1
|
Butt CM, Berger U, Bossi R, Tomy GT. Levels and trends of poly- and perfluorinated compounds in the arctic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2936-65. [PMID: 20493516 DOI: 10.1016/j.scitotenv.2010.03.015] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 04/14/2023]
Abstract
Poly- and perfluorinated organic compounds (PFCs) are ubiquitous in the Arctic environment. Several modeling studies have been conducted in attempt to resolve the dominant transport pathway of PFCs to the arctic-atmospheric transport of precursors versus direct transport via ocean currents. These studies are generally limited by their focus on perfluorooctanoate (PFOA) fluxes to arctic seawater and thus far have only used fluorotelomer alcohols (FTOHs) and sulfonamide alcohols as inputs for volatile precursors. There have been many monitoring studies from the North American and European Arctic, however, almost nothing is known about PFC levels from the Russian Arctic. In general, there are very few measurements of PFCs from the abiotic environment. Atmospheric measurements show the widespread occurrence of PFC precursors, FTOHs and perfluorinated sulfonamide alcohols. Further, PFCAs and PFSAs have been detected on atmospheric particles. The detection of PFCAs and PFSAs in snow deposition is consistent with the volatile precursor transport hypothesis. There are very limited measurements of PFCs in seawater. PFOA is generally detected in the greatest concentrations. Additional seawater measurements are needed to validate existing model predications. The bulk of the monitoring efforts in biological samples have focused on the perfluorinated carboxylates (PFCAs) and sulfonates (PFSAs), although there are very few measurements of PFC precursors. The marine food web has been well studied, particularly the top predators. In contrast, freshwater and terrestrial ecosystems have been poorly studied. Studies show that in wildlife perfluorooctane sulfonate (PFOS) is generally measured in the highest concentration, followed by either perfluorononanoate (PFNA) or perfluoroundecanoate (PFUnA). However, some whale species show relatively high levels of perfluorooctane sulfonamide (PFOSA) and seabirds are typically characterized by high proportions of the C(11)-C(15) PFCAs. PFOA is generally infrequently detected and is present in low concentrations in arctic biota. Food web studies show high bioaccumulation in the upper trophic-level animals, although the mechanism of PFC biomagnification is not understood. Spatial trend studies show some differences between populations, although there are inconsistencies between PFC trends. The majority of temporal trend studies are from the Northern American Arctic and Greenland. Studies show generally increasing levels of PFCs from the 1970s, although some studies from the Canadian Arctic show recent declines in PFOS levels. In contrast, ringed seals and polar bears from Greenland continue to show increasing PFOS concentrations. The inconsistent temporal trends between regions may be representative of differences in emissions from source regions.
Collapse
|
Review |
15 |
321 |
2
|
Kim SK, Kannan K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:8328-34. [PMID: 18200859 DOI: 10.1021/es072107t] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Concentrations of perfluorinated acids (PFAs) were measured in various environmental matrices (air, rain, snow, surface runoff water, and lake water) in an urban area, to enable identification of sources and pathways of PFAs to urban water bodies. Total PFA concentrations ranged from 8.28 to 16.0 pg/ m3 (mean 11.3) in bulk air (sum of vapor and particulate phases), 0.91 to 13.2 ng/L (6.19) in rainwater, 0.91 to 23.9 ng/L (7.98) in snow, 1.11-81.8 ng/L (15.1 ng/L) in surface runoff water (SRW), and 9.49 to 35.9 ng/L (21.8) in lake water. Perfluorooctanoic acid (PFOA) was the predominant compound, accounting for > 35% of the total PFA concentrations, in all environmental matrices analyzed. Concentrations and relative compositions of PFAs in SRW were similar to those found for urban lakes. SRW contributes to contamination by PFOA in urban lakes. The measured concentration ratios of FTOH to PFOA in air were 1-2 orders of magnitude lower than the ratios calculated based on an assumption of exclusive atmospheric oxidation of FTOHs. Nevertheless, the mass balance analysis suggested the presence of an unknown input pathway that could contribute to a significant amount of total PFOA loadings to the lake. Flux estimates of PFOA at the air-water interface in the urban lake suggest net volatilization from water.
