26
|
Rutenberg D, Zhang Y, Montoya JG, Sinnott J, Contopoulos-Ioannidis DG. The Meat of the Matter. N Engl J Med 2024; 390:1612-1618. [PMID: 38692295 DOI: 10.1056/nejmcps2311297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
|
27
|
Marschner M, Hausdorf C, Lüno M, Schlatterer K. [New awareness for zoonoses using the example of rat bite fever : Case report and literature review]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:512-516. [PMID: 38459199 DOI: 10.1007/s00108-024-01680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Rat bite fever is a rare but potentially fatal bacterial zoonosis. The symptoms can be unspecific, but severe sepsis can be associated with involvement of different organs. CASE REPORT A 27-year-old homeless man presented with fever, suspected meningitis, acute renal failure, unclear skin lesions as well as joint problems and muscular pain. Bite wounds were not detected. Meningitis could be excluded after lumbar puncture, and there was no evidence of endocarditis as the cause of the skin lesions. After 72 h, growth of Streptobacillus moniliformis in blood cultures was detected. Clinical symptoms were compatible with the diagnosis of rat bite fever. Calculated antibiosis with ampicillin sulbactam and doxycycline led to regression of the symptoms. CONCLUSION Rat bite fever poses a diagnostic challenge due unspecific symptoms, diverse differential diagnostic options, and challenging microbiological detection. Patient history is of the utmost importance. Due to the rarity of the disease, this case report is intended to raise awareness.
Collapse
|
28
|
Kirmaier A, Blackshear L, Lee MSL, Kirby JE. Cellulitis and bacteremia caused by the fish pathogen,Streptococcus iniae, in an immunocompromised patient: Case report and mini-review of zoonotic disease, lab identification, and antimicrobial susceptibility. Diagn Microbiol Infect Dis 2024; 108:116189. [PMID: 38278004 DOI: 10.1016/j.diagmicrobio.2024.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Streptococcus iniae is a fish pathogen that can also infect mammals including dolphins and humans. Its prevalence in farmed fish, particularly tilapia, provides potential for zoonotic infections, as documented by multiple case reports. Systematic clinical data beyond cellulitis for S. iniae infection in humans, including antimicrobial susceptibility data, are unfortunately rare. Here, we present a case of cellulitis progressing to bacteremia caused by Streptococcus iniae in a functionally immunocompromised patient based on CDK4/CDK6 inhibitor and endocrine therapy, and we discuss risk factors, identification, and antimicrobial susceptibility of this rare pathogen.
Collapse
|
29
|
Barathan M. From fever to action: diagnosis, treatment, and prevention of acute undifferentiated febrile illnesses. Pathog Dis 2024; 82:ftae006. [PMID: 38614961 PMCID: PMC11067964 DOI: 10.1093/femspd/ftae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024] Open
Abstract
Acute Undifferentiated Febrile Illness (AUFI) presents a clinical challenge, often characterized by sudden fever, non-specific symptoms, and potential life-threatening implications. This review highlights the global prevalence, types, challenges, and implications of AUFI, especially in tropical and subtropical regions where infectious diseases thrive. It delves into the difficulties in diagnosis, prevalence rates, regional variations, and potential causes, ranging from bacterial and viral infections to zoonotic diseases. Furthermore, it explores treatment strategies, preventive measures, and the critical role of the One Health approach in addressing AUFI. The paper also addresses the emerging zoonotic risks and ongoing outbreaks, including COVID-19, Rickettsia spp., and other novel pathogens, emphasizing their impact on AUFI diagnosis and management. Challenges in resource-limited settings are analyzed, highlighting the need for bolstered healthcare infrastructure, enhanced diagnostics, and collaborative One Health strategies. Amidst the complexity of emerging zoonotic threats, this review underscores the urgency for a multifaceted approach to mitigate the growing burden of AUFI, ensuring early diagnosis, appropriate treatment, and effective prevention strategies.
