626
|
Glaven JA, Whitehead I, Bagrodia S, Kay R, Cerione RA. The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J Biol Chem 1999; 274:2279-85. [PMID: 9890991 DOI: 10.1074/jbc.274.4.2279] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The possibility that the Dbl family member Lfc can activate Rac1 in cells is investigated in this study. Previously, we demonstrated that both Lfc and Lsc, like their closest relative Lbc, can act catalytically in stimulating the guanine nucleotide exchange activity of RhoA in vitro. Neither Lfc nor Lsc stimulated the in vitro exchange activity of Cdc42 or Rac1; however, Lfc was capable of forming a tight complex with Rac1 in vitro. We show here that Lfc stimulates c-Jun kinase (JNK) activity in COS-7 cells. This stimulation was blocked by a dominant negative mutant of Rac1 and somewhat less effectively by dominant negative RhoA, but not by dominant negative Cdc42. Overexpression of Lfc in NIH 3T3 cells induced the formation of actin stress fibers and membrane ruffles, consistent with the activation of both RhoA and Rac1 signaling pathways, whereas overexpression of Lsc led exclusively to well developed stress fibers. Using a recently developed assay for measuring the cellular activation of Rac, we did not find that expression of Lfc increased the levels of GTP-bound Rac1. However, an examination of the cellular localization of Lfc showed that it was localized to microtubules, similar to what has been reported for activated Rac1, the mixed lineage kinase (MLK) and JNK. Moreover, we have found that the Pleckstrin homology (PH) domain of Lfc specifically associates with tubulin. Taken together, these findings suggest a model where the PH domain-mediated localization of Lfc to microtubules enables the recruitment of Rac to a site proximal to its signaling targets, resulting in JNK activation and actin cytoskeletal changes.
Collapse
|
627
|
Velasco JA, Avila MA, Notario V. The product of the cph oncogene is a truncated, nucleotide-binding protein that enhances cellular survival to stress. Oncogene 1999; 18:689-701. [PMID: 9989819 DOI: 10.1038/sj.onc.1202324] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cph was isolated from neoplastic Syrian hamster embryo fibroblasts initiated by 3-methylcholanthrene (MCA), and was shown to be a single copy gene in the hamster genome, conserved from yeast to human cells, expressed in fetal cells and most adult tissues, and acting synergistically with H-ras in the transformation of murine NIH3T3 fibroblasts. We have now isolated Syrian hamster full-length cDNAs for the cph oncogene and proto-oncogene. Nucleotide sequence analysis revealed that cph was activated in MCA-treated cells by a point-mutational deletion at codon 214, which caused a shift in the normal open reading frame (ORF) and brought a translation termination codon 33 amino acids downstream. While proto-cph encodes a protein (pcph) of 469 amino acids, cph encodes a truncated protein (cph) of 246 amino acids with a new, hydrophobic C-terminus. Similar mechanisms activated cph in other MCA-treated Syrian hamster cells. The cph and proto-cph proteins have partial sequence homology with two protein families: GDP/GTP exchange factors and nucleotide phosphohydrolases. In vitro translated, gel-purified cph proteins did not catalyze nucleotide exchange for H-ras, but were able to bind nucleotide phosphates, in particular ribonucleotide diphosphates such as UDP and GDP. Steady-state levels of cph mRNA increased 6.7-fold in hamster neoplastic cells, relative to a 2.2-fold increase in normal cells, when they were subjected to a nutritional stress such as serum deprivation. Moreover, cph-transformed NIH3T3 cells showed increased survival to various forms of stress (serum starvation, hyperthermia, ionizing radiation), strongly suggesting that cph participates in cellular mechanisms of response to stress.
Collapse
|
628
|
Chen CR, Li YC, Chen J, Hou MC, Papadaki P, Chang EC. Moe1, a conserved protein in Schizosaccharomyces pombe, interacts with a Ras effector, Scd1, to affect proper spindle formation. Proc Natl Acad Sci U S A 1999; 96:517-22. [PMID: 9892665 PMCID: PMC15168 DOI: 10.1073/pnas.96.2.517] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In fission yeast, Scd1/Ral1 is a putative guanine nucleotide exchange factor for Cdc42sp and also acts as a Ras1 effector necessary for the regulation of cytoskeleton organization. In this study, we have characterized a protein, Moe1, that binds directly to Scd1. A moe1 null (Delta) mutant exhibits numerous phenotypes indicative of abnormal microtubule functioning, including an abnormality in the spindle. moe1Delta mutants are resistant to microtubule destabilizing agents; moreover, moe1Delta rescued the growth defects of tubulin mutants containing unstable microtubules. These results suggest that Moe1 induces instability in microtubules. Biochemical and subcellular localization studies suggest that Moe1 and Scd1 colocalize in the nucleus. Furthermore, loss of function in Scd1 or Ras1 also induced abnormality in the spindle and is synthetically lethal with moe1Delta producing cells that lack a detectable spindle. These data demonstrate that Moe1 is a component of the Ras1 pathway necessary for proper spindle formation in the nucleus. Human and nematode Moe1 both can substitute for yeast Moe1, indicating that the function of Moe1 in spindle formation has been conserved substantially during evolution.