Collapse
|
|
18 |
285 |
3
|
Young CJ, Furdui VI, Franklin J, Koerner RM, Muir DCG, Mabury SA. Perfluorinated acids in Arctic snow: new evidence for atmospheric formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:3455-61. [PMID: 17547163 DOI: 10.1021/es0626234] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Perfluorinated acids (PFAs) are ubiquitously found in water and biota, including remote regions such as the High Arctic. Under environmental conditions, PFAs exist mainly as anions and are not expected to be subject to long-range atmospheric transport in the gas phase. Fluorinated telomer alcohols (FTOHs) are volatile and can be atmospherically oxidized to form perfluorocarboxylic acids. Analogously, fluorosulfamido alcohols can be oxidized to form perfluorooctane sulfonate (PFOS). High Arctic ice caps experience contamination solely from atmospheric sources. By examining concentrations of PFAs in ice cap samples, it is possible to determine atmospheric fluxes to the Arctic. Ice samples were collected from high Arctic ice caps in the spring of 2005 and 2006. Samples were concentrated using solid-phase extraction and analyzed by LC-MS-MS. PFAs were observed in all samples, dating from 1996 to 2005. Concentrations were in the low-mid pg L(-1) range and exhibited seasonality, with maximum concentrations in the spring-summer. The presence of perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnA) on the ice cap was indicative of atmospheric oxidation as a source. Ratios of PFAs to sodium concentrations were highly variable, signifying PFA concentrations on the ice cap were unrelated to marine chemistry. Fluxes of the PFAs were estimated to the area north of 65 degrees N for the 2005 season, which ranged from 114 to 587 kg year(-1) for perfluorooctanoic acid (PFOA), 73 to 860 kg year(-1) for perfluorononanoic acid (PFNA), 16 to 84 kg year(-1) for PFDA, 26 to 62 kg year(-1) for PFUnA, and 18 to 48 kg year(-1) for PFOS. The PFOA and PFNA fluxes agreed with FTOH modeling estimations. A decrease in PFOS concentrations through time was observed, suggesting a fast response to changes in production. These data suggest that atmospheric oxidation of volatile precursors is a primary source of PFAs to the Arctic.
Collapse
|
|
18 |
253 |
4
|
Dasgupta PK, Martinelango PK, Jackson WA, Anderson TA, Tian K, Tock RW, Rajagopalan S. The origin of naturally occurring perchlorate: the role of atmospheric processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:1569-1575. [PMID: 15819211 DOI: 10.1021/es048612x] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Perchlorate, an iodide uptake inhibitor, is increasingly being detected in new places and new matrices. Perchlorate contamination has been attributed largelyto the manufacture and use of ammonium perchlorate (the oxidizer in solid fuel rockets) and/or the earlier use of Chilean nitrate as fertilizer (approximately 0.1% perchlorate). However, there are regions such as the southern high plains (Texas Panhandle) where there is no clear historical or current evidence of the extensive presence of rocket fuel or Chilean fertilizer sources. The occurrence of easily measurable concentrations of perchlorate in such places is difficult to understand. In the southern high plains groundwater, perchlorate is better correlated with iodate, known to be of atmospheric origin, compared to any other species. We show that perchlorate is readily formed by a variety of simulated atmospheric processes. For example, it is formed from chloride aerosol by electrical discharge and by exposing aqueous chloride to high concentrations of ozone. We report that perchlorate is present in many rain and snow samples. This strongly suggests that some perchlorate is formed in the atmosphere and a natural perchlorate background of atmospheric origin should exist.
Collapse
|
|
20 |
246 |
5
|
Bargagli R. Environmental contamination in Antarctic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 400:212-26. [PMID: 18765160 DOI: 10.1016/j.scitotenv.2008.06.062] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/27/2008] [Accepted: 06/27/2008] [Indexed: 05/15/2023]
Abstract
Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern Hemisphere will likely increase the impact of anthropogenic contaminants on Antarctic ecosystems.
Collapse
|
Review |
17 |
217 |
6
|
Kelly EN, Short JW, Schindler DW, Hodson PV, Ma M, Kwan AK, Fortin BL. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries. Proc Natl Acad Sci U S A 2009; 106:22346-51. [PMID: 19995964 PMCID: PMC2789758 DOI: 10.1073/pnas.0912050106] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Indexed: 11/18/2022] Open
Abstract
For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T over 4 months and included 391 kg of polycyclic aromatic compounds (PAC), equivalent to 600 T of bitumen, while 168 kg of dissolved PAC was also deposited. Dissolved PAC concentrations in tributaries to the Athabasca increased from 0.009 microg/L upstream of oil sands development to 0.023 microg/L in winter and to 0.202 microg/L in summer downstream. In the Athabasca, dissolved PAC concentrations were mostly <0.025 microg/L in winter and 0.030 microg/L in summer, except near oil sands upgrading facilities and tailings ponds in winter (0.031-0.083 microg/L) and downstream of new development in summer (0.063-0.135 microg/L). In the Athabasca and its tributaries, development within the past 2 years was related to elevated dissolved PAC concentrations that were likely toxic to fish embryos. In melted snow, dissolved PAC concentrations were up to 4.8 microg/L, thus, spring snowmelt and washout during rain events are important unknowns. These results indicate that major changes are needed to the way that environmental impacts of oil sands development are monitored and managed.
