26
|
Xing Z, Su X, Zhang X, Zhang L, Zhao T. Direct aerobic oxidation (DAO) of chlorinated aliphatic hydrocarbons: A review of key DAO bacteria, biometabolic pathways and in-situ bioremediation potential. ENVIRONMENT INTERNATIONAL 2022; 162:107165. [PMID: 35278801 DOI: 10.1016/j.envint.2022.107165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Contamination of aquifers and vadose zones with chlorinated aliphatic hydrocarbons (CAH) is a world-wide issue. Unlike other reactions, direct aerobic oxidation (DAO) of CAHs does not require growth substrates and avoids the generation of toxic by-products. Here, we critically review the current understanding of chlorinated aliphatic hydrocarbons-DAO and its application in bioreactors and at the field scale. According to reports on chlorinated aliphatic hydrocarbons-DAO bacteria, isolates mainly consisted of Methylobacterium and Proteobacterium. Chlorinated aliphatic hydrocarbons-DAO bacteria are characterized by tolerance to a high concentration of CAHs and highly efficient removal of CAHs. Trans-1,2-dichloroethylene (t-DCE) is easily transformed biomass for bacteria, followed by 1,2-dichloroethane (1,2-DCA), dichloromethane (DCM), vinyl chloride (VC) and cis-1,2-dichloroethylene (c-DCE). Significant differences in the maximum specific growth rates were observed with different CAHs and biometabolic pathways for DCM, 1,2-DCA, VC and c-DCE degradation have been successfully parsed. Detection of the functional genes etnC and etnE is useful for the determination of active VC DAO bacteria. Additionally, DAO bacteria have been successfully applied to CAHs in new types of bioreactors with satisfactory results. To the best of the authors' knowledge, only one study on DAO-CAHs was conducted in-situ and resulted in 99% CAH removal. Lastly, we put forward future development prospect of chlorinated aliphatic hydrocarbons-DAO.
Collapse
|
27
|
Steber HB, Singh Y, Demchenko AV. Bismuth(iii) triflate as a novel and efficient activator for glycosyl halides. Org Biomol Chem 2021; 19:3220-3233. [PMID: 33885577 PMCID: PMC8112625 DOI: 10.1039/d1ob00093d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Presented herein is the discovery that bismuth(iii) trifluoromethanesulfonate (Bi(OTf)3) is an effective catalyst for the activation of glycosyl bromides and glycosyl chlorides. The key objective for the development of this methodology is to employ only one promoter in the lowest possible amount and to avoid using any additive/co-catalyst/acid scavenger except molecular sieves. Bi(OTf)3 works well in promoting the glycosidation of differentially protected glucosyl, galactosyl, and mannosyl halides with many classes of glycosyl acceptors. Most reactions complete within 1 h in the presence of only 35% of green and light-stable Bi(OTf)3 catalyst.
Collapse
|
28
|
Cui Y, Ke R, Gao W, Tian F, Wang Y, Jiang G. Analysis of Organochlorine Pesticide Residues in Various Vegetable Oils Collected in Chinese Markets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14594-14602. [PMID: 33186497 DOI: 10.1021/acs.jafc.0c05227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organochlorine pesticides (OCPs), chemicals frequently used in agriculture, are a group of highly toxic and persistent organic pollutants. This study assesses the distribution and congener profiles of residual OCPs in 11 types of vegetable oils collected from Chinese markets. All samples were extracted using the modified QuEChERS method prior to analysis by gas chromatography-triple quadrupole mass spectrometry. The sesame oil samples had the highest concentration of OCPs, within the range of 15.30-59.38 ng/g, whereas the peanut oil samples had the lowest OCP concentrations, within the range of 10.83-35.65 ng/g. The possible effect of the processing technology on the pesticide residues in these vegetable oils was also evaluated. It was found that the pressing method leaves more OCPs in vegetable oils than the aqueous extraction and cold-pressing, but the result for leaching was not obvious. In light of the obtained results, it was estimated that the average daily intake of different pesticides is between 0.01 and 2.20 ng/kg bw/day for urban and rural households. Hence, it can be affirmed that, given the amount of the concentration of OCPs detected in the vegetable oils collected from Chinese markets, there are no obvious health risks for urban and rural households by intake.
