26
|
Moradkhani H, Izadkhah MS, Anarjan N, Abdi A. Oxygen mass transfer and shear stress effects on Pseudomonas putida BCRC 14365 growth to improve bioreactor design and performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22427-22441. [PMID: 28803423 DOI: 10.1007/s11356-017-9827-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
In this work, the experimental evidence is presented for two basic issues including oxygen mass transfer and shear analysis on the microorganism containing medium on the most prominent sections of the bioreactor. Computational fluid dynamics (CFD) methodology reproduces shear rate values for specific impeller designs using the commercial code (Fluent 6.2). CFD calculates volumetric mass transfer coefficient based on the Higbie's penetration theory. Four types of impeller are used. The spherical probe is used to measure flow hydrodynamic parameters to obtain shear rate by electro-diffusion (ED) method. The obtained results are validated experimentally and it is shown that a fully axial pattern impeller represents more enhanced results than partially axial and radial. In this regard, experimental results for volumetric oxygen mass transfer coefficient (k l a) confirm CFD predictions by acceptable deviations of 2.65, 8.90, and 9.20 for 0.15, 0.2, and 0.3 VVM, respectively. These results collaboratively indicate that LIGHTNIN-C 200 type operates more efficiently by reflecting the flow to the bottom corner stagnation areas with the minimum tolerable shear and the most velocity distribution uniformity. Furthermore, the values of k l a improve by aeration rate. Conversely, increasing the rotational speed of impeller creates difficulties for cell growth due to the generated harsh shear condition. CFD provide a better understanding of how operational and geometrical variables may be manipulated to achieve a moderate shear rate and acceptable level of mass transfer.
Collapse
|
27
|
Nie H, Xiao Y, Liu H, He J, Chen W, Huang Q. FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:571-580. [PMID: 28517238 DOI: 10.1111/1758-2229.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
FleN generally functions as an antagonist of FleQ in regulating flagellar genes and biofilm matrix related genes in Pseudomonas aeruginosa. Here, we found that in Pseudomonas putida KT2440, FleN and FleQ play a synergistic role in regulating two biofilm matrix coding operons, lapA and bcs. FleN deletion decreased the transcription of lapA and increased the transcription of bcs operon, and the same trend was observed in fleQ deletion mutant before. In vitro experiments showed that FleN promoted the binding of FleQ to the lapA/bcs promoter DNA especially in the presence of ATP. Both phenotype observation and transcription analysis showed that, similar to fleQ deletion, fleN deletion significantly weaken the effect of high c-di-GMP level on biofilm formation, surface winkle phenotype and expression of lapA and bcs operons. Mutagenesis of the putative ATP binding motif in FleNK21Q revealed that FleN ATPase activity played an essential role in the regulation of flagellar number and swimming motility but was not critical for biofilm formation. Our results revealed that FleN was not an antagonist of FleQ but a synergistic factor of FleQ in regulating the two biofilm matrix coding operons in P. putida KT2440.
Collapse
|
28
|
Singh SP, Guha S, Bose P. Impact of the composition of the bacterial population and additional carbon source on the pathway and kinetics of degradation of endosulfan isomers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:964-974. [PMID: 28657620 DOI: 10.1039/c7em00154a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abiotic and bacterial degradation is presented for the two isomers α- and β- of the organochlorine pesticide endosulfan, denoted as ES-1 and ES-2, respectively. Biodegradation studies were conducted with two indigenous species Pseudomonas putida (P. putida) and Rhodococcus sp. Both ES isomers rapidly hydrolyzed in water at pH ≥ 7 but the hydrolysis was inhibited in the presence of biomass. The pesticide partitioned onto the biomass making it unavailable for abiotic hydrolytic reaction. Spontaneous temperature dependent abiotic conversion of ES-2 to ES-1 was reported in the presence of dual air-water phases but was not observed in the abiotic aqueous phase. Biodegradation experiments with pure isomers showed a small amount of interconversion (∼5%) in either direction and ruled out any preferential interconversion of the ES-2 isomer to ES-1 or vice versa. Both the species were shown to degrade ES-2 at a higher rate compared to ES-1 which may lead to enrichment of ES-1 in agricultural fields in short-term following application of the pesticide. P. putida degraded both the ES isomers through oxidative and hydrolytic pathways while the Rhodococcus sp. used only the hydrolytic pathway. Since ES-S (product of the oxidative pathway) is orders of magnitude more toxic than the parent isomers, the short term toxicity of a field following the application of the pesticide may increase if the composition of the indigenous bacterial population is such that the oxidative pathway is preferred over the hydrolytic one. The presence of an additional carbon source increased the rates of degradation of both the isomers but the enhancement was greater for the degradation rate of ES-2 than ES-1.
