26
|
Luo J, Zhang P, Zhao T, Jia M, Yin P, Li W, Zhang ZR, Fu Y, Gong T. Golgi Apparatus-Targeted Chondroitin-Modified Nanomicelles Suppress Hepatic Stellate Cell Activation for the Management of Liver Fibrosis. ACS NANO 2019; 13:3910-3923. [PMID: 30938986 DOI: 10.1021/acsnano.8b06924] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liver fibrosis is a serious liver disease associated with high morbidity and mortality. The activation of hepatic stellate cells (HSCs) and the overproduction of extracellular matrix proteins are key features during disease progression. In this work, chondroitin sulfate nanomicelles (CSmicelles) were developed as a delivery system targeting HSCs for the treatment of liver fibrosis. CS-deoxycholic acid conjugates (CS-DOCA) were synthesized via amide bond formation. Next, retinoic acid (RA) and doxorubicin (DOX) were encapsulated into CSmicells to afford a DOX+RA-CSmicelles codelivery system. CSmicelles were selectively taken up in activated HSCs and hepatoma (HepG2) cells other than in normal hepatocytes (LO2), the internalization of which was proven to be mediated by CD44 receptors. Interestingly, DOX+RA-CSmicelles preferentially accumulated in the Golgi apparatus, destroyed the Golgi structure, and ultimately downregulated collagen I production. Following tail-vein injection, DOX+RA-CSmicelles were delivered to the cirrhotic liver and showed synergistic antifibrosis effects in the CCl4-induced fibrotic rat model. Further, immunofluorescence staining of dissected liver tissues revealed CD44-specific delivery of CS derivatives to activated HSCs. Together, our results demonstrate the great potential of CS based carrier systems for the targeted treatment of chronic liver diseases.
Collapse
|
27
|
Smaczynska-de Rooij II, Marklew CJ, Palmer SE, Allwood EG, Ayscough KR. Mutation of key lysine residues in the Insert B region of the yeast dynamin Vps1 disrupts lipid binding and causes defects in endocytosis. PLoS One 2019; 14:e0215102. [PMID: 31009484 PMCID: PMC6476499 DOI: 10.1371/journal.pone.0215102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The yeast dynamin-like protein Vps1 has roles at multiple stages of membrane trafficking including Golgi to vacuole transport, endosomal recycling, endocytosis and in peroxisomal fission. While the majority of the Vps1 amino acid sequence shows a high level of identity with the classical mammalian dynamins, it does not contain a pleckstrin homology domain (PH domain). The Dyn1 PH domain has been shown to bind to lipids with a preference for PI(4,5)P2 and it is considered central to the function of Dyn1 in endocytosis. The lack of a PH domain in Vps1 has raised questions as to whether the protein can function directly in membrane fusion or fission events. Here we demonstrate that the region Insert B, located in a position equivalent to the dynamin PH domain, is able to bind directly to lipids and that mutation of three lysine residues reduces its capacity to interact with lipids, and in particular with PI(4,5)P2. The Vps1 KKK-AAA mutant shows more diffuse staining but does still show some localization to compartments adjacent to vacuoles and to endocytic sites suggesting that other factors are also involved in its recruitment. This mutant selectively blocks endocytosis, but is functional in other processes tested. While mutant Vps1 can localise to endocytic sites, the mutation results in a significant increase in the lifetime of the endocytic reporter Sla2 and a high proportion of defective scission events. Together our data indicate that the lipid binding capacity of the Insert B region of Vps1 contributes to the ability of the protein to associate with membranes and that its capacity to interact with PI(4,5)P2 is important in facilitating endocytic scission.
Collapse
|
28
|
Behrendt L, Kurth I, Kaether C. A disease causing ATLASTIN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cell Mol Life Sci 2019; 76:1433-1445. [PMID: 30666337 PMCID: PMC6420906 DOI: 10.1007/s00018-019-03010-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
Atlastins (ATLs) are membrane-bound GTPases involved in shaping of the endoplasmic reticulum (ER). Mutations in ATL1 and ATL3 cause spastic paraplegia and hereditary sensory neuropathy. We here show that the sensory neuropathy causing ATL3 Y192C mutation reduces the complexity of the tubular ER-network. ATL3 Y192C delays ER-export by reducing the number of ER exit sites, reduces autophagy, fragments the Golgi and causes malformation of the nucleus. In cultured primary neurons, ATL3 Y192C does not localize to the growing axon, resulting in axon growth deficits. Patient-derived fibroblasts possess a tubular ER with reduced complexity and have a reduced number of autophagosomes. The data suggest that the disease-causing ATL3 Y192C mutation affects multiple ER-related pathways, possibly as a consequence of the distorted ER morphology.
