26
|
Yim UH, Short J. Marine Environmental Emergencies in the North Pacific Ocean: Lessons Learned from Recent Oil Spills. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:1-4. [PMID: 28695264 DOI: 10.1007/s00244-017-0416-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Increasing marine vessel traffic, and oil and gas exploration and development throughout the North Pacific basin brings increasing risks of oil spills. Recognizing the serious challenges presented to response authorities, this Special Issue was organized by the North Pacific Marine Science Organization to provide an introduction to the current state of scientific understanding regarding the environmental effects of oil spills. Because interactions of spilled oils with biota and their habitats are complex, the most serious environmental damages from these spills are not necessarily those of greatest immediate concern by the public. Our overarching goal for this Special Issue is to provide an efficient introduction to the most important ways that oil spills can harm biota, habitats, and ecosystems through invited, targeted mini-reviews augmented by original research articles. We provide a brief background on the challenges posed by large oil spills to response authorities, summarize findings from the articles published in this Special Issue, and highlight some key research needs.
Collapse
|
27
|
Loh A, Yim UH, Ha SY, An JG, Kim M. Contamination and Human Health Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Oysters After the Wu Yi San Oil Spill in Korea. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:103-117. [PMID: 28695254 DOI: 10.1007/s00244-017-0394-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
After the collision of the Singapore-registered oil tanker M/V Wu Yi San into the oil terminal of Yeosu, Korea on January 31, 2014, approximately 900 m3 of oil and oil mixture were released from the ruptured pipelines. The oil affected more than 10 km of coastline along Gwangyang Bay. Emergency oil spill responses recovered bulk oil at sea and cleaned up the stranded oil on shore. As part of an emergency environmental impact assessment, region-wide monitoring of oil contamination in oyster had been conducted for 2 months. Highly elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) were detected at most of the spill affected sites. Four days after the spill, the levels of PAHs in oysters increased dramatically to 627-81,000 ng/g, the average of which was 20 times higher than those found before the spill (321-4040 ng/g). The level of PAHs in these oysters increased until 10 days after the spill and then decreased. Due to the strong tidal current and easterly winter winds, the eastern part of the Bay-the Namhae region-was heavily contaminated compared with other regions. The accumulation and depuration of spilled oil in oyster corresponded with the duration and intensity of the cleanup activities, which is the first field observation in oil spill cases. Human health risk assessments showed that benzo[a]pyrene equivalent concentrations exceeded levels of concern in the highly contaminated sites, even 60 days after the spill.
Collapse
|
28
|
Short JW. Advances in Understanding the Fate and Effects of Oil from Accidental Spills in the United States Beginning with the Exxon Valdez. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:5-11. [PMID: 28695263 DOI: 10.1007/s00244-016-0359-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 05/06/2023]
Abstract
Scientific studies of the environmental effects of oil spills in the United States have produced a steady stream of unexpected discoveries countering prior and often simplistic assumptions. In this brief review, I present how major discoveries from scientific studies of oil spill effects on marine ecosystems and environments, beginning with the 1989 Exxon Valdez, have led to a more informed appreciation for the complexity and the severity of the damage that major spills can do to marine ecosystems and to an increasing recognition that our ability to evaluate those damages is very limited, resulting in a structural bias toward underestimation of adverse environmental effects.
Collapse
|
29
|
Sanni S, Lyng E, Pampanin DM. III: Use of biomarkers as Risk Indicators in Environmental Risk Assessment of oil based discharges offshore. MARINE ENVIRONMENTAL RESEARCH 2017; 127:1-10. [PMID: 28038790 DOI: 10.1016/j.marenvres.2016.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/28/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Offshore oil and gas activities are required not to cause adverse environmental effects, and risk based management has been established to meet environmental standards. In some risk assessment schemes, Risk Indicators (RIs) are parameters to monitor the development of risk affecting factors. RIs have not yet been established in the Environmental Risk Assessment procedures for management of oil based discharges offshore. This paper evaluates the usefulness of biomarkers as RIs, based on their properties, existing laboratory biomarker data and assessment methods. Data shows several correlations between oil concentrations and biomarker responses, and assessment principles exist that qualify biomarkers for integration into risk procedures. Different ways that these existing biomarkers and methods can be applied as RIs in a probabilistic risk assessment system when linked with whole organism responses are discussed. This can be a useful approach to integrate biomarkers into probabilistic risk assessment related to oil based discharges, representing a potential supplement to information that biomarkers already provide about environmental impact and risk related to these kind of discharges.