Collapse
|
29
|
Wijker RS, Zeyer J, Hofstetter TB. Isotope fractionation associated with the simultaneous biodegradation of multiple nitrophenol isomers by Pseudomonas putida B2. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:775-784. [PMID: 28470308 DOI: 10.1039/c6em00668j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quantifying the extent of biodegradation of nitroaromatic compounds (NACs) in contaminated soils and sediments is challenging because of competing oxidative and reductive reaction pathways. We have previously shown that the stable isotope fractionation of NACs reveals the routes of degradation even if it is simultaneously caused by different bacteria. However, it is unclear whether compound-specific isotope analysis (CSIA) can be applied in situations where multiple pollutants are biodegraded by only one microorganism under multi-substrate conditions. Here we examined the C and N isotope fractionation of 2-nitrophenol (2-NP) and 3-nitrophenol (3-NP) during biodegradation by Pseudomonas putida B2 through monooxygenation and partial reductive pathways, respectively, in the presence of single substrates vs. binary substrate mixtures. Laboratory experiments showed that the reduction of 3-NP by Pseudomonas putida B2 is associated with large N and minor C isotope fractionation with C and N isotope enrichment factors, εC and εN, of -0.3 ± 0.1‰ and -22 ± 0.2‰, respectively. The opposite isotope fractionation trends were found for 2-NP monooxygenation. In the simultaneous presence of 2-NP and 3-NP, 2-NP is biodegraded at identical rate constants and εC and εN values (-1.0 ± 0.1‰ and -1.3 ± 0.2‰) to those found for the monooxygenation of 2-NP in single substrate experiments. While the pathway and N isotope fractionation of 3-NP reduction (εN = -24 ± 1.1‰) are independent of the presence of 2-NP, intermediates of 2-NP monooxygenation interfere with 3-NP reduction. Because neither pH, substrate uptake, nor aromatic substituents affected the kinetic isotope effects of nitrophenol biodegradation, our study illustrates that CSIA provides robust scientific evidence for the assessment of natural attenuation processes.
Collapse
|
30
|
Xu X, Li H, Wang Q, Li D, Han X, Yu H. A facile approach for surface alteration of Pseudomonas putida I3 by supplying K 2SO 4 into growth medium: Enhanced removal of Pb(II) from aqueous solution. BIORESOURCE TECHNOLOGY 2017; 232:79-86. [PMID: 28219053 DOI: 10.1016/j.biortech.2017.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
A new sight of obtaining a high efficient biosorbent by supplying specific salts into bacterial growth medium was investigated in this study for Pb(II). Among a series of salts including Na2SO4, Na2S2O3, KCl, and K2SO4, the highest Pb(II) removal efficiency was observed by psychrotrophilic Pseudomonas putida I3 grown in the presence of 30g/L K2SO4 (KSI3-30) with biosorption capacity of 62.89mg/g under cold condition (15°C), which was increased by 42.35% as compared to control (without any additive, RI3). This stimulation effect was ascribed to the increase of potassium and sulfur containing groups on KSI3-30 surface via metabolic dependent ways. The probable mechanism for Pb(II) adsorption was ion-exchange and chemical complexation. The thermal and kinetic data well fitted to Langmuir adsorption model and pseudo-second order and intraparticle diffusion kinetic model. Good recyclability and effectively dealing with real wastewater suggested KSI3-30 was a promising biosorbent for Pb-contaminated wastewater treatment.