Collapse
|
30
|
Aftab A, Raina OK, Maxton A, Masih SA. Advances in diagnostic approaches to Fasciola infection in animals and humans: An overviews. J Helminthol 2024; 98:e12. [PMID: 38269544 DOI: 10.1017/s0022149x23000950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Fasciolosis, caused by Fasciola hepatica and F. gigantica, is an impediment to the livestock industry’s expansion and has a massively negative socio-economic impact due to its widespread prevalence in livestock. It is a waterborne zoonosis affecting human populations in the countries where rural economies are associated with livestock rearing. Conventional diagnosis of Fasciola infection is done by detecting parasite eggs in the faeces of infected animals or by immunological methods. Accurate and quick immunodiagnosis of Fasciola infection in animals and humans is based on the detection of antibodies and specific antigens expressed in the prepatent stage of the parasite. Both molecular and serodiagnostic tests developed thus far have enhanced the reliability of Fasciola diagnosis in both man and animals but are not widely available in resource-poor nations. A pen-side diagnostic test based on a lateral flow assay or a DNA test like loop-mediated isothermal amplification (LAMP) would be simple, fast, and cost-effective, enabling clinicians to treat animals in a targeted manner and avoid the development of drug resistance to the limited flukicides. This review focuses on the recent advances made in the diagnosis of this parasite infection in animals and humans.
Collapse
|
31
|
Qureshi KA, Parvez A, Fahmy NA, Abdel Hady BH, Kumar S, Ganguly A, Atiya A, Elhassan GO, Alfadly SO, Parkkila S, Aspatwar A. Brucellosis: epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review. Ann Med 2024; 55:2295398. [PMID: 38165919 PMCID: PMC10769134 DOI: 10.1080/07853890.2023.2295398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
Background: Brucellosis is a pervasive zoonotic disease caused by various Brucella species. It mainly affects livestock and wildlife and poses significant public health threats, especially in regions with suboptimal hygiene, food safety, and veterinary care standards. Human contractions occur by consuming contaminated animal products or interacting with infected animals. Objective: This study aims to provide an updated understanding of brucellosis, from its epidemiology and pathogenesis to diagnosis and treatment strategies. It emphasizes the importance of ongoing research, knowledge exchange, and interdisciplinary collaboration for effective disease control and prevention, highlighting its global health implications. Methods: Pathogenesis involves intricate interactions between bacteria and the host immune system, resulting in chronic infections characterized by diverse clinical manifestations. The diagnostic process is arduous owing to non-specific symptomatology and sampling challenges, necessitating a fusion of clinical and laboratory evaluations, including blood cultures, serological assays, and molecular methods. Management typically entails multiple antibiotics, although the rise in antibiotic-resistant Brucella strains poses a problem. Animal vaccination is a potential strategy to curb the spread of infection, particularly within livestock populations. Results: The study provides insights into the complex pathogenesis of brucellosis, the challenges in its diagnosis, and the management strategies involving antibiotic therapy and animal vaccination. It also highlights the emerging issue of antibiotic-resistant Brucella strains. Conclusions: In conclusion, brucellosis is a significant zoonotic disease with implications for public health. Efforts should be directed towards improved diagnostic methods, antibiotic stewardship to combat antibiotic resistance, and developing and implementing effective animal vaccination programs. Interdisciplinary collaboration and ongoing research are crucial for addressing the global health implications of brucellosis.
Collapse
|
32
|
Feng X, Liu Y, Zhao Y, Sun Z, Xu N, Zhao C, Xia W. Recombinase Polymerase Amplification-Based Biosensors for Rapid Zoonoses Screening. Int J Nanomedicine 2023; 18:6311-6331. [PMID: 37954459 PMCID: PMC10637217 DOI: 10.2147/ijn.s434197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Recent, outbreaks of new emergency zoonotic diseases have prompted an urgent need to develop fast, accurate, and portable screening assays for pathogen infections. Recombinase polymerase amplification (RPA) is sensitive and specific and can be conducted at a constant low temperature with a short response time, making it especially suitable for on-site screening and making it a powerful tool for preventing or controlling the spread of zoonoses. This review summarizes the design principles of RPA-based biosensors as well as various signal output or readout technologies involved in fluorescence detection, lateral flow assays, enzymatic catalytic reactions, spectroscopic techniques, electrochemical techniques, chemiluminescence, nanopore sequencing technologies, microfluidic digital RPA, and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems. The current status and prospects of the application of RPA-based biosensors in zoonoses screening are highlighted. RPA-based biosensors demonstrate the advantages of rapid response, easy-to-read result output, and easy implementation for on-site detection, enabling development toward greater portability, automation, and miniaturization. Although there are still problems such as high cost with unstable signal output, RPA-based biosensors are increasingly becoming one of the most important means of on-site pathogen screening in complex samples involving environmental, water, food, animal, and human samples for controlling the spread of zoonotic diseases.
