26
|
Wirth S. Encoding identity in the marmoset. Science 2023; 382:372-373. [PMID: 37883556 DOI: 10.1126/science.adk8413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Hippocampal cells integrate multisensory input to represent the identity of others.
Collapse
|
27
|
Tyree TJ, Metke M, Miller CT. Cross-modal representation of identity in the primate hippocampus. Science 2023; 382:417-423. [PMID: 37883535 PMCID: PMC11086670 DOI: 10.1126/science.adf0460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/01/2023] [Indexed: 10/28/2023]
Abstract
Faces and voices are the dominant social signals used to recognize individuals among primates. Yet, it is not known how these signals are integrated into a cross-modal representation of individual identity in the primate brain. We discovered that, although single neurons in the marmoset hippocampus exhibited selective responses when presented with the face or voice of a specific individual, a parallel mechanism for representing the cross-modal identities for multiple individuals was evident within single neurons and at the population level. Manifold projections likewise showed the separability of individuals as well as clustering for others' families, which suggests that multiple learned social categories are encoded as related dimensions of identity in the hippocampus. Neural representations of identity in the hippocampus are thus both modality independent and reflect the primate social network.
Collapse
|
28
|
Zhao L, Wang X. Frontal cortex activity during the production of diverse social communication calls in marmoset monkeys. Nat Commun 2023; 14:6634. [PMID: 37857618 PMCID: PMC10587070 DOI: 10.1038/s41467-023-42052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Vocal communication is essential for social behaviors in humans and non-human primates. While the frontal cortex is crucial to human speech production, its role in vocal production in non-human primates has long been questioned. It is unclear whether activities in the frontal cortex represent diverse vocal signals used in non-human primate communication. Here we studied single neuron activities and local field potentials (LFP) in the frontal cortex of male marmoset monkeys while the animal engaged in vocal exchanges with conspecifics in a social environment. We found that both single neuron activities and LFP were modulated by the production of each of the four major call types. Moreover, neural activities showed distinct patterns for different call types and theta-band LFP oscillations showed phase-locking to the phrases of twitter calls, suggesting a neural representation of vocalization features. Our results suggest important functions of the marmoset frontal cortex in supporting the production of diverse vocalizations in communication.
Collapse
|
29
|
Grijseels DM, Prendergast BJ, Gorman JC, Miller CT. The neurobiology of vocal communication in marmosets. Ann N Y Acad Sci 2023; 1528:13-28. [PMID: 37615212 PMCID: PMC10592205 DOI: 10.1111/nyas.15057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.
Collapse
|
30
|
Eliades SJ, Tsunada J. Effects of Cortical Stimulation on Feedback-Dependent Vocal Control in Non-Human Primates. Laryngoscope 2023; 133 Suppl 2:S1-S10. [PMID: 35538859 PMCID: PMC9649833 DOI: 10.1002/lary.30175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Hearing plays an important role in our ability to control voice, and perturbations in auditory feedback result in compensatory changes in vocal production. The auditory cortex (AC) has been proposed as an important mediator of this behavior, but causal evidence is lacking. We tested this in an animal model, hypothesizing that AC is necessary for vocal self-monitoring and feedback-dependent control, and that altering activity in AC during vocalization will interfere with vocal control. METHODS We implanted two marmoset monkeys (Callithrix jacchus) with bilateral AC electrode arrays. Acoustic signals were recorded from vocalizing marmosets while altering vocal feedback or electrically stimulating AC during random subsets of vocalizations. Feedback was altered by real-time frequency shifts and presented through headphones and electrical stimulation delivered to individual electrodes. We analyzed recordings to measure changes in vocal acoustics during shifted feedback and stimulation, and to determine their interaction. Results were correlated with the location and frequency tuning of stimulation sites. RESULTS Consistent with previous results, we found electrical stimulation alone evoked changes in vocal production. Results were stronger in the right hemisphere, but decreased with lower currents or repeated stimulation. Simultaneous stimulation and shifted feedback significantly altered vocal control for a subset of sites, decreasing feedback compensation at some and increasing it at others. Inhibited compensation was more likely at sites closer to vocal frequencies. CONCLUSIONS Results provide causal evidence that the AC is involved in feedback-dependent vocal control, and that it is sufficient and may also be necessary to drive changes in vocal production. LEVEL OF EVIDENCE N/A Laryngoscope, 133:1-10, 2023.