Collapse
|
31
|
Piotrowska A, Syguda A, Wyrwas B, Chrzanowski Ł, Heipieper HJ. Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida. CHEMOSPHERE 2017; 167:114-119. [PMID: 27716584 DOI: 10.1016/j.chemosphere.2016.09.140] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 05/26/2023]
Abstract
Combination of the hydrophilic herbicidal anion with hydrophobic, antimicrobial ammonium cation allows to obtain compounds in ionic liquid form with better properties then conventional herbicides. Both cation and anion can be modified by selection of herbicide and the length of alkyl chains in cation structure. However the knowledge of their potential toxic effects are still limited. Furthermore, the relation between hydrophobicity associated with the length of alkyl chains and toxicity for ionic liquids has not been thoroughly studied. Therefore we investigated toxic effects of herbicidal ionic liquid forms on growth inhibition, given as EC50, of the common soil bacterium Pseudomonas putida. We thereby concentrated on quaternary ammonium salts. Analyzed compounds were composed of dicamba or MCPP moieties and cation with various alkyl chain lengths (n = 6,8,10) We compared them with commercial herbicides, and ammonium-based ionic liquids with neutral anion (Br-). In addition, cis-trans isomerisation of unsaturated membrane fatty acids in Pseudomonas putida was applied as the proxy for toxicity and membrane activity. We showed that toxicity increased with the length of alkyl chains. However, this correlation is only valid for six and eight carbon atom in alkyl chains, where for n = 10 the EC50 values rise by one order of magnitude. In our studies, the herbicidal ionic liquids [C10,C10,C1,C1N][MCPP] and [C10,C10,C1,C1N][dicamba] showed the lowest toxicity among analyzed quaternary ammonium salts and comparable toxicity with corresponding herbicides. No clear increase in toxicity could be followed by changing the anion moieties for ammonium-based ionic liquid forms.
Collapse
|
32
|
France MT, Remold SK. Interference Competition Among Household Strains of Pseudomonas. MICROBIAL ECOLOGY 2016; 72:821-830. [PMID: 26276409 DOI: 10.1007/s00248-015-0652-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
Bacterial species exhibit biogeographical patterns like those observed in larger organisms. The distribution of bacterial species is driven by environmental selection through abiotic and biotic factors as well dispersal limitations. We asked whether interference competition, a biotic factor, could explain variability in habitat use by Pseudomonas species in the human home. To answer this question, we screened almost 8000 directional, pairwise interactions between 89 Pseudomonas strains including members of the Pseudomonas aeruginosa (n = 29), Pseudomonas fluorescens (n = 21), and Pseudomonas putida (n = 39) species groups for the presence of killing. This diverse set of Pseudomonas strains includes those isolated from several different habitats within the home environment and includes combinations of strains that were isolated from different spatial scales. The use of this strain set not only allowed us to analyze the commonality and phylogenetic scale of interference competition within the genus Pseudomonas but also allowed us to investigate the influence of spatial scale on this trait. Overall, the probability of killing was found to decrease with increasing phylogenetic distance, making it unlikely that interference competition accounts for previously observed differential habitat use among Pseudomonas species and species groups. Strikingly, conspecific P. aeruginosa killing accounted for the vast majority of the observed killing, and this killing was found to differ across the habitat type and spatial scale of the strains' isolation. These data suggest that interference competition likely plays a large role in the within-species dynamics of P. aeruginosa but not other household Pseudomonas species.
Collapse
|
33
|
Wang L, Liu J, Zhao Q, Wei W, Sun Y. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. BIORESOURCE TECHNOLOGY 2016; 211:1-5. [PMID: 26995615 DOI: 10.1016/j.biortech.2016.03.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment.