Collapse
|
29
|
Schiedel M, Lehotzky A, Szunyogh S, Oláh J, Hammelmann S, Wössner N, Robaa D, Einsle O, Sippl W, Ovádi J, Jung M. HaloTag-Targeted Sirtuin-Rearranging Ligand (SirReal) for the Development of Proteolysis-Targeting Chimeras (PROTACs) against the Lysine Deacetylase Sirtuin 2 (Sirt2)*. Chembiochem 2020; 21:3371-3376. [PMID: 32672888 PMCID: PMC7754454 DOI: 10.1002/cbic.202000351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Indexed: 01/08/2023]
Abstract
We have discovered the sirtuin-rearranging ligands (SirReals) as a novel class of highly potent and selective inhibitors of the NAD+ -dependent lysine deacetylase sirtuin 2 (Sirt2). In previous studies, conjugation of a SirReal with a ligand for the E3 ubiquitin ligase cereblon to form a so-called proteolysis-targeting chimera (PROTAC) enabled small-molecule-induced degradation of Sirt2. Herein, we report the structure-based development of a chloroalkylated SirReal that induces the degradation of Sirt2 mediated by Halo-tagged E3 ubiquitin ligases. Using this orthogonal approach for Sirt2 degradation, we show that other E3 ligases than cereblon, such as the E3 ubiquitin ligase parkin, can also be harnessed for small-molecule-induced Sirt2 degradation, thereby emphasizing the great potential of parkin to be used as an E3 ligase for new PROTACs approaches. Thus, our study provides new insights into targeted protein degradation in general and Sirt2 degradation in particular.
Collapse
|
30
|
Tran TD, Dao NT, Sasaki R, Tu MB, Dang GHM, Nguyen HG, Dang HM, Vo CH, Inigaki Y, Van Nguyen N, Sakakibara Y. Accelerated remediation of organochlorine pesticide-contaminated soils with phyto-Fenton approach: a field study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3597-3608. [PMID: 32415403 DOI: 10.1007/s10653-020-00588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation and advanced oxidation processes are among the most promising techniques for removing organic pollutants from soils. A field trial was performed for six months to evaluate the effect of nano-Fe3O4 on the degradation of organochlorine pesticide residues including Lindane, p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), and p,p'-dichlorodiphenyldichloroethane (DDD) in pesticide-contaminated soils in the presence of vetiver in Bac Giang province, Vietnam. Vetiver was planted in three zones with different nano-Fe3O4 concentrations. Soil samples from each zone were periodically collected to determine the remaining concentrations of selected organochlorine pesticides via gas chromatography-electron capture detector. Results indicated that the total DDT concentrations in the examined soil were 1.9-13 times higher than the permissible threshold level (10 µg g-1) established by the national technical regulation on pesticide residues in soil. The (p,p'-DDE + p,p'-DDD)/p,p'-DDT ratios ranged from 13.5 to 114, indicating the absence of recent inputs of technical DDTs at the study area. DDT dechlorination mainly occurred under aerobic pathways to form DDE. Furthermore, DDE degradation in soil was adequately described by the pseudo-first-order kinetics model (R2 > 0.892). In the presence of vetiver, the rate constants of DDE degradation were 0.264, 0.350, and 0.434 month-1 with 0, 25, and 100 mg kg-1 of added nano-Fe3O4, respectively, indicating that the degradation of DDE correlated positively with Fe3O4 concentration in the soil. Additionally, the presence of vetiver and nano-Fe3O4 in the soil increased DDT removal rates, which might be linked to the involvement of Fenton/Fenton-like reactions.
Collapse
|
31
|
Lockley WJS, Venanzi NAE, Crane GJ. Studies of hydrogen isotope scrambling during the dehalogenation of aromatic chloro-compounds with deuterium gas over palladium catalysts. J Labelled Comp Radiopharm 2020; 63:531-552. [PMID: 32886808 DOI: 10.1002/jlcr.3878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 11/06/2022]
Abstract
Catalytic dehalogenation of aromatic halides using isotopic hydrogen gas is an important strategy for labelling pharmaceuticals, biochemicals, environmental agents and so forth. To extend, improve and further understand this process, studies have been carried out on the scrambling of deuterium isotope with protium during the catalytic deuterodehalogenation of model aryl chlorides using deuterium gas and a palladium on carbon catalyst in tetrahydrofuran solution. The degree of scrambling was greatest with electron-rich chloroarene rings. The tetrahydrofuran solvent and the triethylamine base were not the source of the undesired protium; instead, it arose, substantially, from the water content of the catalyst, though other sources of protium may also be present on the catalyst. Replacement of the Pd/C catalyst with one prepared in situ by reduction of palladium trifluoroacetate with deuterium gas and dispersed upon micronised polytetrafluoroethylene led to much reduced scrambling (typically 0-6% compared with up to 40% for palladium on carbon) and to high atom% abundance, regiospecific labelling. The improved catalytic system now enables efficient polydeuteration via the dehalogenation of polyhalogenated precursors, making the procedure viable for the preparation of MS internal standards and, potentially, for high specific activity tritium labelling.