Collapse
|
33
|
Kim SW, Jang BK. Toxocara canis and Fasciola hepatica Co-Infection Leading to Hepatic Abscess: A Case Report. J Korean Med Sci 2023; 38:e323. [PMID: 37821089 PMCID: PMC10562180 DOI: 10.3346/jkms.2023.38.e323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
Toxocariasis is a zoonotic disease caused by ingesting eggs from soil contaminated with Toxocara canis and Toxocara cati, commonly found in feces of infected dogs and cats, leading to a range of clinical symptoms including fever, abdominal pain and gastrointestinal manifestations. Fascioliasis is also a zoonotic disease caused by liver flukes Fasciola hepatica and Fasciola gigantica, which can be contracted through consumption of contaminated water or aquatic plants, leading to various clinical features. Here, we report a case of a 39-year-old woman diagnosed with a liver abscess caused by co-infection of T. canis and F. hepatica, as confirmed by serological tests. Although the existence of a pet dog and an experience of eating raw water dropwort are potential clues for diagnosis, it cannot be determined as the source of infection because the source of infection has not been clearly identified. After administrating albendazole and triclabendazole sequentially, the patient showed improvement in blood test and imaging findings. Clinicians should be aware of parasitic co-infection and take appropriate management.
Collapse
|
34
|
Sá GD, Barradas P, Amorim I, Cardoso L, Mesquita J. Correspondence: "The One Health concept applied to dirofilariasis-a zoonotic disease". Pulmonology 2023; 29:444-445. [PMID: 37005132 DOI: 10.1016/j.pulmoe.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
|
35
|
Guarner J, Jean S. One Health: The Role of Pathology as it Pertains to Diagnosis of Zoonoses and Discovery of Emerging Infections. Mod Pathol 2023; 36:100236. [PMID: 37268063 DOI: 10.1016/j.modpat.2023.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Pathologists are an integral part of One Health as they are a critical component of the multidisciplinary team that diagnoses zoonotic diseases and discovers emerging pathogens. Both human and veterinary pathologists are uniquely positioned to identify clusters or trends in patient populations that can be caused by an infectious agent and preface emerging outbreaks. The repository of tissue samples available to pathologists is an invaluable resource that can be used to investigate a variety of pathogens. One Health is an encompassing approach that focuses on optimizing the health of humans, animals (domesticated and sylvatic), and the ecosystem, including plants, water, and vectors. In this integrated and balanced approach, multiple disciplines and sectors from local and global communities work together to promote overall well-being of the 3 components and address threats such as emerging infectious diseases and zoonoses. Zoonoses are defined as infectious diseases that are spread between animals and humans through different mechanisms, including direct contact, food, water, vectors, or fomites. This review highlights examples in which human and veterinary pathologists were an integral part of the multisectoral team that identified uncommon etiologic agents or pathologies that had not been elucidated clinically. As the team discovers an emerging infectious disease, pathologists develop and validate tests for epidemiologic and clinical use and provide surveillance data on these diseases. They define the pathogenesis and pathology that these new diseases cause. This review also presents examples that demonstrate the crucial role pathologists play in diagnosing zoonoses that have an impact on the food supply and the economy.