Collapse
|
29
|
Frazier NM, Brand T, Gordan JD, Grandis J, Jura N. Overexpression-mediated activation of MET in the Golgi promotes HER3/ERBB3 phosphorylation. Oncogene 2019; 38:1936-1950. [PMID: 30390071 PMCID: PMC6417953 DOI: 10.1038/s41388-018-0537-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Ligand-dependent oligomerization of receptor tyrosine kinases (RTKs) results in their activation through highly specific conformational changes in the extracellular and intracellular receptor domains. These conformational changes are unique for each RTK subfamily, limiting cross-activation between unrelated RTKs. The proto-oncogene MET receptor tyrosine kinase overcomes these structural constraints and phosphorylates unrelated RTKs in numerous cancer cell lines. The molecular basis for these interactions is unknown. We investigated the mechanism by which MET phosphorylates the human epidermal growth factor receptor-3 (HER3 or ERBB3), a catalytically impaired RTK whose phosphorylation by MET has been described as an essential component of drug resistance to inhibitors targeting EGFR and HER2. We find that in untransformed cells, HER3 is not phosphorylated by MET in response to ligand stimulation, but rather to increasing levels of MET expression, which results in ligand-independent MET activation. Phosphorylation of HER3 by its canonical co-receptors, EGFR and HER2, is achieved by engaging an allosteric site on the HER3 kinase domain, but this site is not required when HER3 is phosphorylated by MET. We also observe that HER3 preferentially interacts with MET during its maturation along the secretory pathway, before MET is post translationally processed by cleavage within its extracellular domain. This results in accumulation of phosphorylated HER3 in the Golgi apparatus. We further show that in addition to HER3, MET phosphorylates other RTKs in the Golgi, suggesting that this mechanism is not limited to HER3 phosphorylation. These data demonstrate a link between MET overexpression and its aberrant activation in the Golgi endomembranes and suggest that non-canonical interactions between MET and other RTKs occur during maturation of receptors. Our study highlights a novel aspect of MET signaling in cancer that would not be accessible to inhibition by therapeutic antibodies.
Collapse
|
30
|
Tang CX, Luan L, Zhang L, Wang Y, Liu XF, Wang J, Xiong Y, Wang D, Huang LY, Gao DS. Golgin-160 and GMAP210 play an important role in U251 cells migration and invasion initiated by GDNF. PLoS One 2019; 14:e0211501. [PMID: 30695072 PMCID: PMC6351060 DOI: 10.1371/journal.pone.0211501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022] Open
Abstract
Gliomas are the most common malignant tumors of the brain and are characteristic of severe migration and invasion. Glial cell line-derived neurotrophic factor (GDNF) promotes glioma development process. However, the regulatory mechanisms of promoting occurrence and development of glioma have not yet been clearly elucidated. In the present study, the mechanism by which GDNF promotes glioma cell migration and invasion through regulating the dispersion and location of the Golgi apparatus (GA) is described. Following GDNF treatment, a change in the volume and position of GA was observed. The stack area of the GA was enlarged and it was more concentrated near the nucleus. Golgin-160 and Golgi microtubule-associated protein 210 (GMAP210) were identified as target molecules regulating GA positioning. In the absence of either golgin-160 or GMAP210 using lentivirus, the migration and invasion of U251 cells were decreased, while it was increased following GDNF. It was also found that the GA was decreased in size and dispersed following golgin-160 or GMAP210 knockdown, as determined by GA green fluorescence assay. Once GDNF was added, the above phenomenon would be twisted, and the concentrated location and volume of the GA was restored. In combination, the present data suggested that the regulation of the position and size of the GA by golgin-160 and GMAP210 play an important role in U251 cell migration and invasion.
Collapse
|
31
|
Custer SK, Foster JN, Astroski JW, Androphy EJ. Abnormal Golgi morphology and decreased COPI function in cells with low levels of SMN. Brain Res 2018; 1706:135-146. [PMID: 30408476 DOI: 10.1016/j.brainres.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022]
Abstract
We report here the finding of abnormal Golgi apparatus morphology in motor neuron like cells depleted of SMN as well as Golgi apparatus morphology in SMA patient fibroblasts. Rescue experiments demonstrate that this abnormality is dependent on SMN, but can also be rescued by expression of the COPI coatomer subunit alpha-COP. A motor neuron-like cell line containing an inducible alpha-COP shRNA was created to generate a parallel system to study knockdown of SMN or alpha-COP. Multiple assays of COPI-dependent intracellular trafficking in cells depleted of SMN demonstrate that alpha-COP function is suboptimal, including failed sequestration of plasma membrane proteins, altered binding of mRNA, and defective targeting and transport of Golgi-resident proteins.
