26
|
Reséndiz-González G, Olmedo-Juárez A, González-Garduño R, Cortes-Morales JA, González-Cortazar M, Sánchez-Mendoza AE, López-Arellano ME, Mercado-Márquez C, Lara-Bueno A, Higuera-Piedrahita RI. Anthelmintic efficacy of an organic fraction from Guazuma ulmifolia leaves and evaluation of reactive oxidative stress on Haemonchus contortus. Exp Parasitol 2024; 261:108768. [PMID: 38679124 DOI: 10.1016/j.exppara.2024.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
This study describes the anthelmintic efficacy of an organic fraction (EtOAc-F) from Guazuma ulmifolia leaves and the evaluation of its reactive oxidative stress on Haemonchus contortus. The first step was to assess the anthelmintic effect of EtOAc-F at 0.0, 3.5, 7.0 and 14 mg kg of body weight (BW) in gerbil's (Meriones unguiculatus) artificially infected with H. contortus infective larvae (L3). The second step was to evaluate the preliminary toxicity after oral administration of the EtOAc-F in gerbils. Finally, the third step was to determine the relative expression of biomarkers such as glutathione (GPx), catalase (CAT), and superoxide dismutase (SOD) against H. contortus L3 post-exposition to EtOAc-F. Additionally, the less-polar compounds of EtOAc-F were identified by gas mass spectrophotometry (GC-MS). The highest anthelmintic efficacy (97.34%) of the organic fraction was found in the gerbils treated with the 14 mg/kg of BW. Histopathological analysis did not reveal changes in tissues. The relative expression reflects overexpression of GPx (p<0.05, fold change: 14.35) and over expression of SOD (p≤0.05, fold change: 0.18) in H. contortus L3 exposed to 97.44 mg/mL of EtOAc-F compared with negative control. The GC-MS analysis revealed the presence of 4-hydroxybenzaldehyde (1), leucoanthocyanidin derivative (2), coniferyl alcohol (3), ferulic acid methyl ester acetate (4), 2,3,4-trimethoxycinnamic acid (5) and epiyangambin (6) as major compounds. According to these results, the EtOAc-F from G. ulmifolia leaves exhibit anthelmintic effect and increased the stress biomarkers on H. contortus.
Collapse
|
27
|
do Nascimento JM, Brito SV, Teixeira AAM, Frederico RG, Rodrigues AA, do Nascimento Sousa Filho JG, da Cunha IAL. Potential distribution modelling for Haemonchus contortus (Nematoda: Trichostrongylidae) in South America. Parasitol Res 2024; 123:227. [PMID: 38814495 DOI: 10.1007/s00436-024-08247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
The species Haemonchus contortus occurs in many regions worldwide, mainly parasitising small ruminants and economically impacting animal production. Climate change is considered a driving force for the risk of diseases caused by helminths and can also affect relationships between parasites and their hosts, with the potential to cause losses in both animal production and biodiversity in general. The aim of this study was to model the potential distribution of H. contortus in South America. We used MaxEnt to perform the analyses and describe the contribution of important bioclimatic variables involved in the species distribution. Our results show that H. contortus colonised most of the areas with habitats that suit the species' environmental requirements and that this parasite presents habitat suitability in a future scenario. Understanding the effects of climate change on the occurrence and distribution of parasite species is essential for monitoring these pathogens, in addition to predicting the areas that tend to present future parasite outbreaks and identify opportunities to mitigate the impacts of the emergence of diseases caused by these organisms.
Collapse
|
28
|
Zhang Y, Guo W, Wen H, Shi Y, Gao W, Chen X, Wang T, Wang W, Wu W. Analysis of lncRNA-related studies of ivermectin-sensitive and -resistant strains of Haemonchus contortus. Parasitol Res 2024; 123:226. [PMID: 38814484 DOI: 10.1007/s00436-024-08238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
In this study, 858 novel long non-coding RNAs (lncRNAs) were predicted as sensitive and resistant strains of Haemonchus contortus to ivermectin. These lncRNAs underwent bioinformatic analysis. In total, 205 lncRNAs significantly differed using log2 (difference multiplicity) > 1 or log2 (difference multiplicity) < - 1 and FDR < 0.05 as the threshold for significant difference analysis. We selected five lncRNAs based on significant differences in expression, cis-regulation, and their association with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. These expressions of lncRNAs, namely MSTRG.12610.1, MSTRG.8169.1, MSTRG.6355.1, MSTRG.980.1, and MSTRG.9045.1, were significantly downregulated. These findings were consistent with the results of transcriptomic sequencing. We further investigated the relative expression of target gene mRNAs and the regulation of mRNA and miRNA, starting with lncRNA cis-regulation of mRNA, and constructed a lncRNA-mRNA-miRNA network regulation. After a series of statistical analyses, we finally screened out UGT8, Unc-116, Fer-related kinase-1, GGPP synthase 1, and sart3, which may be involved in developing drug resistance under the regulation of their corresponding lncRNAs. The findings of this study provide a novel direction for future studies on drug resistance targets.