Collapse
|
36
|
Shukla JL, Husain AA, Bhan S, Singh LR, Kashyap RS. Diagnostic utility of LAMP PCR targeting bcsp-31 gene for human brucellosis infection. Indian J Med Microbiol 2023; 44:100354. [PMID: 37356844 DOI: 10.1016/j.ijmmb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 01/21/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Human brucellosis is a neglected zoonotic disease of significant public health concern. Molecular diagnosis of brucella remains challenging in low resource settings, due to the high infrastructure and cost involved. Loop-mediated isothermal amplification (LAMP) is a rapid point of care polymerase chain reaction (PCR) with the utility of on-field molecular diagnosis and offers a convenient alternative to conventional PCR. In the present study, we developed and evaluated the diagnostic utility of in house LAMP PCR targeting the Brucella genus-specific bcsp-31 gene in patients having febrile illness. MATERIALS AND METHODS The analytical sensitivity and specificity of bcsp-31 LAMP PCR was first evaluated using brucella (n = 8) and non-brucella cultures (n = 5), along with spiked clinical samples. The overall diagnostic utility of developed LAMP PCR was then further evaluated in 393 human samples suspected of brucellosis. RESULTS The developed LAMP PCR could detect as low as 8 fg of DNA by visual detection within 35min. We report sensitivity and specificity of the developed LAMP PCR as 90.91% and 99.37%.The accuracy of the developed test assay was found to be 98.60%. In clinical samples, LAMP gave positivity of 20% with the concordance of 89% with conventional PCR. CONCLUSION To conclude, a rapid, efficacious, sensitive LAMP PCR targeting the bcsp 31 gene was developed. The existing LAMP PCR can be used as a point of care screening test in various low resource endemic setting in lieu of conventional PCR for estimation of prevalence data, diagnosis and treatment of brucellosis.
Collapse
|
37
|
Cheung M, Yu D, Chan T, Chahil N, Tchao C, Slatnik M, Maruti S, Sidhu N, Scandrett B, Prystajecky N, Morshed MG, Hogan CA. The Brief Case: an Infectious Hazard of Hunting. J Clin Microbiol 2023; 61:e0062022. [PMID: 37078718 PMCID: PMC10117069 DOI: 10.1128/jcm.00620-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
|
38
|
Saranovic M, Milic M, Radic I, Katanic N, Vujacic M, Gasic M, Bogosavljevic I. Tularemia in Pregnant Woman, Serbia, 2018. Emerg Infect Dis 2023; 29:806-808. [PMID: 36958014 PMCID: PMC10045689 DOI: 10.3201/eid2904.221318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Tularemia was diagnosed for a 33-year-old pregnant woman in Serbia after a swollen neck lymph node was detected at gestation week 18. Gentamicin was administered parenterally (120 mg/d for 7 d); the pregnancy continued with no complications and a healthy newborn was delivered. Treatment of tularemia optimizes maternal and infant outcomes.
Collapse
|
39
|
Chen Q, Yang Q, Chen H, Yao Y, Shen L, Zhang R, Guo H, Yu Y, Zhou H. Zoonotic fungus Arthroderma multifidum causing chronic pulmonary infection. Int J Infect Dis 2023; 130:17-19. [PMID: 36828236 DOI: 10.1016/j.ijid.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
A rare case of fungus Arthroderma multifidum infection occurred in a 63-year-old man. The patient had some risk factors, including occupational exposure, immunosuppressive state, and structural basis following pulmonary tuberculosis and pneumothorax surgery. The pathogen was repeatedly isolated from bronchoalveolar lavage fluid and identified by gene sequencing. It is the first report of human infection caused by A. multifidum. Whole genome sequencing and analysis of its genomic characterization are completed. The findings provide us with a key clinical insight that the combination of immune suppression and environmental exposure could create an ideal condition for zoonotic fungal infections.
Collapse
|
40
|
Sehgal A, Mehta S, Sahay K, Martynova E, Rizvanov A, Baranwal M, Chandy S, Khaiboullina S, Kabwe E, Davidyuk Y. Hemorrhagic Fever with Renal Syndrome in Asia: History, Pathogenesis, Diagnosis, Treatment, and Prevention. Viruses 2023; 15:v15020561. [PMID: 36851775 PMCID: PMC9966805 DOI: 10.3390/v15020561] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hemorrhagic Fever with Renal Syndrome (HFRS) is the most frequently diagnosed zoonosis in Asia. This zoonotic infection is the result of exposure to the virus-contaminated aerosols. Orthohantavirus infection may cause Hemorrhagic Fever with Renal Syndrome (HRFS), a disease that is characterized by acute kidney injury and increased vascular permeability. Several species of orthohantaviruses were identified as causing infection, where Hantaan, Puumala, and Seoul viruses are most common. Orthohantaviruses are endemic to several Asian countries, such as China, South Korea, and Japan. Along with those countries, HFRS tops the list of zoonotic infections in the Far Eastern Federal District of Russia. Recently, orthohantavirus circulation was demonstrated in small mammals in Thailand and India, where orthohantavirus was not believed to be endemic. In this review, we summarized the current data on orthohantaviruses in Asia. We gave the synopsis of the history and diversity of orthohantaviruses in Asia. We also described the clinical presentation and current understanding of the pathogenesis of orthohantavirus infection. Additionally, conventional and novel approaches for preventing and treating orthohantavirus infection are discussed.