Collapse
|
30
|
Sanni S, Lyng E, Pampanin DM, Smit MGD. II. Species sensitivity distributions based on biomarkers and whole organism responses for integrated impact and risk assessment criteria. MARINE ENVIRONMENTAL RESEARCH 2017; 127:11-23. [PMID: 28041674 DOI: 10.1016/j.marenvres.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/20/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The aim of this paper is to bridge gaps between biomarker and whole organism responses related to oil based offshore discharges. These biomarker bridges will facilitate acceptance criteria for biomarker data linked to environmental risk assessment and translate biomarker results to higher order effects. Biomarker based species sensitivity distributions (SSDbiomarkers) have been constructed for relevant groups of biomarkers based on laboratory data from oil exposures. SSD curves express the fraction of species responding to different types of biomarkers. They have been connected to SSDs for whole organism responses (WORs) constructed in order to relate the SSDbiomarkers to animal fitness parameters that are commonly used in environmental risk assessment. The resulting SSD curves show that biomarkers and WORs can be linked through their potentially affected fraction of species (PAF) distributions, enhancing the capability to monitor field parameters with better correlation to impact and risk assessment criteria and providing improved chemical/biological integration.
Collapse
|
31
|
Kwok RK, Engel LS, Miller AK, Blair A, Curry MD, Jackson WB, Stewart PA, Stenzel MR, Birnbaum LS, Sandler DP. The GuLF STUDY: A Prospective Study of Persons Involved in the Deepwater Horizon Oil Spill Response and Clean-Up. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:570-578. [PMID: 28362265 PMCID: PMC5382003 DOI: 10.1289/ehp715] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND The 2010 Deepwater Horizon disaster led to the largest ever marine oil spill. Individuals who worked on the spill were exposed to toxicants and stressors that could lead to adverse effects. OBJECTIVES The GuLF STUDY was designed to investigate relationships between oil spill exposures and multiple potential physical and mental health effects. METHODS Participants were recruited by telephone from lists of individuals who worked on the oil spill response and clean-up or received safety training. Enrollment interviews between 2011 and 2013 collected information about spill-related activities, demographics, lifestyle, and health. Exposure measurements taken during the oil spill were used with questionnaire responses to characterize oil exposures of participants. Participants from Gulf states completed a home visit in which biological and environmental samples, anthropometric and clinical measurements, and additional health and lifestyle information were collected. Participants are being followed for changes in health status. RESULTS Thirty-two thousand six hundred eight individuals enrolled in the cohort, and 11,193 completed a home visit. Most were young (56.2% ≤ 45 years of age), male (80.8%), lived in a Gulf state (82.3%), and worked at least 1 day on the oil spill (76.5%). Workers were involved in response (18.0%), support operations (17.5%), clean-up on water (17.4%) or land (14.6%), decontamination (14.3%), and administrative support (18.3%). Using an ordinal job exposure matrix, 45% had maximum daily total hydrocarbon exposure levels ≥ 1.0 ppm. CONCLUSIONS The GuLF STUDY provides a unique opportunity to study potential adverse health effects from the Deepwater Horizon oil spill.