Collapse
|
29
|
Wang W, Jin Z, Kong M, Yan Z, Fu L, Du X. Single-Cell Transcriptomic Profiling Unveils Dynamic Immune Cell Responses during Haemonchus contortus Infection. Cells 2024; 13:842. [PMID: 38786064 PMCID: PMC11120485 DOI: 10.3390/cells13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Haemonchus contortus is a parasite widely distributed in tropical, subtropical, and warm temperate regions, causing significant economic losses in the livestock industry worldwide. However, little is known about the genetics of H. contortus resistance in livestock. In this study, we monitor the dynamic immune cell responses in diverse peripheral blood mononuclear cells (PBMCs) during H. contortus infection in goats through single-cell RNA sequencing (scRNA-Seq) analysis. METHODS AND RESULTS A total of four Boer goats, two goats with oral infection with the L3 larvae of H. contortus and two healthy goats as controls, were used in the animal test. The infection model in goats was established and validated by the fecal egg count (FEC) test and qPCR analysis of the gene expression of IL-5 and IL-6. Using scRNA-Seq, we identified seven cell types, including T cells, monocytes, natural killer cells, B cells, and dendritic cells with distinct gene expression signatures. After identifying cell subpopulations of differentially expressed genes (DEGs) in the case and control groups, we observed the upregulation of multiple inflammation-associated genes, including NFKBIA and NFKBID. Kyoto Encyclopedia of the Genome (KEGG) enrichment analysis revealed significant enrichment of NOD-like receptor pathways and Th1/Th2 cell differentiation signaling pathways in CD4 T cells DEGs. Furthermore, the analysis of ligand-receptor interaction networks showed a more active state of cellular communication in the PBMCs from the case group, and the inflammatory response associated MIF-(CD74 + CXCR4) ligand receptor complex was significantly more activated in the case group, suggesting a potential inflammatory response. CONCLUSIONS Our study preliminarily revealed transcriptomic profiling characterizing the cell type specific mechanisms in host PBMCs at the single-cell level during H. contortus infection.
Collapse
|
30
|
Zahid O, Butler M, Hopker A, Freeman E, Costa Júnior LM, Chaudhry U, Sargison N. Nemabiome metabarcoding shows a high prevalence of Haemonchus contortus and predominance of Camelostrongylus mentulatus in alpaca herds in the northern UK. Parasitol Res 2024; 123:201. [PMID: 38698272 PMCID: PMC11065920 DOI: 10.1007/s00436-024-08226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Gastrointestinal nematodes (GINs) are a common threat faced by pastoral livestock. Since their major introduction to the UK in the early 1990s, South American camelids have been cograzed with sheep, horses, and other livestock, allowing exposure to a range of GIN species. However, there have been no molecular-based studies to investigate the GIN populations present in these camelids. In the current study, we sampled nine alpaca herds from northern England and southern Scotland and used high-throughput metabarcoded sequencing to describe their GIN species composition. A total of 71 amplicon sequence variants (ASVs) were identified representing eight known GIN species. Haemonchus contortus was the most prevalent species found in almost all herds in significant proportions. The identification of H. contortus in other livestock species is unusual in the northern UK, implying that alpacas may be suitable hosts and potential reservoirs for infection in other hosts. In addition, the camelid-adapted GIN species Camelostrongylus mentulatus was identified predominantly in herds with higher faecal egg counts. These findings highlight the value of applying advanced molecular methods, such as nemabiome metabarcoding to describe the dynamics of gastrointestinal nematode infections in novel situations. The results provide a strong base for further studies involving cograzing animals to confirm the potential role of alpacas in transmitting GIN species between hosts.
Collapse
|
31
|
Niciura SCM, Cardoso TF, Ibelli AMG, Okino CH, Andrade BG, Benavides MV, Chagas ACDS, Esteves SN, Minho AP, Regitano LCDA, Gondro C. Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. Parasit Vectors 2024; 17:102. [PMID: 38429820 PMCID: PMC10908167 DOI: 10.1186/s13071-024-06205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep.
Collapse
|
32
|
Pratap R, Chennuru S, Krovvidi S, Chitithoti J, Pentala RK. Putative SNPs in Ovar-DRB1 and GALNTL6 Genes Conferring Susceptibility to Natural Infection of Haemonchus Contortus in Southern Indian Sheep. Acta Parasitol 2024; 69:583-590. [PMID: 38240996 DOI: 10.1007/s11686-023-00778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/07/2023] [Indexed: 05/01/2024]
Abstract
AIM To explore associations between phenotypic traits and polymorphisms in the DRB1 and GALNT6 gene in Nellore, Deccani and Kenguri sheep naturally infected with Haemonchus contortus. MATERIALS AND METHODS Blood and faecal samples were collected to evaluate fecal worm egg counts (FEC), packed cell volume (PCV), hemoglobin (Hb), eosinophilia and for DNA isolation. RESULTS Animals were grouped into susceptible and resistant groups based on EPG counts. FEC and circulating eosinophilia were higher in a susceptible group. Log FEC was negatively correlated (P < 0.01) with PCV, and Hb estimates. The second exon of DRB1 and intron variant of GALNTL6 genes were amplified from DNA samples of resistant and susceptible sheep. Characterization of Ovar-DRB1 amplicon by RFLP revealed two genotypes ('bb' and 'ab'). The genotype frequencies differed significantly between both groups (P < 0.05). The 'bb' genotypes had higher (P < 0.05) log FEC value than 'ab' genotypes and 'b' allele was linked with susceptibility to haemonchosis in sheep. The mean FEC of Nellore sheep was high indicating susceptibility of the breed and also in which the frequency of 'b' allele was more compared to the other two breeds. OVAR-DRB1 genotypes associated with FEC did not affect PCV and Hb. PCR-RFLP assay developed to determine the genotypes with respect to SNP rs424521894 of GALNTL6 revealed monomorphic nature at the locus in the breeds studied. CONCLUSION MHC polymorphism could be used as a genetic marker for the selection of sheep resistant to H. contortus. However, a more intensive study, involving controlled infections and other GALNTL6 SNPs may be enforced to make any decisive assertion.