Collapse
|
32
|
Ou T, Fang C, Ding S, Zhao T, Liu S, Yu Z, Chu W. Has the formation of disinfection by-products been overestimated? Membrane leakage from syringe filter heads serves as unexpected precursors. CHEMOSPHERE 2020; 258:127278. [PMID: 32554006 DOI: 10.1016/j.chemosphere.2020.127278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Syringe filters are widely used for sample pretreatments in laboratories. This study found that, surprisingly, these filters can leak dissolved organic carbon (DOC) that can potentially serve as precursors of disinfection by-products (DBPs). Nine common types of syringe filters were assessed. The results showed that the DOC of ultrapure water increased after syringe filtration. The DOC shed from filter membranes was characterized, whose spectra showed that the main compounds exhibited a low apparent molecular weight. Five classes of DBPs were investigated including trihalomethanes, haloacetaldehydes, haloacetonitriles, haloacetamides and halonitromethanes, among which trichloromethane (TCM), dichloroacetaldehyde (DCAL), trichloroacetaldehyde (TCAL), dichloroacetonitrile (DCAN), and trichloronitromethane (TCNM) were principally detected. The DBP formation was affected by chlorination time and membrane types. In general, the use of the poly vinylidene fluoride membrane resulted in the highest formation of TCM and TCAL, whereas nylon and mixed cellulose esters membranes contributed significantly to the formation of DCAN and TCNM, respectively. The shedding DOC and the formation of TCM, DCAL and TCAL from filter membranes were mitigated effectively by pre-washing; however, the contribution of membrane leakage to DCAN and TCNM formation was still notable, even with a pre-wash volume of 50 mL. When unwashed syringe filters were used for a real water sample, the DBP formation increased by up to 73.2% compared to the pre-washed ones; particularly for TCNM it was always over 15%. Therefore, for better quality control in laboratories, more attention should be paid to the syringe filters during sample pre-treatments, particularly when DBP formation is being investigated.
Collapse
|
33
|
Guttormsen Y, Fairhurst ME, Pandey SK, Isaksson J, Haug BE, Bayer A. Total Synthesis of Phorbazole B. Molecules 2020; 25:molecules25204848. [PMID: 33096668 PMCID: PMC7588006 DOI: 10.3390/molecules25204848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 11/29/2022] Open
Abstract
Phorbazoles are polychlorinated heterocyclic secondary metabolites isolated from a marine sponge and several of these natural products have shown inhibitory activity against cancer cells. In this work, a synthesis of the trichlorinated phorbazole B using late stage electrophilic chlorination was developed. The synthesis relied on the use of an oxazole precursor, which was protected with an iodine in the reactive 4-position, followed by complete chlorination of all pyrrole positions. Attempts to prepare phorbazole A and C, which contain a 3,4-dichlorinated pyrrole, were unsuccessful as the desired chlorination pattern on the pyrrole could not be obtained. The identities of the dichlorinated intermediates and products were determined using NMR techniques including NOESY/ROESY, 1,1-ADEQUATE and high-resolution CLIP-HSQMBC.
Collapse
|
34
|
Entz ED, Russell JEA, Hooker LV, Neufeldt SR. Small Phosphine Ligands Enable Selective Oxidative Addition of Ar-O over Ar-Cl Bonds at Nickel(0). J Am Chem Soc 2020; 142:15454-15463. [PMID: 32805116 PMCID: PMC8082739 DOI: 10.1021/jacs.0c06995] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current methods for Suzuki-Miyaura couplings of nontriflate phenol derivatives are limited by their intolerance of halides including aryl chlorides. This is because Ni(0) and Pd(0) often undergo oxidative addition of organohalides at a similar or faster rate than most Ar-O bonds. DFT and stoichiometric oxidative addition studies demonstrate that small phosphines, in particular PMe3, are unique in promoting preferential reaction of Ni(0) with aryl tosylates and other C-O bonds in the presence of aryl chlorides. This selectivity was exploited in the first Ni-catalyzed C-O-selective Suzuki-Miyaura coupling of chlorinated phenol derivatives where the oxygen-containing leaving group is not a fluorinated sulfonate such as triflate. Computational studies suggest that the origin of divergent selectivity between PMe3 and other phosphines differs from prior examples of ligand-controlled chemodivergent cross-couplings. PMe3 effects selective reaction at tosylate due to both electronic and steric factors. A close interaction between nickel and a sulfonyl oxygen of tosylate during oxidative addition is critical to the observed selectivity.