Collapse
|
32
|
Inoue T, Zhang P, Zhang W, Goodner-Bingham K, Dupzyk A, DiMaio D, Tsai B. γ-Secretase promotes membrane insertion of the human papillomavirus L2 capsid protein during virus infection. J Cell Biol 2018; 217:3545-3559. [PMID: 30006461 PMCID: PMC6168257 DOI: 10.1083/jcb.201804171] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 01/02/2023] Open
Abstract
Despite their importance as human pathogens, entry of human papillomaviruses (HPVs) into cells is poorly understood. The transmembrane protease γ-secretase executes a crucial function during the early stages of HPV infection, but the role of γ-secretase in infection and the identity of its critical substrate are unknown. Here we demonstrate that γ-secretase harbors a previously uncharacterized chaperone function, promoting low pH-dependent insertion of the HPV L2 capsid protein into endosomal membranes. Upon membrane insertion, L2 recruits the cytosolic retromer, which enables the L2 viral genome complex to enter the retrograde transport pathway and traffic to the Golgi en route for infection. Although a small fraction of membrane-inserted L2 is also cleaved by γ-secretase, this proteolytic event appears dispensable for HPV infection. Our findings demonstrate that γ-secretase is endowed with an activity that can promote membrane insertion of L2, thereby targeting the virus to the productive infectious pathway.
Collapse
|
33
|
Girard M, Poujois A, Fabre M, Lacaille F, Debray D, Rio M, Fenaille F, Cholet S, Ruel C, Caussé E, Selves J, Bridoux-Henno L, Woimant F, Dupré T, Vuillaumier-Barrot S, Seta N, Alric L, de Lonlay P, Bruneel A. CCDC115-CDG: A new rare and misleading inherited cause of liver disease. Mol Genet Metab 2018; 124:228-235. [PMID: 29759592 DOI: 10.1016/j.ymgme.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023]
Abstract
Congenital disorders of glycosylation (CDG) linked to defects in Golgi apparatus homeostasis constitute an increasing part of these rare inherited diseases. Among them, COG-CDG, ATP6V0A2-CDG, TMEM199-CDG and CCDC115-CDG have been shown to disturb Golgi vesicular trafficking and/or lumen pH acidification. Here, we report 3 new unrelated cases of CCDC115-CDG with emphasis on diagnosis difficulties related to strong phenotypic similarities with mitochondriopathies, Niemann-Pick disease C and Wilson Disease. Indeed, while two individuals clinically presented with early and severe liver fibrosis and cirrhosis associated with neurological symptoms, the other one "only" showed isolated and late severe liver involvement. Biological results were similar to previously described patients, including hypercholesterolemia, elevated alkaline phosphatases and defects in copper metabolism. CDG screening and glycosylation study finally led to the molecular diagnosis of CCDC115-CDG. Besides pointing to the importance of CDG screening in patients with unexplained and severe liver disease, these reports expand the clinical and molecular phenotypes of CCDC115-CDG. The hepatic involvement is particularly addressed. Furthermore, hypothesis concerning the pathogenesis of the liver disease and of major biological abnormalities are proposed.
Collapse
|
34
|
Green BJ, Panagiotakopoulou M, Pramotton FM, Stefopoulos G, Kelley SO, Poulikakos D, Ferrari A. Pore Shape Defines Paths of Metastatic Cell Migration. NANO LETTERS 2018; 18:2140-2147. [PMID: 29480726 DOI: 10.1021/acs.nanolett.8b00431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Invasion of dense tissues by cancer cells involves the interplay between the penetration resistance offered by interstitial pores and the deformability of cells. Metastatic cancer cells find optimal paths of minimal resistance through an adaptive path-finding process, which leads to successful dissemination. The physical limit of nuclear deformation is related to the minimal cross section of pores that can be successfully penetrated. However, this single biophysical parameter does not fully describe the architectural complexity of tissues featuring pores of variable area and shape. Here, employing laser nanolithography, we fabricate pore microenvironment models with well-controlled pore shapes, through which human breast cells (MCF10A) and their metastatic offspring (MCF10CA1a.cl1) could pervade. In these experimental settings, we demonstrate that the actual pore shape, and not only the cross section, is a major and independent determinant of cancer penetration efficiency. In complex architectures containing pores demanding large deformations from invading cells, tall and narrow rectangular openings facilitate cancer migration. In addition, we highlight the characteristic traits of the explorative behavior enabling metastatic cells to identify and select such pore shapes in a complex multishape pore environment, pinpointing paths of least resistance to invasion.
Collapse
|
35
|
Deng H, Xiao H. The role of the ATP2C1 gene in Hailey-Hailey disease. Cell Mol Life Sci 2017; 74:3687-3696. [PMID: 28551824 PMCID: PMC11107712 DOI: 10.1007/s00018-017-2544-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/27/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
Hailey-Hailey disease (HHD) is a rare autosomal dominant acantholytic dermatosis, characterized by a chronic course of repeated and exacerbated skin lesions in friction regions. The pathogenic gene of HHD was reported to be the ATPase calcium-transporting type 2C member 1 gene (ATP2C1) located on chromosome 3q21-q24. Its function is to maintain normal intracellular concentrations of Ca2+/Mn2+ by transporting Ca2+/Mn2+ into the Golgi apparatus. ATP2C1 gene mutations are reportedly responsible for abnormal cytosolic Ca2+/Mn2+ levels and the clinical manifestations of HHD. Environmental factors and genetic modifiers may also affect the clinical variability of HHD. This article aims to critically discuss the clinical and pathological features of HHD, differential diagnoses, and genetic and functional studies of the ATP2C1 gene in HHD. Further understanding the role of the ATP2C1 gene in the pathogenesis of HHD by genetic, molecular, and animal studies may contribute to a better clinical diagnosis and provide new strategies for the treatment and prevention of HHD.