Collapse
|
31
|
Wong RK, Selvanayagam J, Johnston KD, Everling S. Delay-related activity in marmoset prefrontal cortex. Cereb Cortex 2023; 33:3523-3537. [PMID: 35945687 PMCID: PMC10068290 DOI: 10.1093/cercor/bhac289] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent delay-period activity in prefrontal cortex (PFC) has long been regarded as a neural signature of working memory (WM). Electrophysiological investigations in macaque PFC have provided much insight into WM mechanisms; however, a barrier to understanding is the fact that a portion of PFC lies buried within the principal sulcus in this species and is inaccessible for laminar electrophysiology or optical imaging. The relatively lissencephalic cortex of the New World common marmoset (Callithrix jacchus) circumvents such limitations. It remains unknown, however, whether marmoset PFC neurons exhibit persistent activity. Here, we addressed this gap by conducting wireless electrophysiological recordings in PFC of marmosets performing a delayed-match-to-location task on a home cage-based touchscreen system. As in macaques, marmoset PFC neurons exhibited sample-, delay-, and response-related activity that was directionally tuned and linked to correct task performance. Models constructed from population activity consistently and accurately predicted stimulus location throughout the delay period, supporting a framework of delay activity in which mnemonic representations are relatively stable in time. Taken together, our findings support the existence of common neural mechanisms underlying WM performance in PFC of macaques and marmosets and thus validate the marmoset as a suitable model animal for investigating the microcircuitry underlying WM.
Collapse
|
32
|
Chen C, Remington ED, Wang X. Sound localization acuity of the common marmoset (Callithrix jacchus). Hear Res 2023; 430:108722. [PMID: 36863289 DOI: 10.1016/j.heares.2023.108722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
The common marmoset (Callithrix jacchus) is a small arboreal New World primate which has emerged as a promising model in auditory neuroscience. One potentially useful application of this model system is in the study of the neural mechanism underlying spatial hearing in primate species, as the marmosets need to localize sounds to orient their head to events of interest and identify their vocalizing conspecifics that are not visible. However, interpretation of neurophysiological data on sound localization requires an understanding of perceptual abilities, and the sound localization behavior of marmosets has not been well studied. The present experiment measured sound localization acuity using an operant conditioning procedure in which marmosets were trained to discriminate changes in sound location in the horizontal (azimuth) or vertical (elevation) dimension. Our results showed that the minimum audible angle (MAA) for horizontal and vertical discrimination was 13.17° and 12.53°, respectively, for 2 to 32 kHz Gaussian noise. Removing the monaural spectral cues tended to increase the horizontal localization acuity (11.31°). Marmosets have larger horizontal MAA (15.54°) in the rear than the front. Removing the high-frequency (> 26 kHz) region of the head-related transfer function (HRTF) affected vertical acuity mildly (15.76°), but removing the first notch (12-26 kHz) region of HRTF substantially reduced the vertical acuity (89.01°). In summary, our findings indicate that marmosets' spatial acuity is on par with other species of similar head size and field of best vision, and they do not appear to use monaural spectral cues for horizontal discrimination but rely heavily on first notch region of HRTF for vertical discrimination.
Collapse
|
33
|
Jendritza P, Klein FJ, Fries P. Multi-area recordings and optogenetics in the awake, behaving marmoset. Nat Commun 2023; 14:577. [PMID: 36732525 PMCID: PMC9895452 DOI: 10.1038/s41467-023-36217-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The common marmoset has emerged as a key model in neuroscience. Marmosets are small in size, show great potential for genetic modification and exhibit complex behaviors. Thus, it is necessary to develop technology that enables monitoring and manipulation of the underlying neural circuits. Here, we describe a novel approach to record and optogenetically manipulate neural activity in awake, behaving marmosets. Our design utilizes a light-weight, 3D printed titanium chamber that can house several high-density silicon probes for semi-chronic recordings, while enabling simultaneous optogenetic stimulation. We demonstrate the application of our method in male marmosets by recording multi- and single-unit data from areas V1 and V6 with 192 channels simultaneously, and show that optogenetic activation of excitatory neurons in area V6 can influence behavior in a detection task. This method may enable future studies to investigate the neural basis of perception and behavior in the marmoset.