Collapse
|
35
|
Heeb NV, Iten S, Schinkel L, Knobloch M, Sprengel J, Lienemann P, Bleiner D, Vetter W. Characterization of synthetic single-chain CP standard materials - Removal of interfering side products. CHEMOSPHERE 2020; 255:126959. [PMID: 32388263 DOI: 10.1016/j.chemosphere.2020.126959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The photolytic chlorination of n-alkanes in presence of sulfuryl chloride (SO2Cl2) was explored to produce new standard materials. Five mixtures of chlorinated tetradecanes were synthesized with chlorination degrees (mCl,EA) varying from 43.7% to 59.4% (m/m) based on elemental analysis. Chlorine-enhanced negative chemical ionization mass spectrometry (CE-NCI-MS) forcing the formation of chloride-adduct ions [M+Cl]- was applied to characterize these materials which all contained tetra-to deca-chlorinated paraffins. Deconvolution of respective mass spectra revealed the presence of chlorinated olefins (COs). CO levels were highest in materials, which were exposed longest. All synthesized materials also contained two classes of polar impurities, tentatively assigned as sulfite- and sulfate-diesters with molecular formulas of C14H28-xO3SClx (x = 1-4) and C14H28-xO4SClx (x = 3-6), respectively. MS data were in accordance with the proposed structures but further work is needed to deduce their constitutions. These compounds are thermolabile and were not detected with GC-MS methods. We could remove these sulfur-containing impurities from the CPs with normal-phase liquid chromatography. In conclusion, single-chain CP materials were synthesized via chlorination of n-alkanes with sulfuryl chloride, but these materials contained reactive side products which should be removed to gain non-reactive and stable CP materials suitable as standards and for fate and toxicity studies.
Collapse
|
36
|
Cui L, Gao L, Zheng M, Li J, Zhang L, Wu Y, Qiao L, Xu C, Wang K, Huang D. Short- and Medium-Chain Chlorinated Paraffins in Foods from the Sixth Chinese Total Diet Study: Occurrences and Estimates of Dietary Intakes in South China. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9043-9051. [PMID: 32786846 DOI: 10.1021/acs.jafc.0c03491] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Food consumption has been identified as a major pathway for human exposure to short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs), but evaluations of SCCP and MCCP intake from major dietary sources are limited. We used the sixth Chinese Total Diet Study to perform a comprehensive investigation of SCCPs and MCCPs in cereals, vegetables, potatoes, legumes, eggs, milk, meats, and aquatic foods from nine southern provinces. The geographical distribution of CP concentrations showed higher levels in Jiangsu, Hubei, and Zhejiang provinces. The CP concentrations in most animal-origin foods were higher than those in foods of plant origin. The total estimated daily intakes (EDIs) of SCCPs and MCCPs, with average values of 7.0 × 102 and 4.7 × 102 ng kg-1 day-1, respectively, were mostly contributed by cereals, vegetables, and meats. Risk assessment indicated the EDIs of CPs posed no significant risk to residents in South China.
Collapse
|
37
|
Martins FA, Daré JK, Freitas MP. Theoretical study of fluorinated bioisosteres of organochlorine compounds as effective and eco-friendly pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110679. [PMID: 32402896 DOI: 10.1016/j.ecoenv.2020.110679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Chlordane is a worldwide banned organochlorine insecticide because of its hazard to animal and human health. It is also a persistent organic pollutant, which can affect either the soil or the aquatic life. The same applies to other chlorinated cyclodiene insecticides, such as dieldrin and aldrin. In turn, organofluorine compounds have a widespread use in agriculture. Therefore, density functional calculations and docking studies showed that the bioisosteric replacement of chlorines in the above-mentioned compounds by fluorines improves some physicochemical parameters used to estimate the toxicity and environmental risk of these compounds, as well as the ligand-enzyme (GABAA receptor-chloride channel complex) interactions related to their insecticidal activity. This work is an effort to provide an improved new class of organofluorine pesticides.
Collapse
|
38
|
Gao W, Bai L, Ke R, Cui Y, Yang C, Wang Y, Jiang G. Distributions and Congener Group Profiles of Short-Chain and Medium-Chain Chlorinated Paraffins in Cooking Oils in Chinese Markets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7601-7608. [PMID: 32530629 DOI: 10.1021/acs.jafc.0c02328] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) are organic pollutants that have caused widespread concerns in recent years. Because of their lipophilic characteristics, CPs may enter into the body through diet or other routes and exert adverse effects on human health. In this study, we investigated the occurrence and congener profiles of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in 176 cooking oils and 19 oil containers collected from various markets in China. The concentrations of SCCPs and MCCPs in cooking oils were in the range of not detected (ND) to 16,055 ng/g and ND to 11,612 ng/g, respectively, and the geomean concentrations of MCCPs were lower than those of SCCPs. The concentrations of CPs in sesame oil, rapeseed oil, and camellia oil were higher than those in other types of oils, and different oil processing methods had different effects on the presence of CPs in the oils. CPs were detected in 5 out of 20 oil containers, although their concentrations were much lower than those detected in the oil samples, indicating that containers are not the main sources of CPs detected in the oils. The mean SCCP and MCCP intakes through cooking oils of the general Chinese population were 8.83 and 6.09 μg/kg/d, respectively.