Collapse
|
32
|
Gaston AJ, Hashimoto Y, Wilson L. Post-breeding movements of Ancient Murrelet Synthliboramphus antiquus family groups, subsequent migration of adults and implications for management. PLoS One 2017; 12:e0171726. [PMID: 28235033 PMCID: PMC5325222 DOI: 10.1371/journal.pone.0171726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/24/2017] [Indexed: 11/29/2022] Open
Abstract
Increased shipping in British Columbia (BC) waters poses risks for marine birds from marine oil spills. Ancient Murrelets (Synthliboramphus antiquus), small marine diving birds of which half of the world’s population breeds in BC, are especially susceptible to oiling immediately after departing from their breeding colonies, as their offspring are flightless, constraining their parents to remain with them. In 2014 we deployed geolocator loggers on Ancient Murrelets at four breeding colonies, two on the east and two on the west coast of Haida Gwaii to investigate patterns of post-breeding dispersal and subsequent migratory movements. Birds from east coast colonies moved south and east after leaving their colonies, remaining in Queen Charlotte Sound and adjacent waters for 4–6 weeks, whereas those from west coast colonies moved steadily north and west, so that they left BC waters earlier than those from east coast colonies. These movements were consistent with being driven by surface currents. In June, all birds moved rapidly to the eastern Aleutians, SE Bering Sea, and waters off Kamchatka, where they probably moulted. In August, most moved north, some passing through Bering Straits into the Chukchi Sea. In October-November some birds returned to waters off western N America (33%) and the remainder carried on westwards to waters off Japan, Korea and NE China. For the former group the movement to the Bering Sea in June constituted a moult migration and, as such, is the first described for an auk. Those birds wintering in Asia began moving east in February and arrived off BC in March, when observations at colonies show that burrow visits begin in Haida Gwaii. Our data suggest that, immediately after colony departure, birds from the east coast colonies (about half the population of Haida Gwaii) are at higher risk from potential oil spills in northern British Columbia waters than those breeding on the west coast.
Collapse
|
33
|
Sam K, Coulon F, Prpich G. A multi-attribute methodology for the prioritisation of oil contaminated sites in the Niger Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1323-1332. [PMID: 27916308 DOI: 10.1016/j.scitotenv.2016.11.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
The Ogoniland region of the Niger Delta contains a vast number of sites contaminated with petroleum hydrocarbons that originated from Nigeria's active oil sector. The United Nations Environment Programme (UNEP) reported on this widespread contamination in 2011, however, wide-scale action to clean-up these sites has yet to be initiated. A challenge for decision makers responsible for the clean-up of these sites has been the prioritisation of sites to enable appropriate allocation of scarce resources. In this study, a risk-based multi-criteria decision analysis framework was used to prioritise high-risk sites contaminated with petroleum hydrocarbons in the Ogoniland region of Nigeria. The prioritisation method used a set of risk-based attributes that took into account chemical and ecological impacts, as well as socio-economic impacts, providing a holistic assessment of the risk. Data for the analysis was taken from the UNEP Environmental Assessment of Ogoniland, where over 110 communities were assessed for oil-contamination. Results from our prioritisation show that the highest-ranking sites were not necessarily the sites with the highest observed level of hydrocarbon contamination. This differentiation was due to our use of proximity as a surrogate measure for likelihood of exposure. Composite measures of risk provide a more robust assessment, and can enrich discussions about risk management and the allocation of resources for the clean-up of affected sites.
Collapse
|
34
|
Valdor PF, Puente A, Gómez AG, Ondiviela B, Juanes JA. Are environmental risk estimations linked to the actual environmental impact? Application to an oil handling facility (NE Spain). MARINE POLLUTION BULLETIN 2017; 114:941-951. [PMID: 27865520 DOI: 10.1016/j.marpolbul.2016.10.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
The environmental risk analysis of aquatic systems includes the evaluation of the likelihood that adverse ecological effects may occur as a result of exposure to one or more stressors. In harbor areas, pollution is provided by a complex mixture of substances with different levels of toxicity, persistence and bioaccumulation, which complicates the hazards characterization and their multiple effects. A study of the relationship between the environmental impact and the environmental risk assessment at a specific isolated oil handling facility was undertaken. The environmental risk of the oil handling facility, considering the consequences of specific pollutants, was estimated and the associated environmental impact was quantified based on a 'weights of evidence' approach. The contamination quantified at the potentially affected area around the monobuoy of Tarragona has proved to be related with environmental risk estimations but the lines of evidence obtained do not allow us to assert that the activity developed at this facility has an associated environmental impact.
Collapse
|
35
|
Nevalainen M, Helle I, Vanhatalo J. Preparing for the unprecedented - Towards quantitative oil risk assessment in the Arctic marine areas. MARINE POLLUTION BULLETIN 2017; 114:90-101. [PMID: 27593852 DOI: 10.1016/j.marpolbul.2016.08.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 05/23/2023]
Abstract
The probability of major oil accidents in Arctic seas is increasing alongside with increasing maritime traffic. Hence, there is a growing need to understand the risks posed by oil spills to these unique and sensitive areas. So far these risks have mainly been acknowledged in terms of qualitative descriptions. We introduce a probabilistic framework, based on a general food web approach, to analyze ecological impacts of oil spills. We argue that the food web approach based on key functional groups is more appropriate for providing holistic view of the involved risks than assessments based on single species. We discuss the issues characteristic to the Arctic that need a special attention in risk assessment, and provide examples how to proceed towards quantitative risk estimates. The conceptual model presented in the paper helps to identify the most important risk factors and can be used as a template for more detailed risk assessments.