Collapse
|
629
|
Pearsall RS, Plass C, Romano MA, Garrick MD, Shibata H, Hayashizaki Y, Held WA. A direct repeat sequence at the Rasgrf1 locus and imprinted expression. Genomics 1999; 55:194-201. [PMID: 9933566 DOI: 10.1006/geno.1998.5660] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic imprinting is an epigenetic modification that can lead to parental-specific monoallelic expression of specific autosomal genes. While methylation of CpG dinucleotides is thought to be a strong candidate for this epigenetic modification, little is known about the establishment or maintenance of parental origin-specific methylation patterns. We have recently identified a portion of mouse chromosome 9 containing a paternally methylated region associated with a paternally expressed imprinted gene, Ras protein-specific guanine nucleotide-releasing factor 1 (Rasgrf1). This area of chromosome 9 also contains a short, direct tandem repeat in close proximity to a paternally methylated NotI site 30 kb upstream of Rasgrf1. Short, direct tandem repeats have been found associated with other imprinted genes and may act as important regulatory structures. Here we demonstrate that two rodent species (Mus and Rattus) contain a similar direct repeat structure associated with a region of paternal-specific methylation. In both species, the Rasgrf1 gene shows paternal-specific monoallelic expression in neonatal brain. A more divergent rodent species (Peromyscus) appears to lack a similar repeat structure based on Southern Blot analysis. Peromyscus animals show biallelic expression of Rasgrf1 in neonatal brain. These results suggest that direct repeat elements may play an important role in the imprinting process.
Collapse
|
630
|
McShea A, Zelasko DA, Gerst JL, Smith MA. Signal transduction abnormalities in Alzheimer's disease: evidence of a pathogenic stimuli. Brain Res 1999; 815:237-42. [PMID: 9878757 DOI: 10.1016/s0006-8993(98)01135-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hippocampal and select cortical neuronal populations in Alzheimer's disease exhibit phenotypic changes characteristic of cells re-entering the cell division cycle. Therefore, in this study, we investigated whether components, known to trigger cellular proliferation and differentiation, upstream of the ras/mitogen-activated kinase pathway, could contribute to the activation of a signal transduction cascade in Alzheimer's disease. We found that proteins implicated in signal transduction from cell surface receptors via the ras pathway, namely Grb2 and SOS-1, were altered in cases of Alzheimer's disease in comparison to age-matched controls. SOS is increased in susceptible pyramidal neurons, while Grb2 shows more subtle alterations in subcellular distribution. Importantly, both SOS-1 and Grb2 show considerable overlap with early cytoskeletal abnormalities suggesting that the alteration in signal transduction molecules is a concurrent, if not preceding, event in the pathogenesis of Alzheimer's disease. Taken together with the cell cycle abnormalities previously reported, these findings suggest that a signal derived from the cell surface contributes to a stimulus for neurons in Alzheimer's disease to re-enter the cell cycle.
Collapse
|
631
|
Hmama Z, Knutson KL, Herrera-Velit P, Nandan D, Reiner NE. Monocyte adherence induced by lipopolysaccharide involves CD14, LFA-1, and cytohesin-1. Regulation by Rho and phosphatidylinositol 3-kinase. J Biol Chem 1999; 274:1050-7. [PMID: 9873050 DOI: 10.1074/jbc.274.2.1050] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms regulating lipopolysaccharide (LPS)-induced adherence to intercellular adhesion molecule (ICAM)-1 were examined using THP-1 cells transfected with CD14-cDNA (THP-1wt). THP-1wt adherence to ICAM-1 was LPS dose-related, time-dependent, and inhibited by antibodies to either CD14 or leukocyte function associated antigen (LFA)-1, but was independent of any change in the number of surface expressed LFA-1 molecules. A potential role for phosphatidylinositol (PI) 3-kinase (PI 3-kinase) in LPS-induced adherence was examined using the PI 3-kinase inhibitors LY294002 and Wortmannin. Both inhibitors selectively attenuated LPS-induced, but not phorbol 12-myristate 13-acetate-induced adherence. Inhibition by these agents was unrelated to any changes in either LPS binding to or LFA-1 expression by THP-1wt cells. LPS-induced adherence was also abrogated in U937 cells transfected with a dominant negative mutant of of PI 3-kinase. Toxin B from Clostridium difficile, an inhibitor of the Rho family of GTP-binding proteins, abrogated both PI-3 kinase activation and adherence induced by LPS. Cytohesin-1, a phosphatidylinositol 3,4,5-triphosphate-regulated adaptor molecule for LFA-1 activation, was found to be expressed in THP-1wt cells. In addition, treatment of THP-1wt with cytohesin-1 antisense attenuated LPS-induced adherence. These findings suggest a model in which LPS induces adherence through a process of "inside-out" signaling involving CD14, Rho, and PI 3-kinase. This converts low avidity LFA-1 into an active form capable of increased binding to ICAM-1. This change in LFA-1 appears to be cytohesin-1-dependent.