Collapse
|
34
|
Sivasankar P, Rajesh Kanna A, Suresh Kumar G, Gummadi SN. Numerical modelling of biophysicochemical effects on multispecies reactive transport in porous media involving Pseudomonas putida for potential microbial enhanced oil recovery application. BIORESOURCE TECHNOLOGY 2016; 211:348-359. [PMID: 27030954 DOI: 10.1016/j.biortech.2016.03.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
pH and resident time of injected slug plays a critical role in characterizing the reservoir for potential microbial enhanced oil recovery (MEOR) application. To investigate MEOR processes, a multispecies (microbes-nutrients) reactive transport model in porous media was developed by coupling kinetic and transport model. The present work differs from earlier works by explicitly determining parametric values required for kinetic model by experimental investigations using Pseudomonas putida at different pH conditions and subsequently performing sensitivity analysis of pH, resident time and water saturation on concentrations of microbes, nutrients and biosurfactant within reservoir. The results suggest that nutrient utilization and biosurfactant production are found to be maximum at pH 8 and 7.5 respectively. It is also found that the sucrose and biosurfactant concentrations are highly sensitive to pH rather than reservoir microbial concentration, while at larger resident time and water saturation, the microbial and nutrient concentrations were lesser due to enhanced dispersion.
Collapse
|
35
|
Sayqal A, Xu Y, Trivedi DK, AlMasoud N, Ellis DI, Rattray NJW, Goodacre R. Metabolomics Analysis Reveals the Participation of Efflux Pumps and Ornithine in the Response of Pseudomonas putida DOT-T1E Cells to Challenge with Propranolol. PLoS One 2016; 11:e0156509. [PMID: 27331395 PMCID: PMC4917112 DOI: 10.1371/journal.pone.0156509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
Efflux pumps are critically important membrane components that play a crucial role in strain tolerance in Pseudomonas putida to antibiotics and aromatic hydrocarbons that result in these toxicants being expelled from the bacteria. Here, the effect of propranolol on P. putida was examined by sudden addition of 0.2, 0.4 and 0.6 mg mL-1 of this β-blocker to several strains of P. putida, including the wild type DOT-T1E and the efflux pump knockout mutants DOT-T1E-PS28 and DOT-T1E-18. Bacterial viability measurements reveal that the efflux pump TtgABC plays a more important role than the TtgGHI pump in strain tolerance to propranolol. Mid-infrared (MIR) spectroscopy was then used as a rapid, high-throughput screening tool to investigate any phenotypic changes resulting from exposure to varying levels of propranolol. Multivariate statistical analysis of these MIR data revealed gradient trends in resultant ordination scores plots, which were related to the concentration of propranolol. MIR illustrated phenotypic changes associated with the presence of this drug within the cell that could be assigned to significant changes that occurred within the bacterial protein components. To complement this phenotypic fingerprinting approach metabolic profiling was performed using gas chromatography mass spectrometry (GC-MS) to identify metabolites of interest during the growth of bacteria following toxic perturbation with the same concentration levels of propranolol. Metabolic profiling revealed that ornithine, which was only produced by P. putida cells in the presence of propranolol, presents itself as a major metabolic feature that has important functions in propranolol stress tolerance mechanisms within this highly significant and environmentally relevant species of bacteria.
Collapse
|
36
|
Lu TQ, Mao SY, Sun SL, Yang WL, Ge F, Dai YJ. Regulation of Hydroxylation and Nitroreduction Pathways during Metabolism of the Neonicotinoid Insecticide Imidacloprid by Pseudomonas putida. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4866-4875. [PMID: 27230024 DOI: 10.1021/acs.jafc.6b01376] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Imidacloprid (IMI) is mainly metabolized via nitroreduction and hydroxylation pathways, which produce different metabolites that are toxic to mammals and insects. However, regulation of IMI metabolic flux between nitroreduction and hydroxylation pathways is still unclear. In this study, Pseudomonas putida was found to metabolize IMI to 5-hydroxy and nitroso IMI and was therefore used for investigating the regulation of IMI metabolic flux. The cell growth time, cosubstrate, dissolved oxygen concentration, and pH showed significant effect on IMI degradation and nitroso and 5-hydroxy IMI formation. Gene cloning and overexpression in Escherichia coli proved that P. putida KT2440 aldehyde oxidase mediated IMI nitroreduction to nitroso IMI, while cytochrome P450 monooxygenase (CYP) failed to improve IMI hydroxylation. Moreover, E. coli cells without CYP could hydroxylate IMI, demonstrating the role of a non-CYP enzyme in IMI hydroxylation. Thus, the present study helps to further understand the environmental fate of IMI and its underlying mechanism.