Collapse
|
36
|
Meng Q. The spatiotemporal characteristics of environmental hazards caused by offshore oil and gas operations in the Gulf of Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:663-671. [PMID: 27213845 DOI: 10.1016/j.scitotenv.2016.05.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 06/05/2023]
Abstract
Marine ecosystems are home to a host of numerous species ranging from tiny planktonic organisms, fishes, and birds, to large mammals such as the whales, manatees, and seals. However, human activities such as offshore oil and gas operations increasingly threaten marine and coastal ecosystems, for which there has been little exploration into the spatial and temporal risks of offshore oil operations. Using the Gulf of Mexico, one of the world's hottest spots of offshore oil and gas mining, as the study area, we propose a spatiotemporal approach that integrates spatial statistics and geostatistics in a geographic information system environment to provide insight to environmental management and decision making for oil and gas operators, coastal communities, local governments, and the federal government. We use the records from 1995 to 2015 of twelve types of hazards caused by offshore oil and gas operations, and analyze them spatially over a five year period. The spatial clusters of these hazards are analyzed and mapped using Getis-Ord Gi and local Moran's I statistics. We then design a spatial correlation coefficient matrix for multivariate spatial correlation, which is the ratio of the cross variogram of two types of hazards to the product of the variograms of the two hazards, showing a primary understanding of the degrees of spatial correlation among the twelve types hazards. To the best of our knowledge, it is the first application of spatiotemporal analysis methods to environmental hazards caused by offshore oil and gas operations; the proposed methods can be applied to other regions for the management and monitoring of environmental hazards caused by offshore oil operations.
Collapse
|
37
|
Duke NC. Oil spill impacts on mangroves: Recommendations for operational planning and action based on a global review. MARINE POLLUTION BULLETIN 2016; 109:700-15. [PMID: 27373945 DOI: 10.1016/j.marpolbul.2016.06.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 05/08/2023]
Abstract
Mangrove tidal wetland habitats are recognised as highly vulnerable to large and chronic oil spills. This review of current literature and public databases covers the last 6 decades, summarising global data on oil spill incidents affecting, or likely to have affected, mangrove habitat. Over this period, there have been at least 238 notable oil spills along mangrove shorelines worldwide. In total, at least 5.5milliontonnes of oil has been released into mangrove-lined, coastal waters, oiling possibly up to around 1.94millionha of mangrove habitat, and killing at least 126,000ha of mangrove vegetation since 1958. However, there were assessment limitations with incomplete and unavailable data, as well as unequal coverage across world regions. To redress the gaps described here in reporting on oil spill impacts on mangroves and their recovery worldwide, a number of recommendations and suggestions are made for refreshing and updating standard operational procedures for responders, managers and researchers alike.