Collapse
|
34
|
Saghravanian SJ, Asadollahi A. Acclimatizing and training freely viewing marmosets for behavioral and electrophysiological experiments in oculomotor tasks. Physiol Rep 2023; 11:e15594. [PMID: 36754454 PMCID: PMC9908434 DOI: 10.14814/phy2.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023] Open
Abstract
The marmoset is a small-bodied primate with behavioral capacities and brain structures comparable to macaque monkeys and humans. Its amenability to modern biotechnological techniques like optogenetics, chemogenetics, and generation of transgenic primates have attracted neuroscientists' attention to use it as a model in neuroscience. In the past decade, several laboratories have been developing and refining tools and techniques for performing behavioral and electrophysiological experiments in this new model. In this regard, we developed a protocol to acclimate the marmoset to sit calmly in a primate chair; a method to calibrate the eye-tracking system while marmosets were freely viewing the screen; and a procedure to map motor field of neurons in the SC in freely viewing marmosets. Using a squeeze-walled transfer box, the animals were acclimatized, and chair trained in less than 4 weeks, much shorter than what other studies reported. Using salient stimuli allowed quick and accurate calibration of the eye-tracking system in untrained freely viewing marmosets. Applying reverse correlation to spiking activity and saccadic eye movements, we were able to map motor field of SC neurons in freely viewing marmosets. These refinements shortened the acclimation period, most likely reduced stress to the subjects, and allowed more efficient eye calibration and motor field mapping in freely viewing marmosets. With a penetration angle of 38 degrees, all 16 channels of the electrode array, that is, all recorded neurons across SC layers, had overlapping visual receptive and motor fields, indicating perpendicular penetration to the SC.
Collapse
|
35
|
Glavis-Bloom C, Vanderlip CR, Reynolds JH. Age-Related Learning and Working Memory Impairment in the Common Marmoset. J Neurosci 2022; 42:8870-8880. [PMID: 36257687 PMCID: PMC9698676 DOI: 10.1523/jneurosci.0985-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
Aging is the greatest risk factor for the development of neurodegenerative diseases, yet we still do not understand how the aging process leads to pathologic vulnerability. The research community has relied heavily on mouse models, but the considerable anatomic, physiological, and cognitive differences between mice and humans limit their translational relevance. Ultimately, these barriers necessitate the development of novel aging models. As a nonhuman primate (NHP), the common marmoset (Callithrix jacchus) shares many features in common with humans and yet has a significantly shorter lifespan (10 years) than other primates, making it ideally suited to longitudinal studies of aging. Our objective was to evaluate the marmoset as a model of age-related cognitive impairment. To do this, we used the Delayed Recognition Span Task (DRST) to characterize age-related changes in working memory capacity in a cohort of sixteen marmosets, of both sexes, varying in age from young adult to geriatric. These monkeys performed thousands of trials over periods of time ranging up to 50% of their adult lifespan. To our knowledge, this represents the most thorough cognitive profiling of any marmoset aging study conducted to date. By analyzing individual learning curves, we found that aged animals exhibited delayed onset of learning, slowed learning rate after onset, and decreased asymptotic working memory performance. These findings are not accounted for by age-related impairments in motor speed and motivation. This work firmly establishes the marmoset as a model of age-related cognitive impairment.SIGNIFICANCE STATEMENT Understanding the normal aging process is fundamental to identifying therapeutics for neurodegenerative diseases for which aging is the biggest risk factor. Historically, the aging field has relied on animal models that differ markedly from humans, constraining translatability. Here, we firmly establish a short-lived nonhuman primate (NHP), the common marmoset, as a key model of age-related cognitive impairment. We demonstrate, through continuous testing over a substantial portion of the adult marmoset lifespan, that aging is associated with both impaired learning and working memory capacity, unaccounted for by age-related changes in motor speed and motivation. Characterizing individual cognitive aging trajectories reveals inherent heterogeneity, which could lead to earlier identification of the onset of impairment, and extended timelines during which therapeutics are effective.