Collapse
|
33
|
Francis EK, Antonopoulos A, Westman ME, McKay-Demeler J, Laing R, Šlapeta J. A mixed amplicon metabarcoding and sequencing approach for surveillance of drug resistance to levamisole and benzimidazole in Haemonchus spp. Int J Parasitol 2024; 54:55-64. [PMID: 37536387 DOI: 10.1016/j.ijpara.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Anthelmintic-resistant parasitic nematodes present a significant threat to sustainable livestock production worldwide. The ability to detect the emergence of anthelmintic resistance at an early stage, and therefore determine which drugs remain most effective, is crucial for minimising production losses. Despite many years of research into the molecular basis of anthelmintic resistance, no molecular-based tools are commercially available for the diagnosis of resistance as it emerges in field settings. We describe a mixed deep amplicon sequencing approach to determine the frequency of the levamisole (LEV)-resistant single nucleotide polymorphism (SNP) within arc-8 exon 4 (S168T) in Haemonchus spp., coupled with benzimidazole (BZ)-resistant SNPs within β-tubulin isotype-1 and the internal transcribed spacer-2 (ITS-2) nemabiome. This constitutes the first known multi-drug and multi-species molecular diagnostic developed for helminths of veterinary importance. Of the ovine, bovine, caprine and camelid Australian field isolates we tested, S168T was detected in the majority of Haemonchus spp. populations from sheep and goats, but rarely at a frequency greater than 16%; an arbitrary threshold we set based on whole genome sequencing (WGS) of LEV-resistant Haemonchus contortus GWBII. Overall, BZ resistance was far more prevalent in Haemonchus spp. than LEV resistance, confirming that LEV is still an effective anthelmintic class for small ruminants in New South Wales, Australia. The mixed amplicon metabarcoding approach described herein paves the way towards the use of large scale sequencing as a surveillance technology in the field, the results of which can be translated into evidence-based recommendations for the livestock sector.
Collapse
|
34
|
Cain JL, Gianechini LS, Vetter AL, Davis SM, Britton LN, Myka JL, Slusarewicz P. Rapid, automated quantification of Haemonchus contortus ova in sheep faecal samples. Int J Parasitol 2024; 54:47-53. [PMID: 37586585 DOI: 10.1016/j.ijpara.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
Haemonchus contortus is one of the most pathogenic nematodes affecting small ruminants globally and is responsible for large economic losses in the sheep and goat industry. Anthelmintic resistance is rampant in this parasite and thus parasite control programs must account for drug efficacy on individual farms and, sometimes, whether H. contortus is the most prevalent trichostrongylid. Historically, coproculture has been the main way to determine the prevalence of H. contortus in faecal samples due to the inability to morphologically differentiate between trichostrongylid egg types, but this process requires a skilled technician and takes multiple days to complete. Fluoresceinated peanut agglutinin (PNA) has been shown to specifically bind H. contortus and thus differentiate eggs based on whether they fluoresce, but this method has not been widely adopted. The ParasightTM System (PS) fluorescently stains helminth eggs in order to identify and quantify them, and the H. contortus PNA staining method was therefore adapted to this platform using methodology requiring only 20 min to obtain results. In this study, 74 fecal samples were collected from sheep and analyzed for PNA-stained H. contortus, using both PS and manual fluorescence microscopy. The percentage of H. contortus was determined based on standard total strongylid counts with PS or brightfield microscopy. Additionally, 15 samples were processed for coproculture with larval identification, and analyzed with both manual and automated PNA methods. All methods were compared using the coefficient of determination (R2) and the Lin's concordance correlation coefficient (ρc). ParasightTM and manual PNA percent H. contortus results were highly correlated with R2 = 0.8436 and ρc = 0.9100 for all 74 fecal samples. Coproculture versus PS percent H. contortus were also highly correlated with R2 = 0.8245 and ρc = 0.8605. Overall, this system provides a rapid and convenient method for determining the percentage of H. contortus in sheep and goat fecal samples without requiring specialized training.
Collapse
|
35
|
Bhat AH, Tak H, Ganai BA, Malik IM, Bhat TA. Bacteria associated with ovine gut parasites Trichuris ovis and Haemonchus contortus. J Helminthol 2023; 97:e75. [PMID: 37846203 DOI: 10.1017/s0022149x23000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An associated microbiome of any host helps it in different metabolic processes ranging from the decomposition of food to the maturation of gametes. Organisms with a parasitic mode of life, though present at nutritious sites inside their host, maintain their own microbiome. Nevertheless, the comprehensive characterization and functionality of microbiome in parasitic organisms remain understudied. We selected two nematode parasites of Kashmir Merino sheep viz;Haemonchus contortus and Trichuris ovis based on their higher prevalence, difference in mode of nutrition, habitation site and effect on host. The objective of the study was to explore the bacteria associated with these parasitic nematodes of sheep. We adopted a 16S rRNA metagenomic sequencing approach to estimate and compare the bacterial communities present in these two nematode species. Nematode parasites from Kashmir Merino sheep were identified morphologically and confirmed with DNA characterization. H. contortus was dominated by phylum Proteobacteria (57%), Firmicutes (25%), Bacteroidota (15%) and Actinobacteriota (3%). Conversely, T. ovis showed Proteobacteria (78%) followed by Firmicutes (8%), Bacteroidota (8%), Actinobacteriota (1%), Fusobacteriota (1%) and other phyla (4%). This study provides a comprehensive account of the microbiome composition of H. contortus and T. ovis, both of which are highly prevalent among Kashmir Merino sheep. Additionally, T. ovis exhibited a greater bacterial diversity compared to H. contortus. Notably, these nematodes were found to harbor certain pathogenic bacteria. This study can further be carried forward in gaining insights into the complex relationship between the microbiota of a parasite and its pathogenicity, reproductive potential and host microbiome modification.
