such skeletal symptoms in patient with a diagnosis of AS.
Collapse
|
42
|
Moss J, Howlin P, Hastings RP, Beaumont S, Griffith GM, Petty J, Tunnicliffe P, Yates R, Villa D, Oliver C. Social behavior and characteristics of autism spectrum disorder in Angelman, Cornelia de Lange, and Cri du Chat syndromes. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2013; 118:262-283. [PMID: 23937369 DOI: 10.1352/1944-7558-118.4.262] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We evaluated autism spectrum disorder (ASD) characteristics and social behavior in Angelman (AS; n = 19; mean age = 10.35 years), Cornelia de Lange (CdLS; n = 15; mean age = 12.40 years), and Cri du Chat (CdCS, also known as 5 p-syndrome; n = 19; mean age = 8.80 years) syndromes. The proportion of individuals meeting the ASD cutoff on the Social Communication Questionnaire was significantly higher in the AS and CdLS groups than in the CdCS group (p < .01). The groups demonstrated divergent social behavior profiles during social conditions in which adult availability, adult familiarity, and social demand were manipulated. Social enjoyment was significantly heightened in AS, whereas social approaches were heightened in individuals with CdCS. Social motivation, social communication, and enjoyment were significantly lower in CdLS. The findings highlight the importance of detailed observation when evaluating ASD and social behavior in genetic syndromes.
Collapse
|
43
|
Saitoh S. [From pathogenesis to treatment of genetic intellectual disabilities: a lesson from Angelman syndrome research]. NIHON SHINKEI SEISHIN YAKURIGAKU ZASSHI = JAPANESE JOURNAL OF PSYCHOPHARMACOLOGY 2013; 33:127-130. [PMID: 25069246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Angelman syndrome (AS) is characterized by severe intellectual disability, epilepsy and ataxic motor dysfunction. Paternally imprinted UBE3A, which is located in the imprinted domain of 15q11-q13, is the causative gene of AS. UBE3A is exclusively expressed from the maternally inherited allele only in neurons (neuron-specific imprinting), and is regulated by antisense RNA. UBE3A is an E3 ubiquitin protein ligase and Arc is one of its targets in the brain. Arc is known to regulate AMPA-type glutamate receptor at the post-synaptic membrane. Loss-of-function of UBE3A results in upregulation of Arc and downregulation of AMPA receptors, giving rise to disturbance in experience-dependent synaptic plasticity. Unraveling the pathophysiology of AS will shed light on the development of pharmaceutical agents for genetic intellectual disabilities. Recently, topoisomerase inhibitors were shown to unsilence imprinted Ube3a in a mouse model of AS. This success indicated the possibility of an epigenetic therapy for AS. Therefore, AS is also a good model for the development of epigenetic therapy for genetic intellectual disorders caused by epigenetic dysfunction.
Collapse
|
44
|
Huang HS, Burns AJ, Nonneman RJ, Baker LK, Riddick NV, Nikolova VD, Riday TT, Yashiro K, Philpot BD, Moy SS. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res 2013; 243:79-90. [PMID: 23295389 PMCID: PMC3629944 DOI: 10.1016/j.bbr.2012.12.052] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/05/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder associated with disruption of maternally inherited UBE3A (ubiquitin protein ligase E3A) expression. At the present time, there is no effective treatment for AS. Mouse lines with loss of maternal Ube3a (Ube3a(m-/p+)) recapitulate multiple aspects of the clinical AS profile, including impaired motor coordination, learning deficits, and seizures. Thus, these genetic mouse models could serve as behavioral screens for preclinical efficacy testing, a critical component of drug discovery for AS intervention. However, the severity and consistency of abnormal phenotypes reported in Ube3a(m-/p+) mice can vary, dependent upon age and background strain, which is problematic for the detection of beneficial drug effects. As part of an ongoing AS drug discovery initiative, we characterized Ube3a(m-/p+) mice on either a 129S7/SvEvBrd-Hprt(b-m2) (129) or C57BL/6J (B6) background across a range of functional domains and ages to identify reproducible and sufficiently large phenotypes suitable for screening therapeutic compounds. The results from the study showed that Ube3a(m-/p+) mice have significant deficits in acquisition and reversal learning in the Morris water maze. The findings also demonstrated that Ube3a(m-/p+) mice exhibit motor impairment in a rotarod task, hypoactivity, reduced rearing and marble-burying, and deficient fear conditioning. Overall, these profiles of abnormal phenotypes can provide behavioral targets for evaluating effects of novel therapeutic strategies relevant to AS.