Collapse
|
37
|
Combarros RG, Collado S, Díaz M. Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida. JOURNAL OF HAZARDOUS MATERIALS 2016; 310:246-252. [PMID: 26937871 DOI: 10.1016/j.jhazmat.2016.02.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/19/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
The increasing consumption of graphene derivatives leads to greater presence of these materials in wastewater treatment plants and ecological systems. The toxicity effect of graphene oxide (GO) on the microbial functions involved in the biological wastewater treatment process is studied, using Pseudomonas putida and salicylic acid (SA) as bacterial and pollutant models. A multiparametric flow cytometry (FC) method has been developed to measure the metabolic activity and viability of P. putida in contact with GO. A continuous reduction in the percentages of viable cells and a slight increase, lower than 5%, in the percentages of damaged and dead cells, suggest that P. putida in contact with GO loses the membrane integrity but preserves metabolic activity. The growth of P. putida was strongly inhibited by GO, since 0.05mgmL(-1) of GO reduced the maximum growth by a third, and the inhibition was considerably greater for GO concentrations higher than 0.1mgmL(-1). The specific SA removal rate decreased with GO concentration up to 0.1mgmL(-1) indicating that while GO always reduces the growth of P. putida, for concentrations higher than 0.1mgmL(-1), it also reduces its activity. Similar behaviour is observed using simulated urban and industrial wastewaters, the observed effects being more acute in the industrial wastewaters.
Collapse
|
38
|
Larimer C, Suter JD, Bonheyo G, Addleman RS. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope. JOURNAL OF BIOPHOTONICS 2016; 9:656-666. [PMID: 26992071 DOI: 10.1002/jbio.201500212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/27/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth.
Collapse
|
39
|
Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E. Impact of nanoscale zero valent iron on bacteria is growth phase dependent. CHEMOSPHERE 2016; 144:352-9. [PMID: 26378872 DOI: 10.1016/j.chemosphere.2015.09.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 05/20/2023]
Abstract
The toxic effect of nanoscale zero valent iron (nZVI) particles on bacteria from different growth phases was studied. Four bacterial strains namely Escherichia coli strains JM109 and BW25113, and Pseudomonas putida strains KT2440 and F1 were experimented. The growth curves of these strains were determined. Bacterial cells were harvested based on the predetermined time points, and exposed to nZVI. Cell viability was determined by the plate count method. Bacterial cells in lag and stationary phases showed higher resistance to nZVI for all four bacterial strains, whereas cells in exponential and decline phases were less resistant to nZVI and were rapidly inactivated when exposed to nZVI. Bacterial inactivation increased with the concentration of nZVI. Furthermore, less than 14% bacterial inactivation was observed when bacterial cells were exposed to the filtrate of nZVI suspension suggesting that the physical interaction between nZVI and cell is necessary for bacterial inactivation.
Collapse
|
40
|
Larimer C, Winder E, Jeters R, Prowant M, Nettleship I, Addleman RS, Bonheyo GT. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis. Anal Bioanal Chem 2015; 408:999-1008. [PMID: 26643074 PMCID: PMC4709385 DOI: 10.1007/s00216-015-9195-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
The accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and overall intensity of biofilms. In this work, a new method was developed to enhance the visibility and quantification of bacterial biofilms. First, broad-spectrum biomolecular staining was used to enhance the visibility of the cells, nucleic acids, and proteins that make up biofilms. Then, an image analysis algorithm was developed to objectively and quantitatively measure biofilm accumulation from digital photographs and results were compared to independent measurements of cell density. This new method was used to quantify the growth intensity of Pseudomonas putida biofilms as they grew over time. This method is simple and fast, and can quantify biofilm growth over a large area with approximately the same precision as the more laborious cell counting method. Stained and processed images facilitate assessment of spatial heterogeneity of a biofilm across a surface. This new approach to biofilm analysis could be applied in studies of natural, industrial, and environmental biofilms. A novel photographic method was developed to quantify bacterial biofilms. Broad spectrum biomolecular staining enhanced the visibility of the biofilms. Image analysis objectively and quantitatively measured biofilm accumulation from digital photographs. When compared to independent measurements of cell density the new method accurately quantified growth of Pseudomonas putida biofilms as they grew over time. The graph shows a comparison of biofilm quantification from cell density and image analysis. Error bars show standard deviation from three independent samples. Inset photographs show effect of staining ![]()