Collapse
|
36
|
Tong C, Liu C, Zhang K, Bo B, Xia Y, Yang H, Feng Y, Liang Z. Multimodal analysis demonstrating the shaping of functional gradients in the marmoset brain. Nat Commun 2022; 13:6584. [PMID: 36329036 PMCID: PMC9633775 DOI: 10.1038/s41467-022-34371-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The discovery of functional gradients introduce a new perspective in understanding the cortical spectrum of intrinsic dynamics, as it captures major axes of functional connectivity in low-dimensional space. However, how functional gradients arise and dynamically vary remains poorly understood. In this study, we investigated the biological basis of functional gradients using awake resting-state fMRI, retrograde tracing and gene expression datasets in marmosets. We found functional gradients in marmosets showed a sensorimotor-to-visual principal gradient followed by a unimodal-to-multimodal gradient, resembling functional gradients in human children. Although strongly constrained by structural wirings, functional gradients were dynamically modulated by arousal levels. Utilizing a reduced model, we uncovered opposing effects on gradient dynamics by structural connectivity (inverted U-shape) and neuromodulatory input (U-shape) with arousal fluctuations, and dissected the contribution of individual neuromodulatory receptors. This study provides insights into biological basis of functional gradients by revealing the interaction between structural connectivity and ascending neuromodulatory system.
Collapse
|
37
|
Zhang YS, Takahashi DY, El Hady A, Liao DA, Ghazanfar AA. Active neural coordination of motor behaviors with internal states. Proc Natl Acad Sci U S A 2022; 119:e2201194119. [PMID: 36122243 PMCID: PMC9522379 DOI: 10.1073/pnas.2201194119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
The brain continuously coordinates skeletomuscular movements with internal physiological states like arousal, but how is this coordination achieved? One possibility is that the brain simply reacts to changes in external and/or internal signals. Another possibility is that it is actively coordinating both external and internal activities. We used functional ultrasound imaging to capture a large medial section of the brain, including multiple cortical and subcortical areas, in marmoset monkeys while monitoring their spontaneous movements and cardiac activity. By analyzing the causal ordering of these different time series, we found that information flowing from the brain to movements and heart-rate fluctuations were significantly greater than in the opposite direction. The brain areas involved in this external versus internal coordination were spatially distinct, but also extensively interconnected. Temporally, the brain alternated between network states for this regulation. These findings suggest that the brain's dynamics actively and efficiently coordinate motor behavior with internal physiology.
Collapse
|
38
|
Golub EM, Conner B, Edwards M, Gilllis L, Lacreuse A. Potential trade-off between olfactory and visual discrimination learning in common marmosets (Callithrix jacchus): Implications for the assessment of age-related cognitive decline. Am J Primatol 2022; 84:e23427. [PMID: 35942572 PMCID: PMC9444974 DOI: 10.1002/ajp.23427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/17/2022] [Accepted: 07/23/2022] [Indexed: 11/09/2022]
Abstract
Olfactory dysfunction has been identified as an early biomarker for dementia risk but has rarely been assessed in nonhuman primate models of human aging. To better characterize common marmosets as such models, we assessed olfactory discrimination performance in a sample of 10 animals (5 females), aged 2.5-8.9 years old. The monkeys were proficient in the discrimination and reversal of visual stimuli but naïve to odor stimuli. For olfactory discrimination, the monkeys performed a series of six discriminations of increasing difficulty between two odor stimuli. We found no evidence for an age-related decline as both young and older individuals were able to perform the discriminations in roughly the same number of trials. In addition, the older monkeys had faster responses than the younger animals. However, we noted that when adjusted for age, the speed of acquisition of the first discrimination in the olfactory modality was inversely correlated to the speed of acquisition of their first discrimination of two visual stimuli months earlier. These results suggest that marmosets may compensate for sensory deficits in one modality with higher sensory performance in another. These data have broad implications for the assessment of age-related cognitive decline and the categorization of animals as impaired or nonimpaired.