Collapse
|
38
|
Peres LC, Trapido E, Rung AL, Harrington DJ, Oral E, Fang Z, Fontham E, Peters ES. The Deepwater Horizon Oil Spill and Physical Health among Adult Women in Southern Louisiana: The Women and Their Children's Health (WaTCH) Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1208-13. [PMID: 26794669 PMCID: PMC4977051 DOI: 10.1289/ehp.1510348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/28/2015] [Accepted: 01/08/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND The Deepwater Horizon Oil Spill (DHOS) is the largest oil spill in U.S. history, negatively impacting Gulf Coast residents and the surrounding ecosystem. To date, no studies have been published concerning physical health outcomes associated with the DHOS in the general community. OBJECTIVES We characterized individual DHOS exposure using survey data and examined the association between DHOS exposure and physical health. METHODS Baseline data from 2,126 adult women residing in southern Louisiana and enrolled in the Women and Their Children's Health study were analyzed. Exploratory factor analysis was used to characterize DHOS exposure. Odds ratios and 95% confidence intervals for the associations between DHOS exposure and physical health symptoms were estimated using multivariate logistic regression. RESULTS A two-factor solution was identified as the best fit for DHOS exposure: physical-environmental exposure and economic exposure. High physical-environmental exposure was significantly associated with all of the physical health symptoms, with the strongest associations for burning in nose, throat, or lungs (OR = 4.73; 95% CI: 3.10, 7.22), sore throat (OR = 4.66; 95% CI: 2.89, 7.51), dizziness (OR = 4.21; 95% CI: 2.69, 6.58), and wheezing (OR = 4.20; 95% CI: 2.86, 6.17). Women who had high-economic exposure were significantly more likely to report wheezing (OR = 1.92; 95% CI: 1.32, 2.79); headaches (OR = 1.81; 95% CI: 1.41, 2.58); watery, burning, itchy eyes (OR = 1.61; 95% CI: 1.20, 2.16); and stuffy, itchy, runny nose (OR = 1.56; 95% CI: 1.16, 2.08). CONCLUSIONS Among southern Louisiana women, both physical-environmental and economic exposure to the DHOS were associated with an increase in self-reported physical health outcomes. Additional longitudinal studies of this unique cohort are needed to elucidate the impact of the DHOS on short- and long-term human health. CITATION Peres LC, Trapido E, Rung AL, Harrington DJ, Oral E, Fang Z, Fontham E, Peters ES. 2016. The Deepwater Horizon Oil Spill and physical health among adult women in southern Louisiana: the Women and Their Children's Health (WaTCH) study. Environ Health Perspect 124:1208-1213; http://dx.doi.org/10.1289/ehp.1510348.
Collapse
|
39
|
Afenyo M, Khan F, Veitch B, Yang M. Modeling oil weathering and transport in sea ice. MARINE POLLUTION BULLETIN 2016; 107:206-215. [PMID: 27130467 DOI: 10.1016/j.marpolbul.2016.03.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/21/2016] [Accepted: 03/27/2016] [Indexed: 05/23/2023]
Abstract
This paper presents a model of oil weathering and transport in sea ice. It contains a model formulation and scenario simulation to test the proposed model. The model formulation is based on state-of-the-art models for individual weathering and transport processes. The approach incorporates the dependency of weathering and transport processes on each other, as well as their simultaneous occurrence after an oil spill in sea ice. The model is calibrated with available experimental data. The experimental data and model prediction show close agreement. A sensitivity analysis is conducted to determine the most sensitive parameters in the model. The model is useful for contingency planning of a potential oil spill in sea ice. It is suitable for coupling with a level IV fugacity model, to estimate the concentration and persistence of hydrocarbons in air, ice, water and sediments for risk assessment purposes.
Collapse
|
40
|
Zhao L, Boufadel MC, Geng X, Lee K, King T, Robinson B, Fitzpatrick F. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs). MARINE POLLUTION BULLETIN 2016; 106:245-259. [PMID: 26992749 DOI: 10.1016/j.marpolbul.2016.02.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/15/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
Oil-particle interactions play a major role in removal of free oil from the water column. We present a new conceptual-numerical model, A-DROP, to predict oil amount trapped in oil-particle aggregates. A new conceptual formulation of oil-particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil-particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil-particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil-particle aggregation.
Collapse
|
41
|
Faghihifard M, Badri MA. Simulation of oil pollution in the Persian Gulf near Assaluyeh oil terminal. MARINE POLLUTION BULLETIN 2016; 105:143-149. [PMID: 26906497 DOI: 10.1016/j.marpolbul.2016.02.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/10/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
Numerical simulation of oil slick movement with respect to tidal factors and wind effects was performed in order to counteract oil pollution in the Persian Gulf. First, a flow model was invoked with respect to water level fluctuations. The main tidal constituents were applied to the model using the initial conditions of water level variations in the Hormuz Strait near the Hangam Island. The movement of oil pollution was determined due to wind, tide and temperature effects and confirmed by applying a verified field results. Simulations were focused near an important terminal in the Persian Gulf, Assaluyeh Port. The results were led to preparing a risk-taking map in a parallel research for the Persian Gulf.