Collapse
|
39
|
Kapeleka JA, Sauli E, Sadik O, Ndakidemi PA. Co-exposure risks of pesticides residues and bacterial contamination in fresh fruits and vegetables under smallholder horticultural production systems in Tanzania. PLoS One 2020; 15:e0235345. [PMID: 32667930 PMCID: PMC7363064 DOI: 10.1371/journal.pone.0235345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/14/2020] [Indexed: 11/30/2022] Open
Abstract
This study was carried out to investigate the risks of simultaneous exposure to pesticide residues and bacteria contaminants in locally produced fresh vegetables and vegetables in Tanzania. A total of 613 samples were analyzed for pesticide residues, out of which 250 were also analyzed for bacterial contamination. Overall, 47.5% had pesticide residues, 74.2% exceeded Maximum Residue Levels (MRLs). Organophosphorus (95.2%), organochlorines (24.0%), pyrethroids (17.3%), and carbamates (9.2%) residues dominated. MRL values were mostly exceeded in tomatoes, onions, watermelons, cucumbers, Chinese cabbage, and sweet paper. Tetramethrin (0.0329-1.3733 mg/kg), pirimiphos-methyl (0.0003-1.4093 mg/kg), permethrin (0.0009-2.4537 mg/kg), endosulfan (beta) (0.0008-2.3416 mg/kg), carbaryl (0.0215-1.5068 mg/kg), profenofos (0.0176-2.1377 mg/kg), chlorpyrifos (0.0004-1.2549 mg/kg) and dieldrin (0.0011-0.5271 mg/kg) exceeded MRLs. The prevalence of bacteria contamination was high (63.2%). Enterobacter (55.6%) Pseudomonas aeruginosa (32.4%), E. coli (28.2%), Citrobacter (26.8%), Klebsiella oxytoca (14.8%), and Salmonella (7.7%) were isolated. Furthermore, 46.4% tested positive for both pesticide residues and bacterial contaminants. Vegetables from farms (60.7%) contained more dual contaminants than market-based vegetables (41.8%). This may have resulted from excessive pesticide use and unhygienic handling of fresh fruits and vegetables at production level. Binary logistic regression showed that fresh fruits and vegetables with pesticide residues were 2.231 times more likely to have bacteria contaminants (OR: 2.231; 95% CI: 0.501, 8.802). The contamination levels of pesticide residues and bacterial contaminants could be perceived as a serious problem as most fresh fruits and vegetables recorded values of pesticide residues far above the MRLs with pathogenic bacteria isolated in higher proportions. MRLs was higher in most vegetables consumed raw or semi-cooked such as watermelons, carrots, cucumber, tomatoes, onion and sweet paper. There is an urgent need to develop pesticide monitoring and surveillance systems at farmer level, educating farmers and promoting the use of greener pesticides to mitigate the health effects of pesticides and bacterial contaminants.
Collapse
|
40
|
Gu W, Li Q, Li Y. Environment-friendly PCN derivatives design and environmental behavior simulation based on a multi-activity 3D-QSAR model and molecular dynamics. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122339. [PMID: 32135364 DOI: 10.1016/j.jhazmat.2020.122339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
A multi-activity three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established based on the comprehensive evaluation index (CEI) of polychlorinated naphthalenes (PCNs). The CEI values were calculated using the vector analysis method in combination with the following parameters: biological toxicity (predicted by logEC50), bioconcentration (predicted by logKow), long-distance migration (predicted by logPL), and biodegradation (predicted by total-score). Additionally, sixty-four CN-70 derivatives with lower CEI values were designed, among which three derivatives with reduced CEI values were selected for verification based on an evaluation of their persistent organic pollutant properties and practicability. Finally, an environmental behavior simulation was conducted via molecular dynamics simulation aided by the Taguchi experimental design by considering the degradation characteristics of the three aforementioned CN-70 derivatives as an example. Only two of the selected CN-70 derivatives were observed to be more easily degraded when compared with the CN-70 molecule (ascending range: 11.57 %-13.57 %) in a real-world setting, which was consistent with the biodegradability prediction results (ascending range: 14.94 %-22.49 %) obtained through the molecular docking studies. The multi-activity 3D-QSAR model established in this study overcame the limitations of generating molecular designs based on single-effect models from the source because it focused on the multiple effects of the pollutants.