Collapse
|
39
|
Spadacenta S, Dicke PW, Thier P. A prosocial function of head-gaze aversion and head-cocking in common marmosets. Primates 2022; 63:535-546. [PMID: 35838928 PMCID: PMC9463209 DOI: 10.1007/s10329-022-00997-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022]
Abstract
Gaze aversion is a behavior adopted by several mammalian and non-mammalian species in response to eye contact, and is usually interpreted as a reaction to a perceived threat. Unlike many other primate species, common marmosets (Callithrix jacchus) are thought to have a high tolerance for direct gaze, barely exhibiting gaze avoidance towards conspecifics and humans. Here we show that this does not hold for marmosets interacting with a familiar experimenter who suddenly establishes eye contact in a playful interaction (peekaboo). Video footage synchronously recorded from the perspective of the marmoset and the experimenter showed that the monkeys consistently alternated between eye contact and head-gaze aversion, and that these responses were often preceded by head-cocking. We hypothesize that this behavioral strategy helps marmosets to temporarily disengage from emotionally overwhelming social stimulation due to sight of another individual's face, in order to prepare for a new round of affiliative face-to-face interactions.
Collapse
|
40
|
Samandra R, Haque ZZ, Rosa MGP, Mansouri FA. The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neurosci Biobehav Rev 2022; 138:104692. [PMID: 35569579 DOI: 10.1016/j.neubiorev.2022.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/23/2023]
Abstract
Social-cognitive processes facilitate the use of environmental cues to understand others, and to be understood by others. Animal models provide vital insights into the neural underpinning of social behaviours. To understand social cognition at even deeper behavioural, cognitive, neural, and molecular levels, we need to develop more representative study models, which allow testing of novel hypotheses using human-relevant cognitive tasks. Due to their cooperative breeding system and relatively small size, common marmosets (Callithrix jacchus) offer a promising translational model for such endeavours. In addition to having social behavioural patterns and group dynamics analogous to those of humans, marmosets have cortical brain areas relevant for the mechanistic analysis of human social cognition, albeit in simplified form. Thus, they are likely suitable animal models for deciphering the physiological processes, connectivity and molecular mechanisms supporting advanced cognitive functions. Here, we review findings emerging from marmoset social and behavioural studies, which have already provided significant insights into executive, motivational, social, and emotional dysfunction associated with neurological and psychiatric disorders.
Collapse
|
41
|
Han HJ, Powers SJ, Gabrielson KL. The Common Marmoset-Biomedical Research Animal Model Applications and Common Spontaneous Diseases. Toxicol Pathol 2022; 50:628-637. [PMID: 35535728 PMCID: PMC9310150 DOI: 10.1177/01926233221095449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marmosets are becoming more utilized in biomedical research due to multiple advantages including (1) a nonhuman primate of a smaller size with less cost for housing, (2) physiologic similarities to humans, (3) translatable hepatic metabolism, (4) higher numbers of litters per year, (5) genome is sequenced, molecular reagents are available, (6) immunologically similar to humans, (7) transgenic marmosets with germline transmission have been produced, and (8) are naturally occurring hematopoietic chimeras. With more use of marmosets, disease surveillance over a wide range of ages of marmosets has been performed. This has led to a better understanding of the disease management of spontaneous diseases that can occur in colonies. Knowledge of clinical signs and histologic lesions can assist in maximizing the colony's health, allowing for improved outcomes in translational studies within biomedical research. Here, we describe some basic husbandry, biology, common spontaneous diseases, and animal model applications for the common marmoset in biomedical research.