Collapse
|
42
|
Burns KA, Jones R. Assessment of sediment hydrocarbon contamination from the 2009 Montara oil blow out in the Timor Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:214-225. [PMID: 26774768 DOI: 10.1016/j.envpol.2015.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
In August 2009, a blowout of the Montara H1 well 260 km off the northwest coast of Australia resulted in the uncontrolled release of about 4.7 M L of light crude oil and gaseous hydrocarbons into the Timor Sea. Over the 74 day period of the spill, the oil remained offshore and did not result in shoreline incidents on the Australia mainland. At various times slicks were sighted over a 90,000 km(2) area, forming a layer of oil which was tracked by airplanes and satellites but the slicks typically remained within 35 km of the well head platform and were treated with 183,000 L of dispersants. The shelf area where the spill occurred is shallow (100-200 m) and includes off shore emergent reefs and cays and submerged banks and shoals. This study describes the increased inputs of oil to the system and assesses the environmental impact. Concentrations of hydrocarbon in the sediment at the time of survey were very low (total aromatic hydrocarbons (PAHs) ranged from 0.04 to 31 ng g(-1)) and were orders of magnitude lower than concentrations at which biological effects would be expected.
Collapse
|
43
|
Roxo S, de Almeida JA, Matias FV, Mata-Lima H, Barbosa S. The use of sensory perception indicators for improving the characterization and modelling of total petroleum hydrocarbon (TPH) grade in soils. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:129. [PMID: 26832912 DOI: 10.1007/s10661-016-5135-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
This paper proposes a multistep approach for creating a 3D stochastic model of total petroleum hydrocarbon (TPH) grade in potentially polluted soils of a deactivated oil storage site by using chemical analysis results as primary or hard data and classes of sensory perception variables as secondary or soft data. First, the statistical relationship between the sensory perception variables (e.g. colour, odour and oil-water reaction) and TPH grade is analysed, after which the sensory perception variable exhibiting the highest correlation is selected (oil-water reaction in this case study). The probabilities of cells belonging to classes of oil-water reaction are then estimated for the entire soil volume using indicator kriging. Next, local histograms of TPH grade for each grid cell are computed, combining the probabilities of belonging to a specific sensory perception indicator class and conditional to the simulated values of TPH grade. Finally, simulated images of TPH grade are generated by using the P-field simulation algorithm, utilising the local histograms of TPH grade for each grid cell. The set of simulated TPH values allows several calculations to be performed, such as average values, local uncertainties and the probability of the TPH grade of the soil exceeding a specific threshold value.
Collapse
|
44
|
Echols BS, Smith A, Gardinali P, Rand G. An Evaluation of Select Test Variables Potentially Affecting Acute Oil Toxicity. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:392-405. [PMID: 26467150 DOI: 10.1007/s00244-015-0228-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
In the wake of the Deepwater Horizon incident (2010) in the Gulf of Mexico, an abundance of research studies have been performed, but the methodologies used have varied making comparisons and replication difficult. In this study, acute toxicity tests with mysids and inland silversides were performed to examine the effect of different variables on test results. The toxicity test variables evaluated in this study included (1) open versus closed static test chambers, (2) natural versus artificial diluent, (3) aerated versus nonaerated test solution, and (4) low versus medium energy water-accommodated (WAF) mixing energies. The use of tests using natural or artificial diluent showed no difference in either toxicity test or analytical chemistry results. Based on median lethal concentrations (LC50) of WAFs of unweathered oil (MASS), mysid tests performed in closed chambers were approximately 41 % lower than LC50 values from open-chamber studies, possibly a result of the presence of low-molecular weight volatile aromatics (i.e., naphthalenes). This research also showed that using a medium-energy WAF (with a 20–25 % vortex) increases the number of chemical components compared with low-energy WAF, thus affecting the composition of the exposure media and increasing toxicity. The comparison of toxic units as a measure of the potential toxicity of fresh and weathered oils showed that weathered oils (e.g., Juniper, CTC) are less toxic than the unweathered MASS oil. In the event of future oil spills, these variables should be considered to ensure that data regarding the potential toxicity and environmental risk are of good quality and reproducible.