Collapse
|
research-article |
16 |
216 |
7
|
Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M, De Temmerman L, Fernández JA, Frolova M, Frontasyeva M, González-Miqueo L, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Mankovská B, Pesch R, Rühling A, Santamaria JM, Schröder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG. Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3144-56. [PMID: 20674112 DOI: 10.1016/j.envpol.2010.06.039] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/18/2010] [Accepted: 06/29/2010] [Indexed: 05/07/2023]
Abstract
In recent decades, mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals. Since 1990, the European moss survey has been repeated at five-yearly intervals. Although spatial patterns were metal-specific, in 2005 the lowest concentrations of metals in mosses were generally found in Scandinavia, the Baltic States and northern parts of the UK; the highest concentrations were generally found in Belgium and south-eastern Europe. The recent decline in emission and subsequent deposition of heavy metals across Europe has resulted in a decrease in the heavy metal concentration in mosses for the majority of metals. Since 1990, the concentration in mosses has declined the most for arsenic, cadmium, iron, lead and vanadium (52-72%), followed by copper, nickel and zinc (20-30%), with no significant reduction being observed for mercury (12% since 1995) and chromium (2%). However, temporal trends were country-specific with sometimes increases being found.
Collapse
|
|
15 |
147 |
8
|
Marklund A, Andersson B, Haglund P. Traffic as a source of organophosphorus flame retardants and plasticizers in snow. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:3555-62. [PMID: 15952358 DOI: 10.1021/es0482177] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Snow samples collected in northern Sweden at a road intersection and an airport indicated that traffic is a source of organophosphorus flame retardants and plasticizers (OPs) in the outdoor environment. Analysis of snow samples taken at distances of 2, 100, and 250 m from the road intersection showed that the total amount of OPs declined as distance increased. Of the 11 analyzed substances, tris-(2-chloroisopropyl) phosphate (TCPP) dominated in the snow samples from the intersection, with levels of 170, 130, and 110 ng/kg snow at distances of 2, 100, and 250 m. Similar amounts of TCPP were found at the airport (100-220 ng/kg). These levels are approximately twice as high as the level found in the reference snow sample from a remote area (70 ng/kg). A possible explanation for the higher levels of TCPP found close to the road intersection is that it may be emitted from the interior of cars via their ventilation systems. Triphenyl phosphate (TPP) was identified in lubricants and in waste oil from vehicles, and thus, leakage of transmission and motor oils is a probable source of TPP found at the sampled sites. Ten OPs were detected in the three samples from the airport, of which tributyl phosphate (TBP) was the most abundant, at levels 3 orders of magnitude higher than in the reference sample, that is, 25 000 compared to 19 ng/kg. The main source of TBP at the airport was traced to aircraft hydraulic fluid. Analysis of background air and deposition samples indicated that some OPs are subject to long-range air transportation.
Collapse
|
|
20 |
142 |
9
|
Panno SV, Hackley KC, Hwang HH, Greenberg SE, Krapac IG, Landsberger S, O'Kelly DJ. Characterization and identification of na-cl sources in ground water. GROUND WATER 2006; 44:176-87. [PMID: 16556200 DOI: 10.1111/j.1745-6584.2005.00127.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Elevated concentrations of sodium (Na+) and chloride (Cl-) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br), and iodide (I) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I and Br; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources.
Collapse
|
|
19 |
114 |
10
|
Monperrus M, Tessier E, Veschambre S, Amouroux D, Donard O. Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis. Anal Bioanal Chem 2004; 381:854-62. [PMID: 15602618 DOI: 10.1007/s00216-004-2973-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/08/2004] [Accepted: 11/12/2004] [Indexed: 11/25/2022]
Abstract
A robust method has been developed for simultaneous determination of mercury and butyltin compounds in aqueous samples. This method is capable of providing accurate results for analyte concentrations in the picogram per liter to nanogram per liter range. The simultaneous determination of the mercury and tin compounds is achieved by species-specific isotope dilution, derivatization, and gas chromatography-inductively coupled plasma mass spectrometer (GC-ICP-MS). In derivatization by ethylation and propylation, reaction conditions such as pH and the effect of chloride were carefully studied. Ethylation was found to be more sensitive to matrix effects, especially for mercury compounds. Propylation was thus the preferred derivatization method for simultaneous determination of organomercury and organotin compounds in environmental samples. The analytical method is highly accurate and precise, with RSD values of 1 and 3% for analyte concentrations in the picogram per liter to nanogram per liter range. By use of cleaning procedures and SIDMS blank measurements, detection limits in the range 10-60 pg L(-1) were achieved; these are suitable for determination of background levels of these contaminants in environmental samples. This was demonstrated by using the method for analysis of real snow and seawater samples. This work illustrates the great advantage of species-specific isotope dilution for the validation of an analytical speciation method-the possibility of overcoming species transformations and non-quantitative recovery. Analysis time is saved by use of the simultaneous method, because of the use of a single sample-preparation procedure and one analysis.