Collapse
|
42
|
Schapker NM, Chadwell BA, Young JW. Robust locomotor performance of squirrel monkeys (Saimiri boliviensis) in response to simulated changes in support diameter and compliance. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:417-433. [PMID: 34985803 DOI: 10.1002/jez.2574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Arboreal environments require overcoming navigational challenges not typically encountered in other terrestrial habitats. Supports are unevenly distributed and vary in diameter, orientation, and compliance. To better understand the strategies that arboreal animals use to maintain stability in this environment, laboratory researchers must endeavor to mimic those conditions. Here, we evaluate how squirrel monkeys (Saimiri boliviensis) adjust their locomotor mechanics in response to variation in support diameter and compliance. We used high-speed cameras to film two juvenile female monkeys as they walked across poles of varying diameters (5, 2.5, and 1.25 cm). Poles were mounted on either a stiff wooden base ("stable" condition) or foam blocks ("compliant" condition). Six force transducers embedded within the pole trackway recorded substrate reaction forces during locomotion. We predicted that squirrel monkeys would walk more slowly on narrow and compliant supports and adopt more "compliant" gait mechanics, increasing stride lengths, duty factors, and an average number of limbs gripping the support, while the decreasing center of mass height, stride frequencies, and peak forces. We observed few significant adjustments to squirrel monkey locomotor kinematics in response to changes in either support diameter or compliance, and the changes we did observe were often tempered by interactions with locomotor speed. These results differ from a similar study of common marmosets (i.e., Callithrix jacchus, with relatively poor grasping abilities), where variation in diameter and compliance substantially impacted gait kinematics. Squirrel monkeys' strong grasping apparatus, long and mobile tails, and other adaptations for arboreal travel likely facilitate robust locomotor performance despite substrate precarity.
Collapse
|
43
|
Dukes NJ, Ash H, de Faria Oliveira G, Sosa ME, Goy RW, Colman RJ, Ziegler TE. Motivational increase of androgens and behavior by infant distress calls in highly responsive common marmoset fathers, Callithrix jacchus. Horm Behav 2022; 142:105162. [PMID: 35366411 PMCID: PMC9177807 DOI: 10.1016/j.yhbeh.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022]
Abstract
Common marmoset fathers are highly involved in care of their infants. However, variability exists in their response to infant behavior even in paternally experienced fathers. Using infant distress cries as a motivation test, we investigated: 1. the differences in paternally experienced fathers' motivation to search for the infant vocalization stimuli; 2. the relationship between a father's motivation to search for the source of the infant cries and testosterone levels; and 3. if there is a rapid steroidogenesis pathway leading to increased testosterone and estradiol in the peripheral circulation. Only 44% of the paternally experienced fathers showed a high frequency of searching for the source of the infant distress cries. Through the use of multisteroid analysis, we found high responsive fathers had significantly higher levels of progesterone and testosterone in response to infant distress cries compared to a control stimulus with progesterone and androstenedione correlating with testosterone, while no differences were seen in low responders. The frequency to search for the infant stimuli was positively correlated with higher testosterone compared to control vocal levels. These results suggest that searching for the source of infant cries represents a motivation behavior for fathers that is activated by testosterone and reflects rapid circulating testosterone.
Collapse
|
44
|
Wilson TM, Ritter JM, Martines RB, Bullock HA, Fair P, Radford KW, Macêdo IL, Sousa DER, Gonçalves AAB, Romano AP, Passsos PHO, Ramos DG, Costa GRT, Cavalcante KRLJ, de Melo CB, Zaki SR, Castro MB. Fatal Human Alphaherpesvirus 1 Infection in Free-Ranging Black-Tufted Marmosets in Anthropized Environments, Brazil, 2012–2019. Emerg Infect Dis 2022; 28:802-811. [PMID: 35318916 PMCID: PMC8962904 DOI: 10.3201/eid2804.212334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human alphaherpesvirus 1 (HuAHV1) causes fatal neurologic infections in captive New World primates. To determine risks for interspecies transmission, we examined data for 13 free-ranging, black-tufted marmosets (Callithrix penicillata) that died of HuAHV1 infection and had been in close contact with humans in anthropized areas in Brazil during 2012–2019. We evaluated pathologic changes in the marmosets, localized virus and antigen, and assessed epidemiologic features. The main clinical findings were neurologic signs, necrotizing meningoencephalitis, and ulcerative glossitis; 1 animal had necrotizing hepatitis. Transmission electron microscopy revealed intranuclear herpetic inclusions, and immunostaining revealed HuAHV1 and herpesvirus particles in neurons, glial cells, tongue mucosal epithelium, and hepatocytes. PCR confirmed HuAHV1 infection. These findings illustrate how disruption of the One Health equilibrium in anthropized environments poses risks for interspecies virus transmission with potential spillover not only from animals to humans but also from humans to free-ranging nonhuman primates or other animals.