Collapse
|
41
|
Wang W, Xu P, Tang H. Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste. Sci Rep 2015; 5:16411. [PMID: 26574178 PMCID: PMC4647180 DOI: 10.1038/srep16411] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/14/2015] [Indexed: 11/08/2022] Open
Abstract
Treatment of solid and liquid tobacco wastes with high nicotine content remains a longstanding challenge. Here, we explored an environmentally friendly approach to replace tobacco waste disposal with resource recovery by genetically engineering Pseudomonas putida. The biosynthesis of 3-succinoyl-pyridine (SP), a precursor in the production of hypotensive agents, from the tobacco waste was developed using whole cells of the engineered Pseudomonas strain, S16dspm. Under optimal conditions in fed-batch biotransformation, the final concentrations of product SP reached 9.8 g/L and 8.9 g/L from aqueous nicotine solution and crude suspension of the tobacco waste, respectively. In addition, the crystal compound SP produced from aqueous nicotine of the tobacco waste in batch biotransformation was of high purity and its isolation yield on nicotine was 54.2%. This study shows a promising route for processing environmental wastes as raw materials in order to produce valuable compounds.
Collapse
|
42
|
Yong D, Liu C, Zhu C, Yu D, Liu L, Zhai J, Dong S. Detecting total toxicity in water using a mediated biosensor system with flow injection. CHEMOSPHERE 2015; 139:109-116. [PMID: 26071865 DOI: 10.1016/j.chemosphere.2015.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
A novel total toxicity detection method based on a mediated biosensor system with flow injection (MB-FI) was developed to rapidly and reliably detect respiration inhibitors (i.e., As2O3, KCN, salicylic acid (SA), 2,4-dintirophenol (DNP)) in water. The mediated biosensor toxicity assessment using microorganisms immobilized in calcium alginate filaments can greatly simplify the testing process and save time. In the MB-FI system, ferricyanide together with a respiration inhibitor was injected into the bioreactor, inhibiting the respiration of the immobilized microorganisms. The degree of inhibition was measured by determining the ferrocyanide generated in the effluent, expressed as the 50% inhibition concentration (IC50). The IC50 values for the four respiration inhibitors obtained using this method were comparable to those obtained using the classic method, confirming that this approach is an alternative alert method. More importantly, this constructed biosensor system with flow injection will facilitate the application and commercialization of this toxicity monitoring technology.
Collapse
|
43
|
Tobajas M, Verdugo V, Polo AM, Rodriguez JJ, Mohedano AF. Assessment of toxicity and biodegradability on activated sludge of priority and emerging pollutants. ENVIRONMENTAL TECHNOLOGY 2015; 37:713-721. [PMID: 26243262 DOI: 10.1080/09593330.2015.1079264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Several methods for evaluating the toxicity and biodegradability of hazardous pollutants (chlorinated compounds, chemical additives and pharmaceuticals) have been studied in this work. Different bioassays using representative bacteria of marine and terrestrial ecosystems such as Vibrio fischeri and Pseudomonas putida have been used to assess the ecotoxicity. Activated sludge was used to analyse the effect of those pollutants in a biological reactor of a sewage treatment plant (STP). The results demonstrate that none of the compounds is toxic to activated sludge, except ofloxacin to P. putida. The additives tested can be considered moderately toxic according to the more sensitive V. fischeri assays, whereas the EC50 values of the pharmaceuticals depend on the specific microorganism used in each test. Regarding the biodegradability, respirometric measurements were carried out for fast biodegradability assessment and the Zahn-Wellens test for inherent biodegradability. The evolution of the specific oxygen uptake rate (SOUR) showed that only diethyl phthalate was easily biodegradable and acetylsalicylic acid was partially biodegradable (98% and 65% degradation, respectively). The persistence of dichloromethane, ofloxacin and hidrochlorothiazide was confirmed along the 28 days of the Zahn-Wellens test whereas 1,1,1-trichloroethane showed inherent biodegradability (74% removal). Most of the chlorinated compounds, pharmaceuticals, bisphenol A and ethylenediaminetetraacetic acid were partially degraded in 28 d with total organic carbon (TOC) reduction ranging from 21% to 51%. Sulphamethoxazole showed certain biodegradation (50% removal) with TOC decrease around 31%, which indicates the formation of non-biodegradable by-products.