Collapse
|
36
|
Albuquerque ACA, Almeida FA, Bassetto CC, Amarante AFT. Influence of targeted selective anthelmintic treatment on the productive performance of wool and hair lambs naturally infected with gastrointestinal nematodes in Brazil. Vet Res Commun 2023; 47:1207-1216. [PMID: 36595201 DOI: 10.1007/s11259-022-10061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Targeted selective treatment (TST) is an alternative method to reduce the use of anthelmintics and delay the development of resistant nematode populations. However, there is limited information on the actual effects of this type of treatment on livestock productivity. The objective of this study was to evaluate the production performance of Santa Ines (hair) and Ile de France (wool) lambs naturally infected with gastrointestinal nematodes (GIN) under TST based on packed cell volume (PCV) versus suppressive anthelmintic treatments. Thirty-eight lambs were divided into two treatment groups: Suppressive treatment, animals were drenched with monepantel every two weeks and TST, animals were treated with the same anthelmintic when they presented PCV ≤ 20%. Feces, blood, and weight were measured weekly to determine eggs per gram of feces, PCV, total plasma protein, and weight gain. After animals were slaughtered, carcasses were weighed to determine carcass yield. In the TST group, substantial productive losses of approximately 21.3% in the wool and 25.9% in the hair lambs were observed in body weight compared to their counterparts. Significant differences in hematological variables occurred over the experimental period, especially in the wool lambs under TST. Favorable environmental conditions enabled infective larvae to survive and thrive on pasture. Haemonchus contortus and intestinal nematodes were the most common parasites found in the Ile de France lambs and the Santa Ines lambs, respectively. Although TST prevented mortality, it did not prevent production losses. Both breeds showed a significant drop in production due to GIN parasitism.
Collapse
|
37
|
de Souza LF, Costa MH, Riet-Correa B. Mobile app for targeted selective treatment of haemonchosis in sheep. Vet Parasitol 2023; 316:109902. [PMID: 36871499 DOI: 10.1016/j.vetpar.2023.109902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Livestock is an important part of many countries gross domestic product, and sanitary control impacts herd management costs. To contribute to incorporating new technologies into this economic chain, this work presents a mobile application for decision assistance to treatment against parasitic infection by Haemonchus contortus in small ruminants. Based on the Android system, the proposed software is a semi-automated computer-aided procedure to assist Famacha© pre-trained farmers in applying anthelmintic treatment. It mimics the two-class decision procedure performed by the veterinarian with the help of the Famacha© card. The embedded cell phone camera was employed to acquire an image from the ocular conjunctival mucosa, classifying the animal as healthy or anemic. Two machine-learning strategies were assessed, resulting in an accuracy of 83 % for a neural network and 87 % for a support vector machine (SVM). The SVM classifier was embedded into the app and made available for evaluation. This work is particularly interesting to small property owners from regions with difficult access or restrictions on obtaining continuous post-training technical guidance to use the Famacha© method effectively.
Collapse
|
38
|
Aboshady HM, Choury A, Montout L, Félicité Y, Godard X, Bambou JC. Metagenome reveals caprine abomasal microbiota diversity at early and late stages of Haemonchus contortus infection. Sci Rep 2023; 13:2450. [PMID: 36774423 PMCID: PMC9922249 DOI: 10.1038/s41598-023-29096-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
Haemonchus contortus is one of the most detrimental gastrointestinal nematode parasites for small ruminants, especially in tropics and subtropics. Gastrointestinal nematode and microbiota share the same microhabitat; thus they interact with each other and their host. Metagenomics tools provide a promising way to examine the alterations in the gastric microbial composition induces by gastrointestinal parasites. In this study, we used metagenomics tools to characterize the impact of H. contortus infection on the caprine abomasal microbiota at early and late stage of infection and compared it with non-infected control. Our results showed that H. contortus infection caused a significant increase in abomasal pH at early (7 days post-infection) and late stage of infection (56 days post-infection). The analysis of alpha and beta diversity showed that the microbiota diversity both in number and in proportion was significantly affected at early and late stage of infection. All microbiota classes are impacted by H. contortus infection but Clostridia and Bacteroidia are more concerned. In infected animals, the genera Prevotella decreased at 7 and 56 days post-infection. Here we showed that the abomasal microbiota was significantly affected early after H. contortus infection, and these changes persist at late stage of the infection.