Collapse
|
41
|
Berger K, Garbuglia AR. Editorial: Diagnosis of zoonoses: Relevance of BSL3 and BSL4 facilities. Front Cell Infect Microbiol 2022; 12:1052082. [PMID: 36325464 PMCID: PMC9621615 DOI: 10.3389/fcimb.2022.1052082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
42
|
|
43
|
Othman S, Lee PY, Lam JY, Philip N, Azhari NN, Affendy NB, Masri SN, Neela VK, Mohd-Taib FS, Chee HY. A versatile isothermal amplification assay for the detection of leptospires from various sample types. PeerJ 2022; 10:e12850. [PMID: 35291487 PMCID: PMC8918162 DOI: 10.7717/peerj.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
Background Leptospirosis is a zoonotic disease caused by bacteria of the genus Leptospira that affects both humans and animals worldwide. Early detection of the pathogen in humans is crucial for early intervention and control of the progression of the disease to a severe state. It is also vitally important to be able to detect the presence of the pathogen in carrier animals to control the spread of the disease from the environment. Here we developed a simple and rapid loop-mediated isothermal amplification (LAMP) assay targeting the leptospiral secY gene. Results Several reaction conditions of the LAMP reaction were optimized to ensure efficient amplification of the target DNA. The sensitivity of the developed LAMP assay obtained using a pure Leptospira culture was 2 × 104 copies of genomic DNA per reaction (equivalent to 0.1 ng) for a 40-minute reaction time. No cross-reactions were observed in the LAMP reaction against a series of non-leptospiral bacteria, indicating a specific reaction. The applicability of the LAMP assay was demonstrated on human blood and urine specimens collected from suspected leptospirosis patients and rat kidney specimens collected from suspected leptospirosis outbreak areas and high-risk areas. The developed LAMP assay demonstrated a higher detection rate for leptospiral DNA compared with the polymerase chain reaction (PCR) assay, possibly due to the presence of inhibitory substances, especially in rat kidney specimens, to which the PCR method is more susceptible. The present findings also highlight the importance of urine sample collection from patients for routine monitoring of the disease. Conclusions In short, the developed LAMP assay can serve as a feasible alternative tool for the diagnosis of leptospirosis and be used for epidemiological and environmental surveillance of the disease, considering its robustness, rapidity, sensitivity, and specificity, as demonstrated in this study.
Collapse
|
44
|
|
45
|
Macdonald A, Hawkes LA, Corrigan DK. Recent advances in biomedical, biosensor and clinical measurement devices for use in humans and the potential application of these technologies for the study of physiology and disease in wild animals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200228. [PMID: 34176326 PMCID: PMC8237170 DOI: 10.1098/rstb.2020.0228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
The goal of achieving enhanced diagnosis and continuous monitoring of human health has led to a vibrant, dynamic and well-funded field of research in medical sensing and biosensor technologies. The field has many sub-disciplines which focus on different aspects of sensor science; engaging engineers, chemists, biochemists and clinicians, often in interdisciplinary teams. The trends which dominate include the efforts to develop effective point of care tests and implantable/wearable technologies for early diagnosis and continuous monitoring. This review will outline the current state of the art in a number of relevant fields, including device engineering, chemistry, nanoscience and biomolecular detection, and suggest how these advances might be employed to develop effective systems for measuring physiology, detecting infection and monitoring biomarker status in wild animals. Special consideration is also given to the emerging threat of antimicrobial resistance and in the light of the current SARS-CoV-2 outbreak, zoonotic infections. Both of these areas involve significant crossover between animal and human health and are therefore well placed to seed technological developments with applicability to both human and animal health and, more generally, the reviewed technologies have significant potential to find use in the measurement of physiology in wild animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
|
46
|