Collapse
|
45
|
Leung HTT, Ring H. Epilepsy in four genetically determined syndromes of intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2013; 57:3-20. [PMID: 22142420 DOI: 10.1111/j.1365-2788.2011.01505.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Epilepsy occurs with increased frequency in people with an intellectual disability (ID) compared to the rest of the population. A variety of research has in recent years shed light on genetic and biochemical aetiologies of epilepsy and, often in a different literature, on syndromes of ID. The aims of this annotation are to review developments in understanding of the pathophysiology of several ID syndromes in which epilepsy is a frequent co-occurrence and to relate these observations to recent advances in understanding of how these pathophysiological disturbances may lead to epilepsy. METHOD The ID syndromes selected for review were fragile X (FXS), Rett (RTT) and Angelman syndromes (AS) and tuberous sclerosis complex (TSC). Epilepsy is a significant aspect of these syndromes and relevant research into the genetic and biochemical pathophysiology of these four ID syndromes may be informative in establishing the association between epilepsy and ID. Employing a structured approach the authors initially searched the PubMed database for large case series describing the characteristics of epilepsy as manifested in these ID syndromes. The criteria for inclusion of the case series in the review were a sample size of greater than 50 and the description of several of the characteristic features of epilepsy, namely prevalence of seizures, age of seizure onset, seizure frequency, seizure semiology, severity and treatment. Following this, studies of the genetic and biochemical pathophysiology of these four ID syndromes were reviewed and the potential relevance of this research in understanding the association with epilepsy highlighted. Findings were considered in a focused manner in terms of effects on excitatory and inhibitory neurotransmitter systems and on glial function. RESULTS Diverse genetic pathologies underlying several ID syndromes can lead to alterations in the functioning of the glutamatergic and GABAergic neurotransmitter systems. The mechanisms involved include transcriptional regulation in RTT, translational regulation in FXS and TSC, and UBE3A-mediated proteolysis in AS. Expression or functioning of receptor subunits, uptake sites and enzymes involved in neurotransmitter metabolism are often affected by these changes, and may lead to modifications in network excitability and neuronal plasticity that may contribute to epileptogenesis and ID. Dysfunction in astrocytes may also contribute to epileptogenesis and ID in FXS, RTT and TSC with potential mechanisms including failure of astrocytic support functions, glial inflammation and homeostatic disturbances that affect the excitability and architecture of neuronal networks. CONCLUSIONS The annotation highlights research describing disturbances in excitatory and inhibitory neurotransmitter systems, neuronal ion channel and glial functions that provide possible explanations for the co-occurrence of seizures within several ID syndromes, in some cases suggesting possible avenues for research into novel therapeutic targets. Phenotypic overlaps between syndromes may also relate to roles for the implicated genes in different disturbances in linked biochemical pathways.
Collapse
|
46
|
Alarcón-Martínez H, Casas-Fernández C, Martínez-Salcedo E, Domingo-Jiménez R, Puche-Mira A, Valera-Párraga F. [Angelman syndrome and fear of walking. Psychomotor involution?]. Rev Neurol 2012; 54:703-704. [PMID: 22627753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
47
|
Monterrubio-Ledezma CE, Bobadilla-Morales L, Pimentel-Gutiérrez HJ, Corona-Rivera JR, Corona-Rivera A. Angelman syndrome and thyroid dysfunction. GENETIC COUNSELING (GENEVA, SWITZERLAND) 2012; 23:353-357. [PMID: 23072182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Angelman syndrome (AS) is a neurogenetic syndrome, has a prevalence of 1:10,000 to 1:40,000. Patients with AS have genetic alterations in maternal imprinting gene UB3A (15q11-q13) and molecular evaluations confirm the diagnosis. Our aim is to report a new case with AS and subclinical hypothyroidism (SCH) without goiter. Thyroid dysfunction has not been described as part of alterations in AS; the exact pathogenic mechanisms of SCH in patients with AS remains incompletely unknown.
Collapse
|
48
|
Daily JL, Nash K, Jinwal U, Golde T, Rogers J, Peters MM, Burdine RD, Dickey C, Banko JL, Weeber EJ. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One 2011; 6:e27221. [PMID: 22174738 PMCID: PMC3235088 DOI: 10.1371/journal.pone.0027221] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/12/2011] [Indexed: 01/03/2023] Open
Abstract
Angelman syndrome (AS), a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII) regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr286 and Thr305/306, resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV) vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.