Collapse
|
39
|
Dolinská MU, Königová A, von Samson Himmelstjerna G, Várady M. Variation in allele frequencies in benzimidazole resistant and susceptible isolates of Haemonchus contortus during patent infection in lambs. Sci Rep 2023; 13:1296. [PMID: 36690654 PMCID: PMC9870880 DOI: 10.1038/s41598-023-28168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
We evaluated the variation in the frequency of benzimidazole (BZ) resistance-associated alleles at codons 200, 167 and 368 (F200Y, F167Y, V368L) of the β-tubulin isotype 1 gene during the patent period in isolates of Haemonchus contortus susceptible and resistant to BZ using pyrosequencing. Four lambs 5-6 months old were infected with 5000-6000 infective third-stage larvae (L3) of the susceptible MHco1 and the multi-resistant MHco4 isolates, respectively. Faecal samples were collected 28-times during 20-90 days post-infection (dpi). Coprocultures were subsequently prepared to produce L3 for genotyping. The frequency of the resistant allele (TAC) at codon 200 in MHco1 was lowest at 43 and 76 dpi with at each time point 0% and highest at 36 dpi with 10.85%, with a mean of 6.47% ± 2.39 and a coefficient of variation of 37.01%. The frequency of the TAC at codon 200 in MHco4 was lowest at 76 dpi with 25.6% and highest at 90 dpi with 49.25%, with a mean of 35.7% ± 4.42 and a coefficient of variation of 12.39%. No resistance alleles were detected in MHco1 at either codon 167 or 368. For MHco4 isolate, resistance alleles were detected only on codon 167 with a mean of 8.00% ± 4.83 and a mean coefficient of variation of 60.40%. Our results demonstrate the considerable variation in the frequency of resistant alleles in the susceptible and resistant isolates during the patent period. This variation should be considered when testing for the presence of BZ resistance in populations of gastrointestinal parasites, especially those with a low frequency of TAC.
Collapse
|
40
|
Sebai E, Abidi A, Benyedem H, Dhibi M, Hammemi I, Akkari H. Phytochemical profile and anthelmintic effects of Laurus nobilis essential oil against the ovine nematode Haemonchus contortus and the murine helminth model Heligmosomoides polygyrus. Vet Parasitol 2022; 312:109835. [PMID: 36306627 DOI: 10.1016/j.vetpar.2022.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Small ruminant production in tropical and temperate countries faced substantial anthelmintic resistance due to the intensive use of commercial anthelmintic drugs. Therefore, alternative treatments including natural bioactive compounds with anthelmintic potential have been investigated looking for its successfully use in the parasite control. In the present study, we describe the chemical profile of Laurus nobilis essential oil (EO), the in vitro anthelmintic activity of L. nobilis EO against Haemonchus contortus and its in vivo anthelmintic effect against the murine helminth parasite model Heligmosomoides polygyrus. Chromatographic profile of L. nobilis (EO) extracted from the leaves of L. nobilis have shown the presence of monterpens 1,8-cineol (Eucalyptol) (29.47%), D-Limonène (18.51%) and Linalool (10.84%) in high fractions. The in vitro anthelmintic potential was expressed by an ovicidal effect against H. contortus egg hatching with inhibition value of 1.72 mg/mL and 87.5% of immobility of adult worms after 8 h of exposure to 4 mg/mL of L. nobilis EO. Regarding, the in vivo anthelmintic potential, L. nobilis (EO) at 2400 mg/kg bw completely eliminated the egg output of H. polygyrus after 7 days of oral treatment, together with a 79.2% of reduction in total worm counts. Based on the obtained results, L. nobilis EO showed promising in vitro and in vivo anthelmintic capacities against gastrointestinal parasites.
Collapse
|
41
|
Antonopoulos A, Doyle SR, Bartley DJ, Morrison AA, Kaplan R, Howell S, Neveu C, Busin V, Devaney E, Laing R. Allele specific PCR for a major marker of levamisole resistance in Haemonchus contortus. Int J Parasitol Drugs Drug Resist 2022; 20:17-26. [PMID: 35970104 PMCID: PMC9399269 DOI: 10.1016/j.ijpddr.2022.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Haemonchus contortus is a haematophagous parasitic nematode that infects small ruminants and causes significant animal health concerns and economic losses within the livestock industry on a global scale. Treatment primarily depends on broad-spectrum anthelmintics, however, resistance is established or rapidly emerging against all major drug classes. Levamisole (LEV) remains an important treatment option for parasite control, as resistance to LEV is less prevalent than to members of other major classes of anthelmintics. LEV is an acetylcholine receptor (AChR) agonist that, when bound, results in paralysis of the worm. Numerous studies implicated the AChR sub-unit, ACR-8, in LEV sensitivity and in particular, the presence of a truncated acr-8 transcript or a deletion in the acr-8 locus in some resistant isolates. Recently, a single non-synonymous SNP in acr-8 conferring a serine-to-threonine substitution (S168T) was identified that was strongly associated with LEV resistance. Here, we investigate the role of genetic variation at the acr-8 locus in a controlled genetic cross between the LEV susceptible MHco3(ISE) and LEV resistant MHco18(UGA2004) isolates of H. contortus. Using single worm PCR assays, we found that the presence of S168T was strongly associated with LEV resistance in the parental isolates and F3 progeny of the genetic cross surviving LEV treatment. We developed and optimised an allele-specific PCR assay for the detection of S168T and validated the assay using laboratory isolates and field samples that were phenotyped for LEV resistance. In the LEV-resistant field population, a high proportion (>75%) of L3 encoded the S168T variant, whereas the variant was absent in the susceptible isolates studied. These data further support the potential role of acr-8 S168T in LEV resistance, with the allele-specific PCR providing an important step towards establishing a sensitive molecular diagnostic test for LEV resistance.