Collapse
|
|
21 |
98 |
11
|
Amato P, Hennebelle R, Magand O, Sancelme M, Delort AM, Barbante C, Boutron C, Ferrari C. Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol Ecol 2007; 59:255-64. [PMID: 17328766 DOI: 10.1111/j.1574-6941.2006.00198.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A sampling campaign was organized during spring 2004 in Spitzberg, Svalbard, in the area around the scientific base of Ny-Alesund, to characterize the snow pack bacterial population. Total bacteria counts were established by 4',6-diamino-2-phenylindole (DAPI) in the seasonal snow pack bordering the sea. On the sea shore, bacterial concentration was about 6 x 10(4) cells mL(-1), without any significant variation according to depth. In the accumulation snow layer of the glacier, concentrations were about 2 x 10(4 )cells mL(-1), except in the 2003 summer layer, where it reached 2 x 10(5) cells mL(-1), as the result of cell multiplication allowed by higher temperature and snow melting. Strains isolated from the seasonal snow pack were identified from their 16S rRNA gene sequences, and lodged in GenBank. They belong to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria, Firmicutes and Actinobacteria. They are closely related to cold environment bacteria, as revealed by phylogenetic tree constructions, and two appear to be of unknown affiliation. Using 1H nuclear magnetic resonance, it was shown that these isolates have the capacity to degrade organic compounds found in Arctic snow (propionate, acetate and formate), and this can allow them to develop when snow melts, and thus to be actively involved in snow chemistry.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
92 |
12
|
Hageman KJ, Simonich SL, Campbell DH, Wilson GR, Landers DH. Atmospheric deposition of current-use and historic-use pesticides in snow at national parks in the western United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:3174-80. [PMID: 16749678 DOI: 10.1021/es060157c] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The United States (U.S.) National Park Service has initiated research on the atmospheric deposition and fate of semi-volatile organic compounds in its alpine, sub-Arctic, and Arctic ecosystems in the Western U.S. Results for the analysis of pesticides in seasonal snowpack samples collected in spring 2003 from seven national parks are presented herein. From a target analyte list of 47 pesticides and degradation products, the most frequently detected current-use pesticides were dacthal, chlorpyrifos, endosulfan, and gamma-hexachlorocyclohexane, whereas the mostfrequently detected historic-use pesticides were dieldrin, alpha-hexachlorocyclohexane, chlordane, and hexachlorobenzene. Correlation analysis with latitude, temperature, elevation, particulate matter, and two indicators of regional pesticide use reveal that regional current and historic agricultural practices are largely responsible for the distribution of pesticides in the national parks in this study. Pesticide deposition in the Alaskan parks is attributed to long-range transport because there are no significant regional pesticide sources. The percentage of total pesticide concentration due to regional transport (%RT) was calculated for the other parks. %RT was highest at parks with higher regional cropland intensity and for pesticides with lower vapor pressures and shorter half-lives in air.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
92 |
13
|
Antony R, Grannas AM, Willoughby AS, Sleighter RL, Thamban M, Hatcher PG. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6151-6159. [PMID: 24804819 DOI: 10.1021/es405246a] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polar ice sheets hold a significant pool of the world's carbon reserve and are an integral component of the global carbon cycle. Yet, organic carbon composition and cycling in these systems is least understood. Here, we use ultrahigh resolution mass spectrometry to elucidate, at an unprecedented level, molecular details of dissolved organic matter (DOM) in Antarctic snow. Tens of thousands of distinct molecular species are identified, providing clues to the nature and sources of organic carbon in Antarctica. We show that many of the identified supraglacial organic matter formulas are consistent with material from microbial sources, and terrestrial inputs of vascular plant-derived materials are likely more important sources of organic carbon to Antarctica than previously thought. Black carbon-like material apparently originating from biomass burning in South America is also present, while a smaller fraction originated from soil humics and appears to be photochemically or microbially modified. In addition to remote continental sources, we document signals of oceanic emissions of primary aerosols and secondary organic aerosol precursors. The new insights on the diversity of organic species in Antarctic snowpack reinforce the importance of studying organic carbon associated with the Earth's polar regions in the face of changing climate.