Collapse
|
44
|
Wienand K, Lechner M, Becker F, Jung H, Frey E. Non-Selective Evolution of Growing Populations. PLoS One 2015; 10:e0134300. [PMID: 26274606 PMCID: PMC4537121 DOI: 10.1371/journal.pone.0134300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022] Open
Abstract
Non-selective effects, like genetic drift, are an important factor in modern conceptions of evolution, and have been extensively studied for constant population sizes (Kimura, 1955; Otto and Whitlock, 1997). Here, we consider non-selective evolution in the case of growing populations that are of small size and have varying trait compositions (e.g. after a population bottleneck). We find that, in these conditions, populations never fixate to a trait, but tend to a random limit composition, and that the distribution of compositions “freezes” to a steady state. This final state is crucially influenced by the initial conditions. We obtain these findings from a combined theoretical and experimental approach, using multiple mixed subpopulations of two Pseudomonas putida strains in non-selective growth conditions (Matthijs et al, 2009) as model system. The experimental results for the population dynamics match the theoretical predictions based on the Pólya urn model (Eggenberger and Pólya, 1923) for all analyzed parameter regimes. In summary, we show that exponential growth stops genetic drift. This result contrasts with previous theoretical analyses of non-selective evolution (e.g. genetic drift), which investigated how traits spread and eventually take over populations (fixate) (Kimura, 1955; Otto and Whitlock, 1997). Moreover, our work highlights how deeply growth influences non-selective evolution, and how it plays a key role in maintaining genetic variability. Consequently, it is of particular importance in life-cycles models (Melbinger et al, 2010; Cremer et al, 2011; Cremer et al, 2012) of periodically shrinking and expanding populations.
Collapse
|
45
|
Li S, Li D, Yan W. Cometabolism of methyl tert-butyl ether by a new microbial consortium ERS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10196-10205. [PMID: 25697553 DOI: 10.1007/s11356-015-4211-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
The release of methyl tert-butyl-ether (MTBE) into the environment has increased the worldwide concern about the pollution of MTBE. In this paper, a microbial consortium was isolated from the soil sample near an oil station, which can degrade MTBE directly with a low biomass yield and MTBE degrading efficiency. Further research has indicated that this consortium can degrade MTBE efficiently when grown on n-octane as the cometabolic substrate. The results of 16S rDNA based on phylogenetic analysis of the selected operating taxonomic units (OTUs) involved in the consortium revealed that one OTU was related to Pseudomonas putida GPo1, which could cometabolically degrade MTBE on the growth of n-octane. This may help explain why n-octane could be the optimal cometabolic substrate of the consortium for MTBE degradation. Furthermore, the degradation of MTBE was observed along with the consumption of n-octane. Different K s values for MTBE were observed for cells grown with or without n-octane, suggesting that different enzymes are responsible for the oxidation of MTBE in cells grown on n-octane or MTBE. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism.
Collapse
|
46
|
Mellage A, Eckert D, Grösbacher M, Inan AZ, Cirpka OA, Griebler C. Dynamics of suspended and attached aerobic toluene degraders in small-scale flow-through sediment systems under growth and starvation conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7161-9. [PMID: 26009808 DOI: 10.1021/es5058538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The microbially mediated reactions, that are responsible for field-scale natural attenuation of organic pollutants, are governed by the concurrent presence of a degrading microbial community, suitable energy and carbon sources, electron acceptors, as well as nutrients. The temporal lack of one of these essential components for microbial activity, arising from transient environmental conditions, might potentially impair in situ biodegradation. This study presents results of small scale flow-through experiments aimed at ascertaining the effects of substrate-starvation periods on the aerobic degradation of toluene by Pseudomonas putida F1. During the course of the experiments, concentrations of attached and mobile bacteria, as well as toluene and oxygen were monitored. Results from a fitted reactive-transport model, along with the observed profiles, show the ability of attached cells to survive substrate-starvation periods of up to four months and suggest a highly dynamic exchange between attached and mobile cells under growth conditions and negligible cell detachment under substrate-starvation conditions. Upon reinstatement of toluene, it was readily degraded without a significant lag period, even after a starvation period of 130 days. Our experimental and modeling results strongly suggest that aerobic biodegradation of BTEX-hydrocarbons at contaminated field sites is not hampered by intermittent starvation periods of up to four months.