Collapse
|
45
|
Calapai A, Cabrera-Moreno J, Moser T, Jeschke M. Flexible auditory training, psychophysics, and enrichment of common marmosets with an automated, touchscreen-based system. Nat Commun 2022; 13:1648. [PMID: 35347139 PMCID: PMC8960775 DOI: 10.1038/s41467-022-29185-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Devising new and more efficient protocols to analyze the phenotypes of non-human primates, as well as their complex nervous systems, is rapidly becoming of paramount importance. This is because with genome-editing techniques, recently adopted to non-human primates, new animal models for fundamental and translational research have been established. One aspect in particular, namely cognitive hearing, has been difficult to assess compared to visual cognition. To address this, we devised autonomous, standardized, and unsupervised training and testing of auditory capabilities of common marmosets with a cage-based standalone, wireless system. All marmosets tested voluntarily operated the device on a daily basis and went from naïve to experienced at their own pace and with ease. Through a series of experiments, here we show, that animals autonomously learn to associate sounds with images; to flexibly discriminate sounds, and to detect sounds of varying loudness. The developed platform and training principles combine in-cage training of common marmosets for cognitive and psychoacoustic assessment with an enriched environment that does not rely on dietary restriction or social separation, in compliance with the 3Rs principle.
Collapse
|
46
|
Kramer RM, Sheh A, Toolan CH, Muthupalani S, Carrasco SE, Artim SC, Burns MA, Fox JG. Factors Affecting Hematologic and Serum Biochemical Parameters in Healthy Common Marmosets ( Callithrix jacchus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:113-131. [PMID: 34996528 PMCID: PMC8956218 DOI: 10.30802/aalas-jaalas-21-000061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
Physiologic changes during development, aging, and pregnancy may affect clinical parameters. Previously available reference values have been based on samples that may include wild and captive marmosets, with little representation of geriatric or pregnant animals. Establishing reference values under various conditions would support better recognition of pathologic conditions in marmosets. One hundred and forty-seven (70 males and 77 females) healthy marmosets from a research colony were included in this study. Exclusion criteria were abnormal physical exam findings at the time of blood sampling, chronic medications, or clinical or pathologic evidence of disease. Reference intervals were calculated for serum chemistry and hematology. Using metadata, samples were classified based on age, sex, colony source and pregnancy status. Multiple tests indicated significant differences with varying effect sizes, indicating that developing reference intervals based on metadata can be useful. Across all the comparisons, medium or large effect sizes were observed most frequently in blood urea nitrogen (BUN), calcium, total protein, alkaline phosphatase (ALP), weight and serum albumin. We report normative clinical pathologic data for captive common marmosets through all life stages and reproductive status. Significant differences were observed in most parameters when stratifying data based on age, sex, colony source, or pregnancy, suggesting that developing reference intervals considering this information is important for clinicians.
Collapse
|
47
|
Schaeffer DJ, Klassen LM, Hori Y, Tian X, Szczupak D, Yen CCC, Cléry JC, Gilbert KM, Gati JS, Menon RS, Liu C, Everling S, Silva AC. An open access resource for functional brain connectivity from fully awake marmosets. Neuroimage 2022; 252:119030. [PMID: 35217206 PMCID: PMC9048130 DOI: 10.1016/j.neuroimage.2022.119030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is quickly gaining traction as a premier neuroscientific model. However, considerable progress is still needed in understanding the functional and structural organization of the marmoset brain to rival that documented in longstanding preclinical model species, like mice, rats, and Old World primates. To accelerate such progress, we present the Marmoset Functional Brain Connectivity Resource (marmosetbrainconnectome.org), currently consisting of over 70 h of resting-state fMRI (RS-fMRI) data acquired at 500 µm isotropic resolution from 31 fully awake marmosets in a common stereotactic space. Three-dimensional functional connectivity (FC) maps for every cortical and subcortical gray matter voxel are stored online. Users can instantaneously view, manipulate, and download any whole-brain functional connectivity (FC) topology (at the subject- or group-level) along with the raw datasets and preprocessing code. Importantly, researchers can use this resource to test hypotheses about FC directly - with no additional analyses required - yielding whole-brain correlations for any gray matter voxel on demand. We demonstrate the resource's utility for presurgical planning and comparison with tracer-based neuronal connectivity as proof of concept. Complementing existing structural connectivity resources for the marmoset brain, the Marmoset Functional Brain Connectivity Resource affords users the distinct advantage of exploring the connectivity of any voxel in the marmoset brain, not limited to injection sites nor constrained by regional atlases. With the entire raw database (RS-fMRI and structural images) and preprocessing code openly available for download and use, we expect this resource to be broadly valuable to test novel hypotheses about the functional organization of the marmoset brain.