Collapse
|
|
11 |
89 |
14
|
Stibal M, Elster J, Sabacká M, Kastovská K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol 2007; 59:265-73. [PMID: 17313577 DOI: 10.1111/j.1574-6941.2006.00264.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The seasonal and diel dynamics of the physiological state and photosynthetic activity of the snow alga Chlamydomonas nivalis were investigated in a snowfield in Svalbard. The snow surface represents an environment with very high irradiation intensities along with stable low temperatures close to freezing point. Photosynthetic activity was measured using pulse amplitude modulation fluorometry. Three types of cell (green biflagellate vegetative cells, orange spores clustered by means of mucilaginous sheaths, and purple spores with thick cell walls) were found, all of them photosynthetically active. The pH of snow ranged between 5.0 and 7.5, and the conductivity ranged between 5 and 75 microS cm(-1). The temperature of snow was stable (-0.1 to +0.1 degrees C), and the incident radiation values ranged from 11 to 1500 micromol photons m(-2) s(-1). The photosynthetic activity had seasonal and diel dynamics. The Fv/Fm values ranged between 0.4 and 0.7, and generally declined over the course of the season. A dynamic response of Fv/Fm to the irradiance was recorded. According to the saturating photon fluence values Ek, the algae may have obtained saturating light as deep as 3 cm in the snow when there were higher-light conditions, whereas they were undersaturated at prevalent low light even if on the surface.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
86 |
15
|
Zhang Y, Shotyk W, Zaccone C, Noernberg T, Pelletier R, Bicalho B, Froese DG, Davies L, Martin JW. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1711-20. [PMID: 26771587 DOI: 10.1021/acs.est.5b05092] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.
Collapse
|
|
9 |
78 |
16
|
Krachler M, Zheng J, Koerner R, Zdanowicz C, Fisher D, Shotyk W. Increasing atmospheric antimony contamination in the northern hemisphere: snow and ice evidence from Devon Island, Arctic Canada. ACTA ACUST UNITED AC 2005; 7:1169-76. [PMID: 16307068 DOI: 10.1039/b509373b] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adopting recently developed clean laboratory techniques, antimony (Sb) and scandium (Sc) deposition were measured in a 63.72 m-long ice core (1842-1996) and a 5 m deep snow pit (1994-2004) collected on Devon Island, Canadian High Arctic. Antimony concentrations ranged from 0.07 to 108 pg g(-1) with a median of 0.98 pg g(-1)(N= 510). Scandium, used as a conservative reference element, revealed that dust inputs were effectively constant during the last 160 years. The atmospheric Sb signal preserved in the ice core reflects contamination from industrialisation, the economic boom which followed WWII, as well as the comparatively recent introduction of flue gas filter technologies and emission reduction efforts. Natural contributions to the total Sb inventory are negligible, meaning that anthropogenic emissions have dominated atmospheric Sb deposition throughout the entire period. The seasonal resolution of the snow pit showed that aerosols deposited during the Arctic winter, when air masses are derived mainly from Eurasia, show the greatest Sb concentrations. Deposition during summer, when air masses come mainly from North America, is still enriched in Sb, but less so. Snow and ice provide unambiguous evidence that enrichments of Sb in Arctic air have increased 50% during the past three decades, with two-thirds being deposited during winter. Most Sb is produced in Asia, primarily from Sb sulfides such as stibnite (Sb2S3), but also as a by-product of lead and copper smelting. In addition there is a growing worldwide use of Sb in automobile brake pads, plastics and flame retardants. In contrast to Pb which has gone into decline during the same interval because of the gradual elimination of gasoline lead additives, the enrichments of Sb have been increasing and today clearly exceed those of Pb. Given that the toxicity of Sb is comparable to that of Pb, Sb has now replaced Pb in the rank of potentially toxic trace metals in the Arctic atmosphere.
Collapse
|
|
20 |
74 |
17
|
Wang Z, Yang C, Parrott JL, Frank RA, Yang Z, Brown CE, Hollebone BP, Landriault M, Fieldhouse B, Liu Y, Zhang G, Hewitt LM. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2014; 271:166-77. [PMID: 24632369 DOI: 10.1016/j.jhazmat.2014.02.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 05/05/2023]
Abstract
To facilitate monitoring efforts, a forensic chemical fingerprinting methodology has been applied to characterize and differentiate pyrogenic (combustion derived) and biogenic (organism derived) hydrocarbons from petrogenic (petroleum derived) hydrocarbons in environmental samples from the Canadian oil sands region. Between 2009 and 2012, hundreds of oil sands environmental samples including water (snowmelt water, river water, and tailings pond water) and sediments (from river beds and tailings ponds) have been analyzed. These samples were taken from sites where assessments of wild fish health, invertebrate communities, toxicology and detailed chemistry are being conducted as part of the Canada-Alberta Joint Oil Sands Monitoring Plan (JOSMP). This study describes the distribution patterns and potential sources of PAHs from these integrated JOSMP study sites, and findings will be linked to responses in laboratory bioassays and in wild organisms collected from these same sites. It was determined that hydrocarbons in Athabasca River sediments and waters were most likely from four sources: (1) petrogenic heavy oil sands bitumen; (2) biogenic compounds; (3) petrogenic hydrocarbons of other lighter fuel oils; and (4) pyrogenic PAHs. PAHs and biomarkers detected in snowmelt water samples collected near mining operations imply that these materials are derived from oil sands particulates (from open pit mines, stacks and coke piles).