Collapse
|
36
|
Tachikawa M, Mochizuki A. Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics. Proc Natl Acad Sci U S A 2017; 114:5177-5182. [PMID: 28461510 PMCID: PMC5441826 DOI: 10.1073/pnas.1619264114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Golgi apparatus is a membrane-bounded organelle with the characteristic shape of a series of stacked flat cisternae. During mitosis in mammalian cells, the Golgi apparatus is once fragmented into small vesicles and then reassembled to form the characteristic shape again in each daughter cell. The mechanism and details of the reassembly process remain elusive. Here, by the physical simulation of a coarse-grained membrane model, we reconstructed the three-dimensional morphological dynamics of the Golgi reassembly process. Considering the stability of the interphase Golgi shape, we introduce two hypothetical mechanisms-the Golgi rim stabilizer protein and curvature-dependent restriction on membrane fusion-into the general biomembrane model. We show that the characteristic Golgi shape is spontaneously organized from the assembly of vesicles by proper tuning of the two additional mechanisms, i.e., the Golgi reassembly process is modeled as self-organization. We also demonstrate that the fine Golgi shape forms via a balance of three reaction speeds: vesicle aggregation, membrane fusion, and shape relaxation. Moreover, the membrane fusion activity decreases thickness and the number of stacked cisternae of the emerging shapes.
Collapse
|
37
|
Santos TC, Wierda K, Broeke JH, Toonen RF, Verhage M. Early Golgi Abnormalities and Neurodegeneration upon Loss of Presynaptic Proteins Munc18-1, Syntaxin-1, or SNAP-25. J Neurosci 2017; 37:4525-4539. [PMID: 28348137 PMCID: PMC6596660 DOI: 10.1523/jneurosci.3352-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/07/2017] [Accepted: 03/07/2017] [Indexed: 11/21/2022] Open
Abstract
The loss of presynaptic proteins Munc18-1, syntaxin-1, or SNAP-25 is known to produce cell death, but the underlying features have not been compared experimentally. Here, we investigated these features in cultured mouse CNS and DRG neurons. Side-by-side comparisons confirmed massive cell death, before synaptogenesis, within 1-4 DIV upon loss of t-SNAREs (syntaxin-1, SNAP-25) or Munc18-1, but not v-SNAREs (synaptobrevins/VAMP1/2/3 using tetanus neurotoxin (TeNT), also in TI-VAMP/VAMP7 knock-out (KO) neurons). A condensed cis-Golgi was the first abnormality observed upon Munc18-1 or SNAP-25 loss within 3 DIV. This phenotype was distinct from the Golgi fragmentation observed in apoptosis. Cell death was too rapid after syntaxin-1 loss to study Golgi abnormalities. Syntaxin-1 and Munc18-1 depend on each other for normal cellular levels. We observed that endogenous syntaxin-1 accumulates at the Golgi of Munc18-1 KO neurons. However, expression of a non-neuronal Munc18 isoform that does not bind syntaxin-1, Munc18-3, in Munc18-1 KO neurons prevented cell death and restored normal cis-Golgi morphology, but not synaptic transmission or syntaxin-1 targeting. Finally, we observed that DRG neurons are the only Munc18-1 KO neurons that do not degenerate in vivo or in vitro In these neurons, cis-Golgi abnormalities were less severe, with no changes in Golgi shape. Together, these data demonstrate that cell death upon Munc18-1, syntaxin-1, or SNAP-25 loss occurs via a degenerative pathway unrelated to the known synapse function of these proteins and involving early cis-Golgi abnormalities, distinct from apoptosis.SIGNIFICANCE STATEMENT This study provides new insights in a neurodegeneration pathway triggered by the absence of specific proteins involved in synaptic transmission (syntaxin-1, Munc18-1, SNAP-25), whereas other proteins involved in the same molecular process (synaptobrevins, Munc13-1/2) do not cause degeneration. Massive cell death occurs in cultured neurons upon depleting syntaxin-1, Munc18-1, and/or SNAP-25, well before synapse formation. This study characterizes several relevant cellular phenotypes, especially early cis-Golgi abnormalities, distinct from abnormalities observed during apoptosis, and rules out several other phenotypes as causal (defects in syntaxin-1 targeting and synaptic transmission). As proteins, such as syntaxin-1, Munc18-1, or SNAP-25, modulate α-synuclein neuropathy and/or are dysregulated in Alzheimer's disease, understanding this type of neurodegeneration may provide new links between synaptic defects and neurodegeneration in humans.