Collapse
|
41
|
Dong S, Zhang S, Li X, Li T, Fan M, Wang Y, Cheng J, Wang R, Zou Y, Wang S, Suo D, Wang P, Su X. Short- and medium-chain chlorinated paraffins in plastic animal feed packaging and factors affect their migration into animal feed. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121836. [PMID: 31843405 DOI: 10.1016/j.jhazmat.2019.121836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 05/22/2023]
Abstract
Chlorinated paraffins (CPs) are used as plasticizers and flame retardants in plastics. Plastic packaging containing CPs is widely used for storage of animal feed, which can become contaminated by CPs that migrate into the feed. In the present study, 31 commercial animal feed packaging samples made of polypropylene (PP) or polyethylene (PE) were collected from animal feed manufacturers in China. The mean concentrations of short-chain chlorinated paraffins (SCCPs) in the PP and PE samples were 60.0 and 54.5 μg/g, respectively. The medium-chain chlorinated paraffin (MCCP) mean concentrations in the PP and PE samples were 62.7 and 9.23 μg/g, respectively. The carbon congener group profiles of SCCPs and MCCPs in the samples were different. The dominant SCCP and MCCP chlorine congener groups in all the samples were Cl6-7 and Cl6-8, respectively. Time and temperature influenced the migration of CPs from packaging into animal feed. As the time or temperature increased, the CP concentrations in the animal feed increased but the congener group profiles of the SCCPs and MCCPs in the animal feed did not change. To reduce contamination of animal feed by CPs, it is necessary to restrict the use of CPs in animal feed packaging.
Collapse
|
42
|
Wu Y, Simon KL, Best DA, Bowerman W, Venier M. Novel and legacy per- and polyfluoroalkyl substances in bald eagle eggs from the Great Lakes region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113811. [PMID: 32369891 DOI: 10.1016/j.envpol.2019.113811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 06/11/2023]
Abstract
Decades of large-scale production of per- and polyfluoroalkyl substances (PFASs) have resulted in their ubiquitous presence in the environment worldwide. Similarly to other persistent and bioaccumulative organic contaminants, some PFASs, particularly the long-chain congeners, can be biomagnified via food webs, making top predators vulnerable to elevated PFAS exposure. In this study, we measured seven classes of PFASs in bald eagle (Haliaeetus leucocephalus) eggs for the first time. The eggs (n = 22) were collected from the North American Great Lakes in 2000-2012. The ranges of total concentrations of perfluoroalkyl sulfonic acids (∑PFSAs) and perfluoroalkyl carboxylic acids (∑PFCAs) were 30.5-1650 and 5.4-216 ng/g wet weight (ww), respectively. In addition to these traditional PFAS compounds, 6:2 fluorotelomer sulfonic acid (6:2 FTS; median: 15.7 ng/g ww), perfluoro-4-ethylcyclohexanesulfonic acid (PFECHS; 0.22 ng/g ww), and 8-chloro-perfluorooctanesulfonic acid (Cl-PFOS, detected in wildlife for the first time; 0.53 ng/g ww) were also frequently detected. Bald eagle eggs from breeding areas located less than 8 km from a Great Lake shoreline or tributary had significantly greater total PFAS concentrations (∑PFASs) than those from breeding areas located further than 8 km (p < 0.05). In these samples, ∑PFASs rivalled the total concentration of brominated flame retardants, and were significantly greater than those of several other organic contaminants, such as dechlorane-related compounds, organophosphate esters, and flame retardant metabolites.
Collapse
|
43
|
Zheng X, Sun Q, Wang S, Li X, Liu P, Yan Z, Kong X, Fan J. Advances in Studies on Toxic Effects of Short-Chain Chlorinated Paraffins (SCCPs) and Characterization of Environmental Pollution in China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:501-512. [PMID: 32123944 DOI: 10.1007/s00244-020-00723-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) were included in the Stockholm Convention in 2017. SCCPs have persistence, bioaccumulation, long-range environmental mobility and biological toxicity, significant toxicity to aquatic organisms, and potential carcinogenicity. Little study was on the progress research on the current environmental pollution in China. We reviewed the pollution conditions of SCCPs in air, soil, and water and their accumulation in food and organisms in China, especially for the contaminations of aquatic ecosystem. Meanwhile, we summarize the recent studies on the toxic effects and toxicological mechanisms of SCCPs on aquatic organisms and mammals. Finally, the further direction and trends for SCCP research were proposed. More efforts are necessary to conduct a comprehensive risk assessment and evaluate the relative importance of the various exposure routes.