Collapse
|
42
|
Aguiar AARM, Filho JVDA, Pinheiro HN, Campelo MDS, Ribeiro WLC, Melo ACFL, da Rocha LO, Ribeiro MENP, Ricardo NMPS, Abreu FOMDS, de Oliveira LMB, André WPP, Bevilaqua CML. In vitro anthelmintic activity of an R-carvone nanoemulsions towards multiresistant Haemonchus contortus. Parasitology 2022; 149:1631-1641. [PMID: 36052509 PMCID: PMC11010499 DOI: 10.1017/s0031182022001135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
This work aimed to evaluate the in vitro anthelmintic effect of carvone nanoemulsions on Haemonchus contortus. Three R-carvone nanoemulsions were prepared: uncoated R-carvone nanoemulsions homogenized in a sonicator (UNAlg-son) and homogenized in an ultrahomogenizer (UNAlg-ultra) and sodium alginate-coated R-carvone (CNAlg-ultra). The physicochemical characterizations of the nanoemulsions were carried out. The anthelmintic activity was evaluated using egg hatch test (EHT), larval development test (LDT) and adult worm motility test (AWMT). Changes in cuticle induced in adult H. contortus were evaluated by scanning electron microscopy (SEM). The results were subjected to analysis of variance and compared using the Tukey test (P < 0.05). The effective concentration to inhibit 50% (EC50) of egg hatching and larval development was calculated. The particle sizes were 281.1 nm (UNAlg-son), 152.7 nm (UNAlg-ultra) and 557.8 nm (CNAlg-ultra), and the zeta potentials were −15 mV (UNAlg-son), −10.8 mV (UNAlg-ultra) and −24.2 mV (CNAlg-ultra). The encapsulation efficiency was 99.84 ± 0.01%. SEM of the nanoemulsions showed an increase in size. In EHT, the EC50 values of UNAlg-son, UNAlg-ultra and CNAlg-ultra were 0.19, 0.02 and 0.17 mg mL−1, respectively. In LDT, they were 0.29, 0.31 and 0.95 mg mL−1 for UNAlg-son, UNAlg-ultra and CNAlg-ultra, respectively. The adult motility inhibition was 100% after 12 h of exposure to UNAlg-ultra and CNAlg-ultra, while for UNAlg-son, it was 79.16%. SEM showed changes in the buccal capsule and cuticular damage. It was concluded that R-carvone nanoemulsions showed antiparasitic action demonstrating promise for the control of infections caused by gastrointestinal nematodes in small ruminants.
Collapse
|
43
|
Wit J, Workentine ML, Redman E, Laing R, Stevens L, Cotton JA, Chaudhry U, Ali Q, Andersen EC, Yeaman S, Wasmuth JD, Gilleard JS. Genomic signatures of selection associated with benzimidazole drug treatments in Haemonchus contortus field populations. Int J Parasitol 2022; 52:677-689. [PMID: 36113620 DOI: 10.1016/j.ijpara.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Genome-wide methods offer a powerful approach to detect signatures of drug selection. However, limited availability of suitable reference genomes and the difficulty of obtaining field populations with well-defined, distinct drug treatment histories mean there is little information on the signatures of selection in parasitic nematodes and on how best to detect them. This study addresses these knowledge gaps by using field populations of Haemonchus contortus with well-defined benzimidazole treatment histories, leveraging a recently completed chromosomal-scale reference genome assembly. We generated a panel of 49,393 genomic markers to genotype 20 individual adult worms from each of four H. contortus populations: two from closed sheep flocks with an approximate 20 year history of frequent benzimidazole treatment, and two populations with a history of little or no treatment. Sampling occurred in the same geographical region to limit genetic differentiation and maximise the detection sensitivity. A clear signature of selection was detected on chromosome I, centred on the isotype-1 β-tubulin gene. Two additional, but weaker, signatures of selection were detected; one near the middle of chromosome I spanning 3.75 Mbp and 259 annotated genes, and one on chromosome II spanning a region of 3.3 Mbp and 206 annotated genes, including the isotype-2 β-tubulin locus. We also assessed how sensitivity was impacted by sequencing depth, worm number, and pooled versus individual worm sequence data. This study provides the first known direct genome-wide evidence for any parasitic nematode, that the isotype-1 β-tubulin gene is quantitatively the single most important benzimidazole resistance locus. It also identified two additional genomic regions that likely contain benzimidazole resistance loci of secondary importance. This study provides an experimental framework to maximise the power of genome-wide approaches to detect signatures of selection driven by anthelmintic drug treatments in field populations of parasitic nematodes.