Collapse
|
48
|
Bishop M, Weinhold M, Turk AZ, Adeck A, SheikhBahaei S. An open-source tool for automated analysis of breathing behaviors in common marmosets and rodents. eLife 2022; 11:e71647. [PMID: 35049499 PMCID: PMC8856653 DOI: 10.7554/elife.71647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The respiratory system maintains homeostatic levels of oxygen (O2) and carbon dioxide (CO2) in the body through rapid and efficient regulation of breathing frequency and depth (tidal volume). The commonly used methods of analyzing breathing data in behaving experimental animals are usually subjective, laborious, and time-consuming. To overcome these hurdles, we optimized an analysis toolkit for the unsupervised study of respiratory activities in animal subjects. Using this tool, we analyzed breathing behaviors of the common marmoset (Callithrix jacchus), a New World non-human primate model. Using whole-body plethysmography in room air as well as acute hypoxic (10% O2) and hypercapnic (6% CO2) conditions, we describe breathing behaviors in awake, freely behaving marmosets. Our data indicate that marmosets' exposure to acute hypoxia decreased metabolic rate and increased sigh rate. However, the hypoxic condition did not augment ventilation. Hypercapnia, on the other hand, increased both the frequency and depth (i.e., tidal volume) of breathing.
Collapse
|
49
|
Gilbert KM, Cléry JC, Gati JS, Hori Y, Johnston KD, Mashkovtsev A, Selvanayagam J, Zeman P, Menon RS, Schaeffer DJ, Everling S. Simultaneous functional MRI of two awake marmosets. Nat Commun 2021; 12:6608. [PMID: 34785685 PMCID: PMC8595428 DOI: 10.1038/s41467-021-26976-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Social cognition is a dynamic process that requires the perception and integration of a complex set of idiosyncratic features between interacting conspecifics. Here we present a method for simultaneously measuring the whole-brain activation of two socially interacting marmoset monkeys using functional magnetic resonance imaging. MRI hardware (a radiofrequency coil and peripheral devices) and image-processing pipelines were developed to assess brain responses to socialization, both on an intra-brain and inter-brain level. Notably, the brain activation of a marmoset when viewing a second marmoset in-person versus when viewing a pre-recorded video of the same marmoset-i.e., when either capable or incapable of socially interacting with a visible conspecific-demonstrates increased activation in the face-patch network. This method enables a wide range of possibilities for potentially studying social function and dysfunction in a non-human primate model.
Collapse
|
50
|
Steinfath E, Palacios-Muñoz A, Rottschäfer JR, Yuezak D, Clemens J. Fast and accurate annotation of acoustic signals with deep neural networks. eLife 2021; 10:e68837. [PMID: 34723794 PMCID: PMC8560090 DOI: 10.7554/elife.68837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/04/2021] [Indexed: 01/06/2023] Open
Abstract
Acoustic signals serve communication within and across species throughout the animal kingdom. Studying the genetics, evolution, and neurobiology of acoustic communication requires annotating acoustic signals: segmenting and identifying individual acoustic elements like syllables or sound pulses. To be useful, annotations need to be accurate, robust to noise, and fast. We here introduce DeepAudioSegmenter (DAS), a method that annotates acoustic signals across species based on a deep-learning derived hierarchical presentation of sound. We demonstrate the accuracy, robustness, and speed of DAS using acoustic signals with diverse characteristics from insects, birds, and mammals. DAS comes with a graphical user interface for annotating song, training the network, and for generating and proofreading annotations. The method can be trained to annotate signals from new species with little manual annotation and can be combined with unsupervised methods to discover novel signal types. DAS annotates song with high throughput and low latency for experimental interventions in realtime. Overall, DAS is a universal, versatile, and accessible tool for annotating acoustic communication signals.
Collapse
|