Collapse
|
38
|
Tan X, Banerjee P, Guo HF, Ireland S, Pankova D, Ahn YH, Nikolaidis IM, Liu X, Zhao Y, Xue Y, Burns AR, Roybal J, Gibbons DL, Zal T, Creighton CJ, Ungar D, Wang Y, Kurie JM. Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. J Clin Invest 2016; 127:117-131. [PMID: 27869652 DOI: 10.1172/jci88736] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/06/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor cells gain metastatic capacity through a Golgi phosphoprotein 3-dependent (GOLPH3-dependent) Golgi membrane dispersal process that drives the budding and transport of secretory vesicles. Whether Golgi dispersal underlies the pro-metastatic vesicular trafficking that is associated with epithelial-to-mesenchymal transition (EMT) remains unclear. Here, we have shown that, rather than causing Golgi dispersal, EMT led to the formation of compact Golgi organelles with improved ribbon linking and cisternal stacking. Ectopic expression of the EMT-activating transcription factor ZEB1 stimulated Golgi compaction and relieved microRNA-mediated repression of the Golgi scaffolding protein PAQR11. Depletion of PAQR11 dispersed Golgi organelles and impaired anterograde vesicle transport to the plasma membrane as well as retrograde vesicle tethering to the Golgi. The N-terminal scaffolding domain of PAQR11 was associated with key regulators of Golgi compaction and vesicle transport in pull-down assays and was required to reconstitute Golgi compaction in PAQR11-deficient tumor cells. Finally, high PAQR11 levels were correlated with EMT and shorter survival in human cancers, and PAQR11 was found to be essential for tumor cell migration and metastasis in EMT-driven lung adenocarcinoma models. We conclude that EMT initiates a PAQR11-mediated Golgi compaction process that drives metastasis.
Collapse
|
39
|
Ayala I, Colanzi A. Alterations of Golgi organization in Alzheimer's disease: A cause or a consequence? Tissue Cell 2016; 49:133-140. [PMID: 27894594 DOI: 10.1016/j.tice.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 11/06/2016] [Indexed: 01/24/2023]
Abstract
The Golgi apparatus is a central organelle of the secretory pathway involved in the post-translational modification and sorting of lipids and proteins. In mammalian cells, the Golgi apparatus is composed of stacks of cisternae organized in polarized manner, which are interconnected by membrane tubules to constitute the Golgi ribbon, located in the proximity of the centrosome. Besides the processing and transport of cargo, the Golgi complex is actively involved in the regulation of mitotic entry, cytoskeleton organization and dynamics, calcium homeostasis, and apoptosis, representing a signalling platform for the control of several cellular functions, including signalling initiated by receptors located at the plasma membrane. Alterations of the conventional Golgi organization are associated to many disorders, such as cancer or different neurodegenerative diseases. In this review, we examine the functional implications of modifications of Golgi structure in neurodegenerative disorders, with a focus on the role of Golgi fragmentation in the development of Alzheimer's disease. The comprehension of the mechanism that induces Golgi fragmentation and of its downstream effects on neuronal function have the potential to contribute to the development of more effective therapies to treat or prevent some of these disorders.
Collapse
|
40
|
Yu KN, Kim HJ, Kim S, Dawaadamdin O, Lee AY, Hong SH, Chang SH, Choi SJ, Shim SM, Lee K, Cho MH. Cigarette Smoking Condensate Disrupts Endoplasmic Reticulum-Golgi Network Homeostasis Through GOLPH3 Expression in Normal Lung Epithelial Cells. Nicotine Tob Res 2016; 18:1877-1885. [PMID: 27611309 DOI: 10.1093/ntr/ntw079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2023]
Abstract
INTRODUCTION Cigarette smoke (CS) is associated with a broad range of diseases including lung cancer. Many researchers have suggested that cigarette smoke condensate (CSC) may be more toxic compared to cigarette smoke extract (CSE) because CSC contains the lipid-soluble faction of smoke while CSE contains the hydrophilic or gas phase. The aim of this research is to investigate the effects of CSC on the disruption of endoplasmic reticulum (ER)-Golgi homeostasis in normal lung epithelial cells. METHODS CS was generated according to the ISO 3308 method. To ascertain the mechanistic effects of CSC on lung toxicity, normal lung epithelial cells of the cell line 16HBE14o- were treated with CSC (0.1mg/mL) for 48 hours. The toxic effects of CSC on ER-Golgi homeostasis and GOLPH3 expression were observed through diverse molecular tools including transmission electron microscope analysis. RESULTS Our results demonstrated that CSC treatment increased reactive oxygen species generation in lung cells and led to the alteration of ER-Golgi homeostasis in conjunction with increased autophagy. In particular, GOLPH3, known as an oncogene and a marker protein for the trans-Golgi network, was upregulated in CSC-treated cells. GOLPH3 protein overexpression was also confirmed in the lungs of human lung cancer patients as well as NNK-treated mice. CONCLUSION Our study revealed that CSC caused lung damage through the disruption of ER-Golgi homeostasis and autophagy induction. The expression level of the trans-Golgi marker protein GOLPH3 could serve as a reliable bio-indicator for CS-related lung cancer. IMPLICATIONS CS is a harmful factor in the development of many diseases including cancer. In this research, we demonstrated that CSC treatment led to malfunction of the ER-Golgi network, with the disrupted ER and Golgi causing GOLPH3 overexpression and abnormal autophagy accumulation. In addition, although the value of GOLPH3 as a predictor remains to be fully elucidated, our data suggest that GOLPH3 levels may be a novel prognostic biomarker of tobacco related lung disease.