Collapse
|
44
|
de Godoi SN, Gressler LT, de Matos AFIM, Gündel A, Monteiro SG, Vianna Santos RC, Machado AK, Sagrillo MR, Ourique AF. Eucalyptus oil nanoemulsions against eggs and larvae of Haemonchus contortus. Exp Parasitol 2022; 241:108345. [PMID: 35985513 DOI: 10.1016/j.exppara.2022.108345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Haemonchus contortus is a highly pathogenic and prevalent helminth that causes many deaths in sheep herds. Anthelmintics are usually employed to overcome this issue; however, they do not guarantee immediate and lasting efficacy because of the occurrence of drug-resistant parasites. Among substances that are used in scientific studies for parasitic control, essential oils are known to have different pharmacological properties. However, they demonstrate instability owing to several factors, and therefore, nanoemulsification is considered an alternative to control the instability and degradability of these compounds. The objective of this study was to evaluate the cytotoxicity of nanoemulsions containing essential oil of Eucalyptus globulus against the blood of healthy sheep and to verify their activity against the parasite H. contortus in sheep. The results presented adequate nanotechnological characteristics (diameter 72 nm, PDI 0.2, zeta -11 mV, and acidic pH) and adequate morphology. Further, the corona effect and cytotoxic profiles of the free oil and nanoemulsion against blood cells from healthy sheep were evaluated. The tests results did not present a toxicity profile. For evaluating efficacy, we observed an important anthelmintic action of the nanoemulsion containing oil in comparison to the free oil; the results demonstrate a potential role of the nanoemulsion in the inhibition of egg hatchability and the development of larvae L1 to L3 (infective stage). Based on these results, we developed an important and potential anthelmintic alternative for the control of the parasite H. contortus.
Collapse
|
45
|
Baltrušis P, Doyle SR, Halvarsson P, Höglund J. Genome-wide analysis of the response to ivermectin treatment by a Swedish field population of Haemonchus contortus. Int J Parasitol Drugs Drug Resist 2022; 18:12-19. [PMID: 34959200 PMCID: PMC8718930 DOI: 10.1016/j.ijpddr.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022]
Abstract
Haemonchus contortus is a pathogenic gastrointestinal nematode of small ruminants and, in part due to its capacity to develop resistance to drugs, contributes to significant losses in the animal production sector worldwide. Despite decades of research, comparatively little is known about the specific mechanism(s) driving resistance to drugs such as ivermectin in this species. Here we describe a genome-wide approach to detect evidence of selection by ivermectin treatment in a field population of H. contortus from Sweden, using parasites sampled from the same animals before and seven days after ivermectin exposure followed by whole-genome sequencing. Despite an 89% reduction in parasites recovered after treatment measured by the fecal egg count reduction test, the surviving population was highly genetically similar to the population before treatment, suggesting that resistance has likely evolved over time and that resistance alleles are present on diverse haplotypes. Pairwise gene and SNP frequency comparisons indicated the highest degree of differentiation was found at the terminal end of chromosome 4, whereas the most striking difference in nucleotide diversity was observed in a region on chromosome 5 previously reported to harbor a major quantitative trait locus involved in ivermectin resistance. These data provide novel insight into the genome-wide effect of ivermectin selection in a field population as well as confirm the importance of the previously established quantitative trait locus in the development of resistance to ivermectin.
Collapse
|
46
|
Martínez-Ortiz-de-Montellano C, Torres-Acosta JFDJ, Sandoval-Castro CA, Fourquaux I, Hoste H. Scanning electron microscopy of different vulval structures in a Mexican Haemonchus contortus isolate. Vet Parasitol Reg Stud Reports 2021; 26:100640. [PMID: 34879951 DOI: 10.1016/j.vprsr.2021.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
Haemonchus contortus is a parasite species that affects the health and production of grazing small ruminants in different parts of the world. Scanning electron microscopy (SEM) is an important tool for the study of parasites' morphology and taxonomy as it generates images that appear 3D and are generally easier to interpret than optical microscopy images. This study used the SEM to describe the vulval types of adult H. contortus from a Mexican isolate. A total of 14 adult H. contortus females were obtained from two artificially infected goats. Females were fixed and processed by critical point drying and observed with SEM. A collection of SEM images was obtained from these parasites and those images were used to identify the structures previously described by optical microscopy studies. Two different types of vulval structures were described in this Mexican H. contortus isolate: Type 1 (vulval flap), Type 2 (epiptygma). An unusual vulval structure was reported in a single individual. The Type 1 included vulval flaps of different sizes and spatial dispositions, as well as one or more knobs in different positions around the vulva. The Type 2 shows differences in the epiptygma. The present study suggests that the Mexican H. contortus isolate used in donor animals possess intraspecific polymorphism in vulval structures.
Collapse
|
47
|
Taki AC, Byrne JJ, Jabbar A, Lum KY, Hayes S, Addison RS, Ramage KS, Hofmann A, Ekins MG, Wang T, Chang BCH, Davis RA, Gasser RB. High Throughput Screening of the NatureBank 'Marine Collection' in a Haemonchus Bioassay Identifies Anthelmintic Activity in Extracts from a Range of Sponges from Australian Waters. Molecules 2021; 26:5846. [PMID: 34641389 PMCID: PMC8512444 DOI: 10.3390/molecules26195846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature-which assume a diverse 'chemical space'-have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber's pole worm (Haemonchus contortus)-an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall 'hit rate' of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced 'non-wild-type' (abnormal) larval phenotypes with reference to 'wild-type' (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein.