Collapse
|
|
11 |
63 |
18
|
Herbert BMJ, Villa S, Halsall CJ. Chemical interactions with snow: understanding the behavior and fate of semi-volatile organic compounds in snow. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2006; 63:3-16. [PMID: 16038975 DOI: 10.1016/j.ecoenv.2005.05.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 05/14/2005] [Accepted: 05/23/2005] [Indexed: 05/03/2023]
Abstract
Snow plays an important role in providing atmospherically derived semi-volatile organic compounds (SVOCs) to regions of high latitude and altitude. The accumulated winter snowpack serves as a reservoir for SVOCs, which may then be released to arctic/alpine catchments during seasonal snowmelt or entrained into deeper layers of snow and ice. This paper provides a review of the occurrence of SVOCs in snow, exploring sampling methodologies and field measurements. Furthermore, chemical fate following snowfall and the propensity of SVOCs to undergo revolatilization with snow metamorphosis are examined along with air-snow partitioning and the role of physical parameters such as snow density and snow surface area in controlling vapor-sorbed levels. Snowmelt and firnification processes are described, and the latter are related to SVOC measurements made in deeper snow layers and glacial ice cores. Evidence is provided that suggests that those SVOCs that possess relatively higher snow interfacial/air partitioning coefficients (K(iasnow)) or lower Henry's Law constants may be more efficiently retained in snow, with implications for the occurrence of currently used pesticides in the temperate mountain snowpack.
Collapse
|
Review |
19 |
63 |
19
|
Ueno D, Darling C, Alaee M, Campbell L, Pacepavicius G, Teixeira C, Muir D. Detection of hydroxylated polychlorinated biphenyls (OH-PCBs) in the abiotic environment: surface water and precipitation from Ontario, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:1841-8. [PMID: 17410773 DOI: 10.1021/es061539l] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hydroxylated PCBs (OH-PCBs) are well-known metabolites of PCBs in organisms, but there has been no direct study of their presence in the abiotic environment. In this study, OH-PCBs were determined in samples of rain, snow, and surface waters from sites in Ontario, Canada. OH-PCBs were quantified by gas chromatography with high-resolution mass spectrometry (GC-HRMS)in order to provide complete characterization of all OH-PCB homolog groups. OH-PCBs and PCBs were detected in all the samples analyzed, although half of the sigmaOH-PCBs could not be identified even with 71 individual congener standards. Total concentrations of OH-PCBs (sigmaOH-PCBs) in water ranged from 0.87 to 130 pg/L and from 230 to 990 pg/g in particulate organic matter. Total fluxes of those compounds in snow and rain were from < 1 to 100 pg/m2 and from < 1 to 44 pg/ m2/day, respectively. Higher sigmaOH-PCB fluxes in rain were found in southern Ontario than in a remote north-central Ontario site possibly reflecting greater sources of precursor PCBs near urban areas. Relatively higher sigmaOH-PCB concentrations were found in surface waters from sites near sewage treatment plant (STP) outfalls in the cities of Toronto (130 pg/L) and Hamilton (35 pg/L) than in offshore samples from Lake Ontario (1.6 pg/L). The results indicate that STPs are one of the sources of OH-PCBs for lake waters in this region. Similar homolog and congener profiles in rain and offshore surface water samples suggest that atmospheric deposition is the predominant source at offshore sites. This is the first report to detect the OH-PCBs in the abiotic environment.
Collapse
|
|
18 |
62 |
20
|
Xu S, Freeman SPHT, Hou X, Watanabe A, Yamaguchi K, Zhang L. Iodine isotopes in precipitation: temporal responses to (129)i emissions from the fukushima nuclear accident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10851-10859. [PMID: 24000802 DOI: 10.1021/es401527q] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Fukushima Dai-ichi Nuclear Power Plant accident in 2011 has released a large amount of radionuclides to the atmosphere, and the radioactive plume has been dispersed to a large area in Europe and returned to Asia. To explore long-term trend of the Fukushima-derived radioactive plume and the behavior of harmful radioiodine in the atmosphere, long-term precipitation samples have been collected over 2010-2012 at Fukushima, Japan for determination of long-lived (129)I. It was observed that (129)I concentrations of 1.2 × 10(8) atom/L in 2010 before the accident dramatically increased by ∼4 orders of magnitude to 7.6 × 10(11) atom/L in March 2011 immediately after the accident, with a (129)I/(127)I ratio up to 6.9 × 10(-5). Afterward, the (129)I concentrations in precipitation decreased exponentially to ∼3 × 10(9) atom/L by October 2011 with a half-life of about 29 days. This declining trend of (129)I concentrations in precipitation was interrupted around October 2011 by a new input of (129)I to the atmosphere following a second exponential decrease. Such a cycle has occurred three times until the present. This temporal variation can be attributed to alternating (129)I dispersion and resuspension from the contaminated local environment. A (129)I/(131)I atomic ratio of 16 ± 1 obtained from rainwater samples is comparable with a value estimated for surface soil samples. (129)I results from Denmark suggest an insignificant effect of (129)I released from Fukushima to the (129)I levels in Europe.