Collapse
|
49
|
Witte W, Nobel C, Hilpert J. [Anesthesia and Angelman syndrome]. Anaesthesist 2011; 60:633-40. [PMID: 21424308 DOI: 10.1007/s00101-011-1873-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 01/24/2011] [Accepted: 02/15/2011] [Indexed: 01/08/2023]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder with an incidence of 1:10,000-1:40,000 caused by deficient genetic imprinting in the chromosomal segment 15q11-q13. Experimental data suggest that the gamma-aminobutyric acid A (GABA(A)) receptor as well as the N-methyl-D-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors may be affected by this condition. The first description of the syndrome goes back to 1965 when the British pediatrician Harry Angelman (1915-1996) recognized similar clinical features in three children. Angelman's description of puppet children was changed to happy puppet syndrome 2 years later before this euphemistic denotation was replaced by the concept Angelman syndrome over the years. Angelman syndrome is characterized by ataxia, jerky movements especially hand flapping, a seizure disorder with a characteristic electroencephalogram (EEG), severe learning difficulties, a happy disposition, lack of verbal communication and dysmorphic facial features. Most hospitalizations are caused by epilepsy and the most common indications for surgical procedures are in dental medicine. The first anesthesiology case report to be published dates back to 2001. A total of 13 cases have now been published and in 11 cases the age was registered (mean age 11.6 years, standard deviation 11.7 and 2 outliers aged 27 and 40 years). In this paper, the published case reports are contrasted with 15 cases of anesthesia in 6 patients with AS who underwent surgery during 14 years of routine operations at a Berlin anesthesiology clinic (mean age 15.9 years, standard deviation 4.2 with no outliers). Besides neurosurgical and orthopedic operations most were dental interventions. Summarized, these cases of anesthesia and the results of the published case reports allow the formulation of guidelines for administration of anesthesia in AS cases but do not permit conclusions on which method of anesthesia is the safest for AS patients. For the preoperative consultation and anesthetization, communication with the patients requires the aid of parents or other relatives. Water and reflecting surfaces may be used to gain contact with AS patients. Patients with AS feel pain like any other person although they are frequently smiling and laughing and this has to be considered especially in major surgery (e.g. scoliosis surgery). The most important life-threatening complication is bradycardia due to vagal hypertonia which can lead to asystole with delayed response to atropine. None of the Berlin patients had severe bradycardia but the complication has to be taken into consideration. The use of drugs to ensure complete reversal of neuromuscular relaxation should be avoided because anticholinergic agents could cause bradycardia. The use of sugammadex in cases of AS has not been tested. To avoid elevation of the vagal tone, the indications for laparascopy have to be considered very carefully. There is no evidence that any drug or hypnotic may be more appropriate or advantageous. Balanced anesthesia and total intravenous anesthesia are possible but the duration of drug effect has to be taken into account. If ketamine is used the side-effects of the drug (psychomimetic reactions, muscular rigidity) should be prevented by the consistent administration of propofol, midazolam or thiopental. Usually AS patients are agitated so that regional anesthesia techniques are difficult to administer. If regional anesthesia does have considerable advantages over general anesthesia in a particular case, peripheral regional anesthesia should be preferred, especially because scoliosis is often present. There is no evidence that AS patients cause more intubation problems but because of facial dysmorphia accurate evaluation is needed in advance. This is even more important for older AS patients because the dysmorphia tends to accelerate during the course of life. Although epilepsy is the primary feature of AS, not every EEG alteration indicates the presence of epilepsy. The advantage in using neuromonitoring for measuring the depth of anesthesia is limited. Administration of anticonvulsants must be continued if they were used preoperatively.
Collapse
|
50
|
Yang XY, Zou LP, Song F, Zhang LP, Zheng H, Wu HS, Xiao J. [Clinical manifestation and EEG characteristics of Angelman syndrome]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2010; 48:783-786. [PMID: 21176491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To investigate the clinical manifestations and EEG characteristics of Angelman syndrome in children, and to strengthen the recognition of this disease. METHOD Fourteen children with Angelman syndrome received video EEG monitoring, head MRI/CT and gene test, 11 patients received the metabolic investigations (e.g., lactic acid, ammonia, GC/MS and MS/MS). Eight patients received Gesell test. The patients were followed up for 1-3 years. RESULT Of the 14 cases, 4 were male and 10 female, their age was from 8 months to 3 years and 7 months. The clinical characteristics included prominent lower jaw and wide mouth, fair skin and yellow hair, light-colored iris, paroxysmal laughter, astasia and language backward. Twelve patients had epileptic seizures; 10 patients displayed non-convulsive status epilepticus (NCSE), 9 patients displayed myoclonic, atypical absence, and non-convulsive seizure simultaneously; myoclonic, generalized tonic-clonic seizure and complex partial seizure in 1 each; 4 patients had fever in early seizures. The EEG showed paroxysmal middle-high amplitude 2-3 Hz spike and spinous slow-wave in 8 patients. Four patients showed paroxysmal frequently middle-high amplitude 2-3 Hz slow waves mixed with sharps. The other 2 patients showed a normal EEG. All the patients were diagnosed with genetics testing. The results included maternal deletion of chromosome 15q11-13 in 12, paternal uniparental disomy in 1 and imprinting defects in 1. CONCLUSION There are characteristic clinical manifestation and craniofacial features in Angelman syndrome patients. Some patients have specific EEG patterns. Abnormal region of chromosome 15q11-13 is the basis of diagnosis.
Collapse
|