Collapse
|
47
|
Thuptimdang P, Limpiyakorn T, McEvoy J, Prüß BM, Khan E. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. JOURNAL OF HAZARDOUS MATERIALS 2015; 290:127-133. [PMID: 25756827 DOI: 10.1016/j.jhazmat.2015.02.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1-3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms.
Collapse
|
48
|
Puntus IF, Ryazanova LP, Zvonarev AN, Funtikova TV, Kulakovskaya TV. [The role of mineral phosphorus compounds in naphthalene biodegradation by Pseudomonas putida]. ACTA ACUST UNITED AC 2015; 51:198-205. [PMID: 26027355 DOI: 10.7868/s0555109915020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of phosphate concentration in the culture medium on the growth and naphthalene degradation by Pseudomonas putida BS 3701 was studied. The limiting concentration of phosphate was 0.4 mM and 0.1 mM under cultivation in media with naphthalene and glucose, respectively The phosphate deficiency correlated with a decrease in the activities of naphthalene dioxygenase and salicylate hydroxylase and with salicylate accumulation in the culture medium. We suggest that this fact indicates the impaired regulation of gene expression of "upper" and "lower" pathways of naphthalene oxidation. Under naphthalene degradation, the cells accumulated three times more inorganic polyphosphates as compared with the consumption of glucose. The involvement of polyphosphates in the regulation of naphthalene metabolism has been considered.
Collapse
|
49
|
Nancharaiah YV, Francis AJ. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria. CHEMOSPHERE 2015; 128:178-183. [PMID: 25703901 DOI: 10.1016/j.chemosphere.2015.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 01/18/2015] [Accepted: 01/24/2015] [Indexed: 06/04/2023]
Abstract
The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Pseudomonas putida. Bacterial growth was stimulated at up to 2.5 g L(-1) and inhibited at >2.5 g L(-1) of [EMIM][Ac]. The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presence of 0.5 g L(-1) [EMIM][Ac]. Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.
Collapse
|
50
|
Droz B, Dumas N, Duckworth OW, Peña J. A comparison of the sorption reactivity of bacteriogenic and mycogenic Mn oxide nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4200-8. [PMID: 25668070 DOI: 10.1021/es5048528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biogenic MnO2 minerals affect metal fate and transport in natural and engineered systems by strongly sorbing metals ions. The ability to produce MnO2 is widely dispersed in the microbial tree of life, leading to potential differences in the minerals produced by different organisms. In this study, we compare the structure and reactivity of biogenic Mn oxides produced by the biofilm-forming bacterium Pseudomonas putida GB-1 and the white-rot fungus Coprinellus sp. The rate of Mn(II) oxidation, and thus biomineral production, was 45 times lower for Coprinellus sp. (5.1 × 10(-2) mM d(-1)) than for P. putida (2.32 mM d(-1)). Both organisms produced predominantly Mn(IV) oxides with hexagonal-sheet symmetry, low sheet stacking, small particle size, and Mn(II/III) in the interlayer. However, we found that mycogenic MnO2 could support a significantly lower quantity of Ni sorbed via inner-sphere coordination at vacancy sites than the bacteriogenic MnO2: 0.09 versus 0.14 mol Ni mol(-1) Mn. In addition, 50-100% of the adsorbed Ni partitioned to the MnO2, which accounts for less than 20% of the sorbent on a mass basis. The vacancy content, which appears to increase with the kinetics of MnO2 precipitation, exerts significant control on biomineral reactivity.
Collapse
|