Collapse
|
41
|
Dulary E, Potelle S, Legrand D, Foulquier F. TMEM165 deficiencies in Congenital Disorders of Glycosylation type II (CDG-II): Clues and evidences for roles of the protein in Golgi functions and ion homeostasis. Tissue Cell 2016; 49:150-156. [PMID: 27401145 DOI: 10.1016/j.tice.2016.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022]
Abstract
Congenital Disorders of Glycosylation (CDG) are rare inherited diseases causing glycosylation defects responsible for severe growth and psychomotor retardations in patients. Whereas most genetic defects affect enzymes directly involved in the glycosylation process, like glycosyltransferases or sugar transporters, recent findings revealed the impact of gene mutations on proteins implicated in both Golgi vesicular trafficking and ion homeostasis. TMEM165 is one of these deficient Golgi proteins found in CDG patients whose function in the secretory pathway has been deduced from several recent studies using TMEM165 deficient mammalian cells or yeast cells deficient in Gtd1p, the yeast TMEM165 ortholog. These studies actually confirm previous observations based on both sequence and predicted topology of this transmembrane protein and the phenotypes of human and yeast cells, namely that TMEM165 is very probably a transporter involved in ion homeostasis. Whereas the exact function of TMEM165 remains to be fully characterized, several studies hypothesize that TMEM165 could be a Golgi localized Ca2+/H+ antiporter. However, recent data also support the role of TMEM165 in Golgi Mn2+ homeostasis then arguing for a putative role of Mn2+ transporter for TMEM165 essential to achieve the correct N-glycosylation process of proteins in the secretory pathway. This manuscript is a review of the current state of knowledge on TMEM165 deficiencies in Congenital Disorders of Glycosylation as well as new data on function of TMEM165 and some speculative models on TMEM165/Golgi functions are discussed.
Collapse
|
42
|
Baloyannis SJ, Mavroudis I, Baloyannis IS, Costa VG. Mammillary Bodies in Alzheimer's Disease: A Golgi and Electron Microscope Study. Am J Alzheimers Dis Other Demen 2016; 31:247-56. [PMID: 26399484 PMCID: PMC10852917 DOI: 10.1177/1533317515602548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by irreversible memory decline, concerning no rarely spatial memory and orientation, alterations of the mood and personality, gradual loss of motor skills, and substantial loss of capacities obtained by previous long education. We attempted to describe the morphological findings of the mammillary bodies in early cases of AD. Samples were processed for electron microscopy and silver impregnation techniques. The nuclei of the mammillary bodies demonstrated a substantial decrease in the neuronal population and marked abbreviation of dendritic arbors. Decrease in spine density and morphological abnormalities of dendritic spines was also seen. Synaptic alterations were prominent. Alzheimer's pathology, such as deposits of amyloid-β peptide and neurofibrillary degeneration, was minimal. Electron microscopy revealed mitochondrial alterations and fragmentation of Golgi apparatus, associated frequently with synaptic pathology.