Collapse
|
44
|
Zhou J, Li M, Li J, Shao Z, Liu Y, Wang T, Zhu L. Bioavailability and Bioaccumulation of 6:2 Fluorotelomer Sulfonate, 6:2 Chlorinated Polyfluoroalkyl Ether Sulfonates, and Perfluorophosphinates in a Soil-Plant System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4325-4334. [PMID: 32208655 DOI: 10.1021/acs.jafc.0c00542] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As emerging alternatives of legacy perfluoroalkyl substances, 6:2 fluorotelomer sulfonate (6:2 FTS), 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFESA), and perfluorophosphinates (C6/C6 and C8/C8 PFPiAs) are supposed to be partitioned to soil and highly persistent in the environment. The uptake of novel per- and polyfluoroalkyl substances (PFASs) by plants represents a potential pathway for their transfer in the food chain. In this study, the bioavailability of these four novel PFASs in soil and the bioaccumulation characteristics in greenhouse-grown wheat (Triticum aestivum L.), maize (Zea mays L.), soybean (Glycine max L. Merrill), and pumpkin (Cucurbita maxima L.) were investigated. The results indicated that these novel PFASs with higher hydrophobicity were more easily sequestrated in soil, and the fractions extracted by methanol could well describe their bioavailability, which could be stimulated by low-molecular-weight organic acids at rhizospheric concentrations. A negative relationship was found between root soil concentration factors (RSCFs) and hydrophobicity (log Kow) of the target PFASs. This correlation was also found in the translocation factors (TF) from roots to shoots. Furthermore, the uptake and transfer of the target PFASs were regulated by the protein contents in plant roots and shoots.
Collapse
|
45
|
Li H, Yang Y, Qi X, Zhou X, Ren WX, Deng M, Wu J, Lü M, Liang S, Teichmann AT. Design and applications of a novel fluorescent probe for detecting glutathione in biological samples. Anal Chim Acta 2020; 1117:18-24. [PMID: 32408950 DOI: 10.1016/j.aca.2020.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to develop a novel and practical fluorescent method for GSH detection in complex biological samples. To this end, a series of coumarin-based fluorescent probes was designed and synthesized using various aliphatic halogens as the sensing group. By using a new evaluation method of GSH/Cys/Hcy coexisting conditions, the probe with chloropropionate (CBF3) showed a high selectivity, excellent sensitivity, good stability for GSH detection. The reaction mechanism is proposed as nucleophilic substitution/cyclization and intramolecular charge transfer (ICT), which was confirmed by LC-MS and NMR analysis, as well as density functional theory calculations. In addition, CBF3 was demonstrated to be competent not only for the quantitative detection of GSH in real serum samples, but also for sensing GSH changes in different oxidative stress models in living cells and nematodes. This study showed a practical strategy for constructing GSH-specific fluorescent probes, and provided a sensitive tool for real-time sensing of GSH in real biological samples. The findings would greatly facilitate further investigations on GSH-associated clinical diagnosis and biomedical studies.
Collapse
|
46
|
Li Y, Chen W, Kong W, Liu J, Schnoor JL, Jiang G. Transformation of 1,1,1,3,8,10,10,10-octachlorodecane in air phase increased by phytogenic volatile organic compounds of pumpkin seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135455. [PMID: 31791777 PMCID: PMC7029796 DOI: 10.1016/j.scitotenv.2019.135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 05/15/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are widely distributed persistent organic pollutants (POPs). Airborne chlorodecanes were hypothesized to be transformed by reactive phytogenic volatile organic compounds (PVOCs) in our previous work. To test this hypothesis, PVOCs of pumpkin (Cucurbita maxima x C. moschata) were collected and reacted with 1,1,1,3,8,10,10,10-octachlorodecane in the air phase of a sealed glass bottle under illumination for 10 days (reaction system I, simulating atmospheric reaction conditions with PVOCs). The reaction control group (reaction system II) was set at the same conditions but only had chlorodecane (without PVOCs) inside the bottle. Transformation of SCCPs in the air phase of reaction control group was unexpectedly found. Results showed that 1,1,1,3,8,10,10,10-octachlorodecane was transformed to a great extent to C10Cl5-8, C9Cl6-8, and C8Cl7-8 in the air phase after 10-d illumination in both with and without the presence of PVOCs, which is explained by carbon chain decomposition, dechlorination and chlorine rearrangement products of the parent SCCP. Those transformation processes were increased to some extent by the PVOCs from pumpkin seedlings. This study provides the first experimental data on atmospheric transformation of SCCPs and also the first evidence that plant emissions (PVOCs) can increase the transformation of SCCPs in air under light and experimental conditions. It provides new insight into the potential transformation and fate of CPs in the environment.
Collapse
|
47
|
Li W, Zhang ZM, Zhang RR, Jiao HF, Sun AL, Shi XZ, Chen J. Effective removal matrix interferences by a modified QuEChERS based on the molecularly imprinted polymers for determination of 84 polychlorinated biphenyls and organochlorine pesticides in shellfish samples. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121241. [PMID: 31581008 DOI: 10.1016/j.jhazmat.2019.121241] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure combined with GC-MS/MS detection approach using a dynamic multiple reaction monitoring (DMRM) mode was successfully applied for the simultaneous analysis of 84 polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in shellfish samples. The novel molecular imprinted polymers (MIPs) were synthesized by precipitation polymerization and characterized by Scanning electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectra and adsorption experiment. The MIPs exhibited good adsorption capability to pigment coextractives in shellfish samples without the loss of analytes compared with other sorbents. Under optimal conditions, spiked experiments in sinonovacula, mussel, and clam at 10.0-100.0 μg/kg concentrations showed excellent recoveries ranging from 70% to 120% for all analytes with the relative standard deviations of <10%. The developed method showed good linearity with the correlation coefficient above 0.9980, and the limits of quantification were in the range of 0.01-9.02 μg/kg. The developed QuEChERS procedure combined with GC-MS/MS was successfully applied to 84 PCBs and OCPs residues detection in shellfish samples.