Collapse
|
|
12 |
62 |
21
|
Casal P, Zhang Y, Martin JW, Pizarro M, Jiménez B, Dachs J. Role of Snow Deposition of Perfluoroalkylated Substances at Coastal Livingston Island (Maritime Antarctica). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8460-8470. [PMID: 28665121 DOI: 10.1021/acs.est.7b02521] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Perfluoroalkyl substances (PFAS) are ubiquitous in the environment, including remote polar regions. To evaluate the role of snow deposition as an input of PFAS to Maritime Antarctica, fresh snow deposition, surface snow, streams from melted snow, coastal seawater, and plankton samples were collected over a three-month period (December 2014-February 2015) at Livingston Island. Local sources of PFASs were significant for perfluoroalkyl sulfonates (PFSAs) and C7-14 perfluoroalkyl carboxylates (PFCAs) in snow but limited to the transited areas of the research station. The concentrations of 14 ionizable PFAS (∑PFAS) in freshly deposited snow (760-3600 pg L-1) were 1 order of magnitude higher than those in background surface snow (82-430 pg L-1). ∑PFAS ranged from 94 to 420 pg L-1 in seawater and from 3.1 to 16 ng gdw-1 in plankton. Ratios of individual PFAS concentrations in freshly deposited snow relative to surface snow (CSD/CSnow), snowmelt (CSD/CSM), and seawater (CSD/CSW) were close to 1 (from 0.44 to 1.4) for all perfluorooctanesulfonate (PFOS) isomers, suggesting that snowfall does not contribute significantly to PFOS in seawater. Conversely, these ratios for PFCAs ranged from 1 to 33 and were positively correlated with the number of carbons in the PFCA alkylated chain. These trends suggest that snow deposition, scavenging sea-salt aerosol bound PFAS, plays a role as a significant input of PFCAs to the Maritime Antarctica.
Collapse
|
|
8 |
61 |
22
|
Wang X, Halsall C, Codling G, Xie Z, Xu B, Zhao Z, Xue Y, Ebinghaus R, Jones KC. Accumulation of perfluoroalkyl compounds in tibetan mountain snow: temporal patterns from 1980 to 2010. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:173-81. [PMID: 24320138 DOI: 10.1021/es4044775] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The use of snow and ice cores as recorders of environmental contamination is particularly relevant for per- and polyfluoroalky substances (PFASs) given their production history, differing source regions and varied mechanisms driving their global distribution. In a unique study perfluoroalkyl acids (PFAAs) were analyzed in dated snow-cores obtained from high mountain glaciers on the Tibetan Plateau (TP). One snow core was obtained from the Mt Muztagata glacier (accumulation period of 1980-1999), located in western Tibet and a second core from Mt. Zuoqiupo (accumulation period: 1996-2007) located in southeastern Tibet, with fresh surface snow collected near Lake Namco in 2010 (southern Tibet). The higher concentrations of ∑PFAAs were observed in the older Mt Muztagata core and dominated by perfluorooctanesulfonic acid (PFOS) (61.4-346 pg/L) and perfluorooctanoic acid (PFOA) (40.8-243 pg/L), whereas in the Mt Zuoqiupu core the concentrations were lower (e.g., PFOA: 37.8-183 pg/L) with PFOS below detection limits. These differences in PFAA concentrations and composition profile likely reflect the upwind sources affecting the respective sites (e.g., European/central Asian sources for Mt Muztagata and India sources for Mt Zuoqiupu). Perfluorobutanoic acid (PFBA) dominated the recent surface snowpack of Lake Namco which is mainly associated with India sources where the shorter chain volatile PFASs precursors predominate. The use of snow cores in different parts of Tibet provides useful recorders to examine the influence of different PFASs source regions and reflect changing PFAS production/use in the Northern Hemisphere.