Collapse
|
43
|
Ohashi Y, Okamura M, Hirosawa A, Tamaki N, Akatsuka A, Wu KM, Choi HW, Yoshimatsu K, Shiina I, Yamori T, Dan S. M-COPA, a Golgi Disruptor, Inhibits Cell Surface Expression of MET Protein and Exhibits Antitumor Activity against MET-Addicted Gastric Cancers. Cancer Res 2016; 76:3895-903. [PMID: 27197184 DOI: 10.1158/0008-5472.can-15-2220] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/28/2016] [Indexed: 12/31/2022]
Abstract
The Golgi apparatus is responsible for transporting, processing, and sorting numerous proteins in the cell, including cell surface-expressed receptor tyrosine kinases (RTK). The small-molecule compound M-COPA [2-methylcoprophilinamide (AMF-26)] disrupts the Golgi apparatus by inhibiting the activation of Arf1, resulting in suppression of tumor growth. Here, we report an evaluation of M-COPA activity against RTK-addicted cancers, focusing specifically on human gastric cancer (GC) cells with or without MET amplification. As expected, the MET-addicted cell line MKN45 exhibited a better response to M-COPA than cell lines without MET amplification. Upon M-COPA treatment, cell surface expression of MET was downregulated with a concurrent accumulation of its precursor form. M-COPA also reduced levels of the phosphorylated form of MET along with the downstream signaling molecules Akt and S6. Similar results were obtained in additional GC cell lines with amplification of MET or the FGF receptor FGFR2 MKN45 murine xenograft experiments demonstrated the antitumor activity of M-COPA in vivo Taken together, our results offer an initial preclinical proof of concept for the use of M-COPA as a candidate treatment option for MET-addicted GC, with broader implications for targeting the Golgi apparatus as a novel cancer therapeutic approach. Cancer Res; 76(13); 3895-903. ©2016 AACR.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Apoptosis/drug effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Cell Proliferation/drug effects
- Female
- Follow-Up Studies
- Golgi Apparatus/drug effects
- Golgi Apparatus/metabolism
- Golgi Apparatus/pathology
- Humans
- Immunoenzyme Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Naphthols/pharmacology
- Neoplasm Staging
- Phosphorylation/drug effects
- Prognosis
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Pyridines/pharmacology
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction/drug effects
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
|
44
|
Redmann V, Lamb CA, Hwang S, Orchard RC, Kim S, Razi M, Milam A, Park S, Yokoyama CC, Kambal A, Kreamalmeyer D, Bosch MK, Xiao M, Green K, Kim J, Pruett-Miller SM, Ornitz DM, Allen PM, Beatty WL, Schmidt RE, DiAntonio A, Tooze SA, Virgin HW. Clec16a is Critical for Autolysosome Function and Purkinje Cell Survival. Sci Rep 2016; 6:23326. [PMID: 26987296 PMCID: PMC4796910 DOI: 10.1038/srep23326] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/22/2016] [Indexed: 11/29/2022] Open
Abstract
CLEC16A is in a locus genetically linked to autoimmune diseases including multiple sclerosis, but the function of this gene in the nervous system is unknown. Here we show that two mouse strains carrying independent Clec16a mutations developed neurodegenerative disease characterized by motor impairments and loss of Purkinje cells. Neurons from Clec16a-mutant mice exhibited increased expression of the autophagy substrate p62, accumulation of abnormal intra-axonal membranous structures bearing the autophagy protein LC3, and abnormal Golgi morphology. Multiple aspects of endocytosis, lysosome and Golgi function were normal in Clec16a-deficient murine embryonic fibroblasts and HeLa cells. However, these cells displayed abnormal bulk autophagy despite unimpaired autophagosome formation. Cultured Clec16a-deficient cells exhibited a striking accumulation of LC3 and LAMP-1 positive autolysosomes containing undigested cytoplasmic contents. Therefore Clec16a, an autophagy protein that is critical for autolysosome function and clearance, is required for Purkinje cell survival.
Collapse
|
45
|
McRae S, Iqbal J, Sarkar-Dutta M, Lane S, Nagaraj A, Ali N, Waris G. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism. J Biol Chem 2016; 291:3254-67. [PMID: 26698881 PMCID: PMC4751372 DOI: 10.1074/jbc.m115.694059] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/18/2015] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with chronic HCV.
Collapse
|
46
|
Alarcon C, Boland BB, Uchizono Y, Moore PC, Peterson B, Rajan S, Rhodes OS, Noske AB, Haataja L, Arvan P, Marsh BJ, Austin J, Rhodes CJ. Pancreatic β-Cell Adaptive Plasticity in Obesity Increases Insulin Production but Adversely Affects Secretory Function. Diabetes 2016; 65:438-50. [PMID: 26307586 PMCID: PMC4747460 DOI: 10.2337/db15-0792] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022]
Abstract
Pancreatic β-cells normally produce adequate insulin to control glucose homeostasis, but in obesity-related diabetes, there is a presumed deficit in insulin production and secretory capacity. In this study, insulin production was assessed directly in obese diabetic mouse models, and proinsulin biosynthesis was found to be contrastingly increased, coupled with a significant expansion of the rough endoplasmic reticulum (without endoplasmic reticulum stress) and Golgi apparatus, increased vesicular trafficking, and a depletion of mature β-granules. As such, β-cells have a remarkable capacity to produce substantial quantities of insulin in obesity, which are then made available for immediate secretion to meet increased metabolic demand, but this comes at the price of insulin secretory dysfunction. Notwithstanding, it can be restored. Upon exposing isolated pancreatic islets of obese mice to normal glucose concentrations, β-cells revert back to their typical morphology with restoration of regulated insulin secretion. These data demonstrate an unrealized dynamic adaptive plasticity of pancreatic β-cells and underscore the rationale for transient β-cell rest as a treatment strategy for obesity-linked diabetes.