Collapse
|
45
|
Esbaugh AJ, Mager EM, Stieglitz JD, Hoenig R, Brown TL, French BL, Linbo TL, Lay C, Forth H, Scholz NL, Incardona JP, Morris JM, Benetti DD, Grosell M. The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:644-651. [PMID: 26613518 DOI: 10.1016/j.scitotenv.2015.11.068] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
To better understand the impact of the Deepwater Horizon (DWH) incident on commercially and ecologically important pelagic fish species, a mahi-mahi spawning program was developed to assess the effect of embryonic exposure to DWH crude oil with particular emphasis on the effects of weathering and dispersant on the magnitude of toxicity. Acute lethality (96 h LC50) ranged from 45.8 (28.4-63.1) μg l(-1) ΣPAH for wellhead (source) oil to 8.8 (7.4-10.3) μg l(-1) ΣPAH for samples collected from the surface slick, reinforcing previous work that weathered oil is more toxic on a ΣPAH basis. Differences in toxicity appear related to the amount of dissolved 3 ringed PAHs. The dispersant Corexit 9500 did not influence acute lethality of oil preparations. Embryonic oil exposure resulted in cardiotoxicity after 48 h, as evident from pericardial edema and reduced atrial contractility. Whereas pericardial edema appeared to correlate well with acute lethality at 96 h, atrial contractility did not. However, sub-lethal cardiotoxicity may impact long-term performance and survival. Dispersant did not affect the occurrence of pericardial edema; however, there was an apparent reduction in atrial contractility at 48 h of exposure. Pericardial edema at 48 h and lethality at 96 h were equally sensitive endpoints in mahi-mahi.
Collapse
|
46
|
Schifter I, González-Macías C, Salazar-Coria L, Sánchez-Reyna G, González-Lozano C. Long-term effects of discharges of produced water the marine environment from petroleum-related activities at Sonda de Campeche, Gulf of México. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:723. [PMID: 26519077 DOI: 10.1007/s10661-015-4944-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Produced water from offshore oil platforms is a major source of oil and related chemicals into the sea. The large volume and high salinity of produced water could pose severe environmental impacts upon inadequate disposal. This study is based on direct field sampling of effluents released into the ocean in the years 2003 and 2013 at the Sonda de Campeche located in the southern part of the Gulf of Mexico. Metals and hydrocarbons were characterized in water, sediments, and fish tissues at the discharge site and compared with those obtained at two reference sites. Chemicals that exceeded risk-based concentrations in the discharge included the metals As, Pb, Cd, and Cr, and a variety of compounds polycyclic aromatic hydrocarbon (PAHs), including naphthalene, fluorenes, and low molecular weight PAHs. The values of low to high molecular weight polycyclic aromatic hydrocarbon (PAHs), and carbon preference index indicate that hydrocarbons in sediments of the discharge zone are originated from the produced water and combustion sources. Fish tissues at the discharge zone and reference site are contaminated with PAHs, dominated by 2- and 3-rings; 4-ring accounted for less than 1% of total PAHs (TPAHs) in 2003, but increased to 7% in 2013. Results suggest that, from 2003 to 2013, discharges of produced water have had a non-negligible impact on ecosystems at a regional level, so the possibility of subtle, cumulative effects from operational discharges should not be ignored.
Collapse
|
47
|
Suneel V, Vethamony P, Naik BG, Krishna MS, Jadhav L. Identifying the source of tar balls deposited along the beaches of Goa in 2013 and comparing with historical data collected along the West Coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:313-321. [PMID: 25965045 DOI: 10.1016/j.scitotenv.2015.04.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Deposition of oil residues, also known as tar balls, is a seasonal phenomenon, and it occurs only in the southwest monsoon season along the west coast of India. This has become a serious environmental issue, as Goa is a global tourist destination. The present work aims at identifying the source oil of the tar balls that consistently depositing along the Goa coast using multi-marker fingerprint technique. In this context, the tar ball samples collected in May 2013 from 9 beaches of Goa coast and crude oils from different oil fields and grounded ship were subject to multi-marker analyses such as n-alkanes, pentacyclic terpanes, regular steranes, compound specific isotope analysis (CSIA) and principle component analysis (PCA). The n-alkane weathering index shows that samples have been weathered to various degrees, and the status of weathering is moderate. Since the international tanker route passes closer to the west coast of India (WCI), it is generally presumed that tanker wash is the source of the tar balls. We found that 2010/2011 tar balls are as tanker wash, but the present study demonstrates that the Bombay High (BH) oil fields can also contribute to oil contamination (tar balls) along ≈ 650 km stretch of the WCI, running from Gujarat in the north to Goa in the south. The simulated trajectories show that all the particles released in April traveled in the southeast direction, and by May, they reached the Goa coast with the influence of circulation of Indian monsoon system.