Huang M, Ma J, Jiao J, Li C, Chen L, Zhu Z, Ruan F, Xing L, Zheng X, Fu M, Ma B, Gan C, Mao Y, Zhang C, Sun P, Liu X, Lin Z, Chen L, Lu Z, Zhou D, Wen B, Chen W, Xiong X, Xia J. The epidemic of Q fever in 2018 to 2019 in Zhuhai city of China determined by metagenomic next-generation sequencing. PLoS Negl Trop Dis 2021; 15:e0009520. [PMID: 34264939 PMCID: PMC8282036 DOI: 10.1371/journal.pntd.0009520] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/30/2021] [Indexed: 12/24/2022] Open
Abstract
Q fever is a worldwide zoonosis caused by Coxiella burnetii (Cb). From January 2018 to November 2019, plasma samples from 2,382 patients with acute fever of unknown cause at a hospital in Zhuhai city of China were tested using metagenomic next-generation sequencing (mNGS). Of those tested, 138 patients (5.8%) were diagnosed with Q fever based on the presence of Cb genomic DNA detected by mNGS. Among these, 78 cases (56.5%) presented from Nov 2018 to Mar 2019, suggesting an outbreak of Q fever. 55 cases with detailed clinical information that occurred during the outbreak period were used for further analysis. The vast majority of plasma samples from those Cb-mNGS-positive patients were positive in a Cb-specific quantitative polymerase chain reaction (n = 38) and/or indirect immunofluorescence assay (n = 26). Mobile phone tracing data was used to define the area of infection during the outbreak. This suggested the probable infection source was Cb-infected goats and cattle at the only official authorized slaughterhouse in Zhuhai city. Phylogenic analysis based on genomic sequences indicated Cb strains identified in the patients, goat and cattle were formed a single branch, most closely related to the genomic group of Cb dominated by strains isolated from goats. Our study demonstrates Q fever was epidemic in 2018–2019 in Zhuhai city, and this is the first confirmed epidemic of Q fever in a contemporary city in China. Generally, the clinical diagnosis of acute Q fever, which is caused by Coxiella burnetii, is based on serologic methods that detect the presence antibodies produced by the body to fight the infection. However, the lag time between becoming infected and production of antibodies limits early diagnosis using this method. Here, we confirmed an epidemic of human Q fever in Zhuhai, a contemporary city in China, using clinical metagenomic next-generation sequencing (mNGS) and cell phone location data. Our results indicate that Cb-infected goats and cattle at the only official authorized slaughterhouse in Zhuhai were the likely infection source for the Q fever epidemic. More importantly, we demonstrate that mNGS is a useful tool for rapid and effective public health responses to acute bacterial infections.
Collapse
|
47
|
Miguéis SDC, Tavares APM, Martins GV, Frasco MF, Sales MGF. Biosensors for European Zoonotic Agents: A Current Portuguese Perspective. SENSORS (BASEL, SWITZERLAND) 2021; 21:4547. [PMID: 34283108 PMCID: PMC8271446 DOI: 10.3390/s21134547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023]
Abstract
Emerging and recurrent outbreaks caused by zoonotic agents pose a public health risk. They result in morbidity and mortality in humans and significant losses in the livestock and food industries. This highlights the need for rapid surveillance methods. Despite the high reliability of conventional pathogen detection methods, they have high detection limits and are time-consuming and not suitable for on-site analysis. Furthermore, the unpredictable spread of zoonotic infections due to a complex combination of risk factors urges the development of innovative technologies to overcome current limitations in early warning and detection. Biosensing, in particular, is highlighted here, as it offers rapid and cost-effective devices for use at the site of infection while increasing the sensitivity of detection. Portuguese research in biosensors for zoonotic pathogens is the focus of this review. This branch of research produces exciting and innovative devices for the study of the most widespread pathogenic bacteria. The studies presented here relate to the different classes of pathogens whose characteristics and routes of infection are also described. Many advances have been made in recent years, and Portuguese research teams have increased publications in this field. However, biosensing still needs to be extended to other pathogens, including potentially pandemic viruses. In addition, the use of biosensors as part of routine diagnostics in hospitals for humans, in animal infections for veterinary medicine, and food control has not yet been achieved. Therefore, a convergence of Portuguese efforts with global studies on biosensors to control emerging zoonotic diseases is foreseen for the future.