Collapse
|
47
|
Rymen D, Winter J, Van Hasselt PM, Jaeken J, Kasapkara C, Gokçay G, Haijes H, Goyens P, Tokatli A, Thiel C, Bartsch O, Hecht J, Krawitz P, Prinsen HCMT, Mildenberger E, Matthijs G, Kornak U. Key features and clinical variability of COG6-CDG. Mol Genet Metab 2015; 116:163-70. [PMID: 26260076 DOI: 10.1016/j.ymgme.2015.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022]
Abstract
The conserved oligomeric Golgi (COG) complex consists of eight subunits and plays a crucial role in Golgi trafficking and positioning of glycosylation enzymes. Mutations in all COG subunits, except subunit 3, have been detected in patients with congenital disorders of glycosylation (CDG) of variable severity. So far, 3 families with a total of 10 individuals with biallelic COG6 mutations have been described, showing a broad clinical spectrum. Here we present 7 additional patients with 4 novel COG6 mutations. In spite of clinical variability, we delineate the core features of COG6-CDG i.e. liver involvement (9/10), microcephaly (8/10), developmental disability (8/10), recurrent infections (7/10), early lethality (6/10), and hypohidrosis predisposing for hyperthermia (6/10) and hyperkeratosis (4/10) as ectodermal signs. Regarding all COG6-related disorders a genotype-phenotype correlation can be discerned ranging from deep intronic mutations found in Shaheen syndrome as the mildest form to loss-of-function mutations leading to early lethal CDG phenotypes. A comparison with other COG deficiencies suggests ectodermal changes to be a hallmark of COG6-related disorders. Our findings aid clinical differentiation of this complex group of disorders and imply subtle functional differences between the COG complex subunits.
Collapse
|
48
|
Vollrath JT, Sechi A, Dreser A, Katona I, Wiemuth D, Vervoorts J, Dohmen M, Chandrasekar A, Prause J, Brauers E, Jesse CM, Weis J, Goswami A. Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances. Cell Death Dis 2014; 5:e1290. [PMID: 24922074 PMCID: PMC4611717 DOI: 10.1038/cddis.2014.243] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/01/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
Intracellular accumulations of altered, misfolded proteins in neuronal and other cells are pathological hallmarks shared by many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Mutations in several genes give rise to familial forms of ALS. Mutations in Sigma receptor 1 have been found to cause a juvenile form of ALS and frontotemporal lobar degeneration (FTLD). We recently described altered localization, abnormal modification and loss of function of SigR1 in sporadic ALS. In order to further elucidate the molecular mechanisms underlying SigR1-mediated alterations in sporadic and familial ALS, we extended our previous studies using neuronal SigR1 knockdown cell lines. We found that loss of SigR1 leads to abnormal ER morphology, mitochondrial abnormalities and impaired autophagic degradation. Consistent with these results, we found that endosomal trafficking of EGFR is impaired upon SigR1 knockdown. Furthermore, in SigR1-deficient cells the transport of vesicular stomatitis virus glycoprotein is inhibited, leading to the accumulation of this cargo protein in the Golgi apparatus. Moreover, depletion of SigR1 destabilized lipid rafts and associated calcium mobilization, confirming the crucial role of SigR1 in lipid raft and intracellular calcium homeostasis. Taken together, our results support the notion that loss of SigR1 function contributes to ALS pathology by causing abnormal ER morphology, lipid raft destabilization and defective endolysosomal pathways.
Collapse
|
49
|
Li C, Yu S. A perspective from transport protein particle: vesicle tether and human diseases. SHENG LI XUE BAO : [ACTA PHYSIOLOGICA SINICA] 2014; 66:1-6. [PMID: 24553863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Vesicle-mediated transport of proteins is a highly regulated, multi-step process. When the vesicle is approaching its target membrane compartment, many factors are required to provide specificity and tethering between the incoming vesicle and the target membrane, before vesicle fusion can occur. Tethering factors, which include multisubunit complexes, coiled-coil proteins, with the help of small GTPases, provide the initial interaction between the vesicle and its target membrane. Of the multisubunit tethering factors, the transport protein particle (TRAPP) complexes function in a number of trafficking steps, including endoplasmic reticulum (ER)-to-Golgi transport, intra- and post-Golgi traffic and autophagosome formation. In this review, we summarize the updated progress in structure and function of TRAPP complexes as well as human diseases caused by genetic mutations in TRAPP.
Collapse
|
50
|
Ishunina TA. [Lamellar complex changes in the human basal forebrain and hypothalamic nuclei neurons in different age groups]. ADVANCES IN GERONTOLOGY = USPEKHI GERONTOLOGII 2014; 27:621-624. [PMID: 25946833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present study the lamellar complex (LC, Golgi complex) changes in the major cholinergic nuclei of the human basal forebrain - the nucleus basalis of Meynert (NBM), the vertical nucleus of the diagonal band of Broca (VDB) and hypothalamus--the tuberomamillary (TMN), the medial mammillary (MMN) and supraoptic (SON) nuclei were analyzed considering the WHO aging classification. The increase in the size of the LC was present in NBM, MMN and SON in the 3rd age group of elderly people (60-74 years of age), in the VDB--in the 4th group (75-89 years of age), whereas in the TMN LC changes were not apparent. In conclusion, the WHO aging classification reflects the LC values age ranges and can be used to estimate age-related alterations of this parameter. The increase in the size of the neuronal LC in elderly people may represent the compensatory reaction of neuroplasticity triggered by the aging process.
Collapse
|