Collapse
|
48
|
Devault DA, Karolak S. Wastewater-based epidemiology approach to assess population exposure to pesticides: a review of a pesticide pharmacokinetic dataset. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4695-4702. [PMID: 31907818 DOI: 10.1007/s11356-019-07521-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/25/2019] [Indexed: 04/15/2023]
Abstract
Wastewater-based epidemiology is an innovative approach to estimate a population's intentional and unintentional consumption of chemicals based on biomarker assays found in wastewater. This method can provide real-time objective information on the xenobiotics to which a population is directly or indirectly exposed. This approach has already been used to assess the population exposure to four classes of pesticides: organochlorines (chlordecone), triazines, organophosphates, and pyrethroids. This review aims to obtain the data (excretion rates) and characteristics (pesticide and metabolites stability, including in-sewer one) for other pesticides to broaden the scope of this new method. Excretion rates and stability descriptions for 14 pesticides, namely 2,4-D, aldrin, carbaryl, chlorobenzilate, dieldrin, diquat, ethion, glufosinate, glyphosate, folpet, malathion, parathion, penconazole, and tebuconazole, will be discussed in a practical framework.
Collapse
|
49
|
Guo L, Lin J, Niu S, Liu S, Liu L. Pestalotiones A-D: Four New Secondary Metabolites from the Plant Endophytic Fungus Pestalotiopsis Theae. Molecules 2020; 25:molecules25030470. [PMID: 31979166 PMCID: PMC7037426 DOI: 10.3390/molecules25030470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 01/05/2023] Open
Abstract
Two new xanthone derivatives, pestalotiones A (1) and B (2), one new diphenyl ketone riboside, pestalotione C (7), and one new diphenyl ether, pestalotione D (8), along with five known compounds isosulochrin dehydrate (3), 3,8-dihydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (4), isosulochrin (5), chloroisosulochrin (6), and pestalotether D (9), were isolated from the crude extract of the plant endophytic fungus Pestalotiopsis theae (N635). The structures of the new compounds were unambiguously deduced by HRESIMS and 1D/2D-NMR spectroscopic data. Compound 6 showed modest cytotoxicity against the HeLa cell line with an IC50 value of 35.2 μM. Compound 9 also showed cytotoxic to the HeLa and MCF-7 cell lines, with IC50 values of 60.8 and 22.6 μM, respectively. Additionally, compounds 1 and 2 exhibited antioxidant activity in scavenging DPPH radical with IC50 values of 54.2 and 59.2 μg/mL, respectively.
Collapse
|
50
|
Lorenzo D, García-Cervilla R, Romero A, Santos A. Partitioning of chlorinated organic compounds from dense non-aqueous phase liquids and contaminated soils from lindane production wastes to the aqueous phase. CHEMOSPHERE 2020; 239:124798. [PMID: 31527006 DOI: 10.1016/j.chemosphere.2019.124798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Hexachlorocyclohexane (HCH) and mainly the γ-HCH isomer, namely lindane, were extensively produced and used as pesticides. Huge amounts of wastes, solids and liquids, were disposed of in the surroundings of the production sites. The liquid residuum was a complex mixture of chlorinated organic compounds, COCs, from chlorobenzene to heptachlorocyclohexane. This Dense Non-Aqueous Phase Liquid, DNAPL, migrated by density through the subsurface to greater depths, being trapped or adsorbed into the soil in this movement posing a significant risk to the groundwater. Knowledge of the partitioning in water of COCs in DNAPL is a key issue to determine its fate in the environment. However, there are no data in literature for the partitioning and/or solubility of many of the COCs in this DNAPL, such as pentachlorocyclohexene, hexachlorocyclohexene and heptachlorocyclohexane despite them constitute about 13-30% of the mole fraction of the DNAPLs. In this work, the partitioning to water of COCs in free and those adsorbed onto soil has been studied. In addition, measured and predicted aqueous concentrations of each COC in the DNAPL mixture have been compared. To do this, the solubility of a compound that is a solid crystal when pure at P = 298 K and P = 1 atm has been evaluated considering the approach of sub-cooled liquid state of solid organochlorines. Samples were obtained at Sabiñanigo landfills and soils used had several grain sizes. Transformation in alkaline media of COCs had a positive environmental impact.
Collapse
|