Collapse
|
48
|
Helle I, Ahtiainen H, Luoma E, Hänninen M, Kuikka S. A probabilistic approach for a cost-benefit analysis of oil spill management under uncertainty: A Bayesian network model for the Gulf of Finland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 158:122-32. [PMID: 25983196 DOI: 10.1016/j.jenvman.2015.04.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/27/2015] [Accepted: 04/28/2015] [Indexed: 05/23/2023]
Abstract
Large-scale oil accidents can inflict substantial costs to the society, as they typically result in expensive oil combating and waste treatment operations and have negative impacts on recreational and environmental values. Cost-benefit analysis (CBA) offers a way to assess the economic efficiency of management measures capable of mitigating the adverse effects. However, the irregular occurrence of spills combined with uncertainties related to the possible effects makes the analysis a challenging task. We develop a probabilistic modeling approach for a CBA of oil spill management and apply it in the Gulf of Finland, the Baltic Sea. The model has a causal structure, and it covers a large number of factors relevant to the realistic description of oil spills, as well as the costs of oil combating operations at open sea, shoreline clean-up, and waste treatment activities. Further, to describe the effects on environmental benefits, we use data from a contingent valuation survey. The results encourage seeking for cost-effective preventive measures, and emphasize the importance of the inclusion of the costs related to waste treatment and environmental values in the analysis. Although the model is developed for a specific area, the methodology is applicable also to other areas facing the risk of oil spills as well as to other fields that need to cope with the challenging combination of low probabilities, high losses and major uncertainties.
Collapse
|
49
|
Socolofsky SA, Adams EE, Boufadel MC, Aman ZM, Johansen Ø, Konkel WJ, Lindo D, Madsen MN, North EW, Paris CB, Rasmussen D, Reed M, Rønningen P, Sim LH, Uhrenholdt T, Anderson KG, Cooper C, Nedwed TJ. Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection. MARINE POLLUTION BULLETIN 2015; 96:110-26. [PMID: 26021288 DOI: 10.1016/j.marpolbul.2015.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 05/22/2023]
Abstract
We compare oil spill model predictions for a prototype subsea blowout with and without subsea injection of chemical dispersants in deep and shallow water, for high and low gas-oil ratio, and in weak to strong crossflows. Model results are compared for initial oil droplet size distribution, the nearfield plume, and the farfield Lagrangian particle tracking stage of hydrocarbon transport. For the conditions tested (a blowout with oil flow rate of 20,000 bbl/d, about 1/3 of the Deepwater Horizon), the models predict the volume median droplet diameter at the source to range from 0.3 to 6mm without dispersant and 0.01 to 0.8 mm with dispersant. This reduced droplet size owing to reduced interfacial tension results in a one to two order of magnitude increase in the downstream displacement of the initial oil surfacing zone and may lead to a significant fraction of the spilled oil not reaching the sea surface.
Collapse
|
50
|
Fernández-Varela R, Gómez-Carracedo MP, Ballabio D, Andrade JM. The use of diagnostic ratios, biomarkers and 3-way Kohonen neural networks to monitor the temporal evolution of oil spills. MARINE POLLUTION BULLETIN 2015; 96:313-320. [PMID: 25935805 DOI: 10.1016/j.marpolbul.2015.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
Oil spill identification relies usually on a wealth of chromatographic data which requires advanced data treatment (chemometrics). A simple approach based on Kohonen neural networks to handle three-dimensional arrays is presented. A suite of 28 diagnostic ratios was considered to monitor six oils along four months. It was found that some traditional diagnostic ratios were not stable enough. In particular, alkylated PAHs (e.g. 1-methyldibenzothiophene, 4-methylpyrene, 27bbSTER and the TA21 and TA26 triaromatic steroids) seemed less resistant to medium-weathering than biomarkers. One (or two) ratios were found to differentiate each product: 30O, 28ab (and 25nor30ab), C3-dbt/C3-phe, 27Ts, TA26 and 29Ts characterized Ashtart, Brent, Maya, Sahara, IFO and Prestige oils, respectively.
Collapse
|