Collapse
|
48
|
Rodriguez A, Douphrate DI, Hagevoort R, Cienega L, de Porras DGR, Perez A, Nonnenmann M. Association of Exposure to Cattle with Self-Reported History of TB Among Dairy Workers. Workplace Health Saf 2021; 69:306-314. [PMID: 33383992 PMCID: PMC8205934 DOI: 10.1177/2165079920976521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mycobacterium bovis (bTB) is a potential health hazard to dairy workers. This study uses the One Health wholistic framework for examining bovine tuberculosis (TB) and its relationship to human health. This approach can help bridge surveillance data gaps and contribute to disease control and prevention programs for dairy farm workers, cattle, and the environment. The primary objective of this study was to compare the self-reported history of TB among dairy workers in Bailey County, Texas, with occupational categories of risk and exposure to TB. METHODS A cross-sectional study was conducted among dairy workers. Job positions were used as a proxy for exposure to cattle-high and medium/low. We employed bivariate analyses to examine differences between groups using both the chi-square test and the nonparametric Kruskal-Wallis test. RESULTS Of the 293 dairy workers invited, 77.0% (n = 225) participated. No statistically significant associations were found between job categories and reported history of TB exposure. Workers in the high group were younger, Guatemalan males with lower levels of formal education, more likely to be single with no children, and cohabitating with coworkers compared with the medium/low group. CONCLUSION/APPLICATION TO PRACTICE Self-reported TB history among dairy workers is an imprecise measure of being previously diagnosed with TB. Dairy workers at risk for occupationally acquired TB could be tested for TB before employment and tested periodically thereafter, and more expeditiously treated if a positive test is obtained. Future studies should focus on the feasibility of offering on-farm health services, such as TB screening.
Collapse
|
49
|
Michelitsch A, Schön J, Hoffmann D, Beer M, Wernike K. The Second Wave of SARS-CoV-2 Circulation-Antibody Detection in the Domestic Cat Population in Germany. Viruses 2021; 13:v13061009. [PMID: 34072254 PMCID: PMC8229653 DOI: 10.3390/v13061009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Registered cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the German human population increased rapidly during the second wave of the SARS-CoV-2 pandemic in winter 2020/21. Since domestic cats are susceptible to SARS-CoV-2, the occurrence of trans-species transmission needs to be monitored. A previous serosurvey during the first wave of the pandemic detected antibodies against SARS-CoV-2 in 0.65% of feline serum samples that were randomly sampled across Germany. In the here-presented follow-up study that was conducted from September 2020 to February 2021, the seroprevalence rose to 1.36% (16/1173). This doubling of the seroprevalence in cats is in line with the rise of reported cases in the human population and indicates a continuous occurrence of trans-species transmission from infected owners to their cats.
Collapse
|
50
|
Peper ST, Jones AC, Webb CR, Lacy M, Presley SM. Consideration of Vector-Borne and Zoonotic Diseases during Differential Diagnosis. South Med J 2021; 114:277-282. [PMID: 33942111 PMCID: PMC8061336 DOI: 10.14423/smj.0000000000001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Recognition and reporting of vector-borne and zoonotic disease (VBZD) cases is largely dependent upon the consideration of such diseases by healthcare practitioners during the initial diagnosis and ordering of specific confirmative diagnostic tests. This study was conducted to assess the general knowledge and understanding of VBZD transmission and clinical presentation. METHODS Healthcare practitioners were surveyed to determine the extent of training and educational experiences they received relative to VBZDs, and their likelihood to consider such diseases during differential diagnoses. In addition, an assessment of their knowledge of arthropod species that may transmit VBZD pathogens was conducted. RESULTS Having postprofessional school training relevant to VBZDs significantly influenced diagnostic accuracy for such disease cases based on the presented clinical signs and symptoms. CONCLUSIONS The prevalence of VBZDs in the United States likely is significantly underestimated. The authors suggest the enhancement of VBZD-focused education as an important initiative that would significantly improve timely diagnosis, treatment, and, ultimately, prevention of these diseases.
Collapse
|