Collapse
|
48
|
Jiménez-Penago G, Hernández-Mendo O, González-Garduño R, Torres-Hernández G, Torres-Chablé OM, Maldonado-Simán E. Mean corpuscular haemoglobin concentration as haematological marker to detect changes in red blood cells in sheep infected with Haemonchus contortus. Vet Res Commun 2021; 45:189-197. [PMID: 34170465 DOI: 10.1007/s11259-021-09800-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
Haemonchus contortus is a nematode parasite that causes anaemia and affects the health of sheep. The mean corpuscular haemoglobin concentration (MCHC) is an excellent indicator to detect anaemia that could help to characterize resistant or susceptible lambs to gastrointestinal nematodes. The aim of this study was to evaluate the predictive value of MCHC in detecting changes in red blood cells and their relation to anaemia in lambs re-infected with H. contortus. An analysis of information was performed using 24 Pelibuey lambs previously infected in grazing, dewormed and experimentally re-infected with H. contortus. At the first haematological sampling (admission) the lambs were classified based on MCHC quartiles (Q). Subsequently, the lambs were housed for 56 days. Blood samples were taken every seven days to determine the haematological parameters using an impedance haematological instrument. Confidence limits were constructed with the records of the lambs that recovered their haematological parameters. Each quartile was analysed as a treatment in a repeated measures design over time. To know the optimal combination of sensitivity and specificity of MCHC to detect anaemia a curve of receiver operating characteristic (ROC) curve and the cut-off values were evaluated. In quartile 4 (Q4), lambs showed the highest faecal egg count (FEC, 764 eggs/g of faeces), mean corpuscular haemoglobin (17.0 pg) and MCHC (54.6 g/dL). This group also presented the lowest RBC values (5.8 × 106/mL), haematocrit (HCT, 18.3%), total plasma protein (5.7 g/dL), and HGB (9.7 g/dL). The optimal point of MCHC with ROC curve was 42.4 (sensitivity 88.2% and specificity 86.5%); the area under the curve was 0.91 (CI 95%, 0.86-0.96). These results are related to the haematological effects caused by H. contortus in susceptible lambs. In conclusion, the highest FEC and lower HCT in Q4 are important elements of the haematological damage caused by H. contortus and could identify susceptible lambs.
Collapse
|
49
|
Okino CH, Méo Niciura SC, Barbosa Toscano JH, Esteves SN, Dos Santos IB, von Haehling MB, Figueiredo A, de Sena Oliveira MC, Chagas ACDS. Ovine β-globin gene: A new qPCR for rapid haplotype identification and association with susceptibility to Haemonchus contortus infection. Vet Parasitol 2021; 294:109434. [PMID: 33957549 DOI: 10.1016/j.vetpar.2021.109434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 11/18/2022]
Abstract
Two β-globin allelic haplotypes (A and B) were identified in domestic sheep, wherein animals which are homozygous for βB allele (BB haplotype) have a deletion of pre-adult βC-globin and consequently are less tolerant to anemia and hypoxia. Since Haemonchus contortus infection, is associated with severe anemia, studies performed from 1960s to 1990s investigated the association between β-globin haplotype and resistance against this parasite. However, the findings were controversial, pointing out from increased resistance in animals harboring the βA allele to inexistence of association. Thus, our study aimed to develop a qPCR for β-globin haplotype identification, and to evaluate the association between β-globin haplotype and resistance against H. contortus in a group of sheep submitted to artificial infection with this parasite. A total of 286 lambs of Morada Nova breed were experimentally challenged with 4000 H. contortus L3 and monitored for 112 days from weaning. Significantly improved (p < 0.05) phenotypic profiles (lower fecal egg counts, higher packed cell volume and birthweight) were observed for AA haplotype animals, especially when compared to BB animals, while AB animals were similar to BB. This is the first report of a qPCR assay for ovine β-globin haplotype identification. In view of significant differences of phenotypic profiles between haplotype groups, the developed qPCR may constitute an important tool for sheep producers to improve genetic selection of parasite resistant animals.
Collapse
|
50
|
Ribeiro HS, Soares AMS, de Jesus Castro Brito D, Oliveira JTA, Costa-Junior LM. Inhibition of Protease and Egg Hatching of Haemonchus contortus by Soybean Seed Exudates. J Parasitol 2021; 107:23-28. [PMID: 33498082 DOI: 10.1645/19-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal nematode infection of small ruminants causes losses in livestock production. Plant compounds show promises as alternatives to commercial anthelmintics that have been exerting selective pressures that lead to the development of drug-resistant parasites. Soybean (Glycine max) is an economical value crop, with a higher protein content compared to other legumes. The objective of this study was to evaluate whether the protease inhibitors exuded from the G. max mature seeds have anthelmintic activity against Haemonchus contortus. To obtain the soybean exudates (SEX), mature seeds were immersed in 100 mM sodium acetate buffer, pH 5.0, at 10 C, for 24 hr. Then the naturally released substances present in SEX were collected and exhaustively dialyzed (cutoff 12 kDa) against distilled water. The dialyzed seed exudates (SEXD) were heated at 100 C for 10 min and centrifuged (12,000 g, at 4 C for 15 min). The supernatant obtained was recovered and designated as the heat-treated exudate fraction (SEXDH). The protein content, protease inhibitor activity, and the effect of each fraction on H. contortus egg hatch rate were evaluated. The inhibition extent of SEX, SEXD, and SEXDH on H. contortus egg proteases was 31.1, 42.9, and 63.8%, respectively. Moreover, SEX, SEXD, and SEXDH inhibited the egg hatching with EC50 of 0.175, 0.175, and 0.241 mg ml-1, respectively. Among the commercial protease inhibitors tested, only EDTA and E-64 inhibited the H. contortus hatch rate (79.0 and 28.9%, respectively). We present evidence demonstrating that soybean exudate proteins can effectively inhibit H. contortus egg hatching. This bioactivity is displayed by thermostable proteins and provides evidence that protease inhibitors are a potential candidate for anthelmintic use.
Collapse
|