Collapse
|
|
11 |
61 |
23
|
Wang Z, Xie Z, Mi W, Möller A, Wolschke H, Ebinghaus R. Neutral Poly/Per-Fluoroalkyl Substances in Air from the Atlantic to the Southern Ocean and in Antarctic Snow. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7770-7775. [PMID: 26052844 DOI: 10.1021/acs.est.5b00920] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The oceanic scale occurrences of typical neutral poly/per-fluoroalkyl substances (PFASs) in the atmosphere across the Atlantic, as well as their air-snow exchange at the Antarctic Peninsula, were investigated. Total concentrations of the 12 PFASs (∑PFASs) in gas phase ranged from 2.8 to 68.8 pg m(-3) (mean: 23.5 pg m(-3)), and the levels in snow were from 125 to 303 pg L(-1) (mean: 209 pg L(-1)). Fluorotelomer alcohols (FTOHs) were dominant in both air and snow. The differences of specific compounds to ∑PFASs were not significant between air and snow. ∑PFASs were higher above the northern Atlantic compared to the southern Atlantic, and the levels above the southern Atlantic <30°S was the lowest. High atmospheric PFAS levels around the Antarctic Peninsula were the results of a combination of air mass, weak elimination processes and air-snow exchange of PFASs. Higher ratios of 8:2 to 10:2 to 6:2 FTOH were observed in the southern hemisphere, especially around the Antarctic Peninsula, suggesting that PFASs in the region were mainly from the long-range atmospheric transport. No obvious decrease of PFASs was observed in the background marine atmosphere after 2005.
Collapse
|
|
10 |
57 |
24
|
Hoferkamp L, Hermanson MH, Muir DCG. Current use pesticides in Arctic media; 2000-2007. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2985-2994. [PMID: 20022079 DOI: 10.1016/j.scitotenv.2009.11.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 05/28/2023]
Abstract
This review will summarize the levels of selected current use pesticides (CUPs) that have been identified and reported in Arctic media (i.e. air, water, sediment, and biota) since the year 2000. Almost all of the 10 CUPs (chlorothalonil, chlorpyrifos, dacthal, diazinon, dicofol, lindane, methoxychlor, pentachloronitrobenzene (PCNB), pentachlorophenol, and trifluralin) examined in the review currently are, or have been, high production volume chemicals i.e. >1M lbs/y in USA or >1000 t/y globally. Characteristic travel distances for the 10 chemicals range from 55 km (methoxychlor) to 12,100 km (PCNB). Surveys and long-term monitoring studies have demonstrated the presence of 9 of the 10 CUPs included in this review in the Arctic environment. Only dicofol has not been reported. The presence of these chemicals has mainly been reported in high volume air samples and in snow from Arctic ice caps and lake catchments. There are many other CUPs registered for use which have not been determined in Arctic environments. The discovery of the CUPs currently measured in the Arctic has been mainly serendipitous, a result of analyzing some samples using the same suite of analytes as used for studies in mid-latitude locations. A more systematic approach is needed to assess whether other CUPs might be accumulating in the arctic and ultimately to assess whether their presence has any significance biologically or results in risks for human consumers.
Collapse
|
Review |
15 |
56 |
25
|
St Louis VL, Hintelmann H, Graydon JA, Kirk JL, Barker J, Dimock B, Sharp MJ, Lehnherr I. Methylated mercury species in Canadian high Arctic marine surface waters and snowpacks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:6433-6441. [PMID: 17948790 DOI: 10.1021/es070692s] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We sampled seawater and snowpacks in the Canadian high Arctic for methylated species of mercury (Hg). We discovered that, although seawater sampled under the sea ice had very low concentrations of total Hg (THg, all forms of Hg in a sample; on average 0.14-0.24 ng L(-1)), 30-45% of the THg was in the monomethyl Hg (MMHg) form (on average 0.057-0.095 ng L(-1)), making seawater itself a direct source of MMHg for biomagnification through marine food webs. Seawater under the ice also contained high concentrations of gaseous elemental Hg (GEM; 129 +/- 36 pg L(-1)), suggesting that open water regions such as polynyas and ice leads were a net source of approximately 130 +/- 30 ng Hg m(-2) day(-1) to the atmosphere. We also found 11.1 +/- 4.1 pg L(-1) of dimethyl Hg (DMHg) in seawater and calculated that there could be a significant flux of DMHg to the atmosphere from open water regions. This flux could then resultin MMHg deposition into nearby snowpacks via oxidation of DMHg to MMHg in the atmosphere. In fact, we found high concentrations of MMHg in a few snowpacks near regions of open water. Interestingly, we discovered a significant log-log relationship between Cl- concentrations in snowpacks and concentrations of THg. We hypothesize that as Cl- concentrations in snowpacks increase, inorganic Hg(II) occurs principally as less reducible chloro complexes and, hence, remains in an oxidized state. As a result, snowpacks that receive both marine aerosol deposition of Cl- and deposition of Hg(II) via springtime atmospheric Hg depletion events, for example, may contain significant loads of Hg(II). Overall, though, the median wet/dry loads of Hg in the snowpacks we sampled in the high Arctic (5.2 mg THg ha(-1) and 0.03 mg MMHg ha(-1)) were far below wet-only annual THg loadings throughout southern Canada and most of the U.S. (22-200 mg ha(-1)). Therefore, most Arctic snowpacks contribute
Collapse
|
|
18 |
50 |