Collapse
|
632
|
Ratovitski EA, Alam MR, Quick RA, McMillan A, Bao C, Kozlovsky C, Hand TA, Johnson RC, Mains RE, Eipper BA, Lowenstein CJ. Kalirin inhibition of inducible nitric-oxide synthase. J Biol Chem 1999; 274:993-9. [PMID: 9873042 DOI: 10.1074/jbc.274.2.993] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) acts as a neurotransmitter. However, excess NO produced from neuronal NO synthase (nNOS) or inducible NOS (iNOS) during inflammation of the central nervous system can be neurotoxic, disrupting neurotransmitter and hormone production and killing neurons. A screen of a hippocampal cDNA library showed that a unique region of the iNOS protein interacts with Kalirin, previously identified as an interactor with a secretory granule peptide biosynthetic enzyme. Kalirin associates with iNOS in vitro and in vivo and inhibits iNOS activity by preventing the formation of iNOS homodimers. Expression of exogenous Kalirin in pituitary cells dramatically reduces iNOS inhibition of ACTH secretion. Thus Kalirin may play a neuroprotective role during inflammation of the central nervous system by inhibiting iNOS activity.
Collapse
|
633
|
Takeda N, Shibuya M, Maru Y. The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl Acad Sci U S A 1999; 96:203-7. [PMID: 9874796 PMCID: PMC15117 DOI: 10.1073/pnas.96.1.203] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The previously uncharacterized CDC24 homology domain of BCR, which is missing in the P185 BCR-ABL oncogene of Philadelphia chromosome (Ph1)-positive acute lymphocytic leukemia but is retained in P210 BCR-ABL of chronic myelogeneous leukemia, was found to bind to the xeroderma pigmentosum group B protein (XPB). The binding appeared to be required for XPB to be tyrosine-phosphorylated by BCR-ABL. The interaction not only reduced both the ATPase and the helicase activities of XPB purified in the baculovirus system but also impaired XPB-mediated cross-complementation of the repair deficiency in rodent UV-sensitive mutants of group 3. The persistent dysfunction of XPB may in part underlie genomic instability in blastic crisis.
Collapse
|
634
|
Ishimaru S, Williams R, Clark E, Hanafusa H, Gaul U. Activation of the Drosophila C3G leads to cell fate changes and overproliferation during development, mediated by the RAS-MAPK pathway and RAP1. EMBO J 1999; 18:145-55. [PMID: 9878058 PMCID: PMC1171110 DOI: 10.1093/emboj/18.1.145] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular signal transduction pathways by which C3G, a RAS family guanine nucleotide exchange factor, mediates v-crk transformation are not well understood. Here we report the identification of Drosophila C3G, which, like its human cognate, specifically binds to CRK but not DRK/GRB2 adaptor molecules. During Drosophila development, constitutive membrane binding of C3G, which also occurs during v-crk transformation, results in cell fate changes and overproliferation, mimicking overactivity of the RAS-MAPK pathway. The effects of C3G overactivity can be suppressed by reducing the gene dose of components of the RAS-MAPK pathway and of RAP1. These findings provide the first in vivo evidence that membrane localization of C3G can trigger activation of RAP1 and RAS resulting in the activation of MAPK, one of the hallmarks of v-crk transformation previously thought to be mediated through activation of SOS.
Collapse
|
635
|
Jefferson LS, Fabian JR, Kimball SR. Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle. Int J Biochem Cell Biol 1999; 31:191-200. [PMID: 10216953 DOI: 10.1016/s1357-2725(98)00141-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eukaryotic initiation factor eIF2B is a guanine nucleotide exchange protein involved in regulation of translation initiation. Phosphorylation of the epsilon-subunit is thought to be important in insulin-mediated changes in eIF2B activity. However, elucidation of insulin's action has proven elusive, primarily because eIF2B epsilon is a substrate in vitro for at least three different protein kinases. In the present study, we observed changes in eIF2B epsilon kinase activity only in those muscles previously shown to exhibit alterations in protein synthesis in response to insulin. Specifically, eIF2B epsilon kinase activity was increased in psoas muscle from diabetic rats compared to controls. Treating diabetic rats with insulin rapidly reduced eIF2B epsilon kinase activity below control values. Changes were not observed in heart. To identify the kinase(s) in psoas responsible for phosphorylating eIF2B epsilon, the wildtype and two variant forms of the epsilon-subunit were expressed in and purified from Sf9 insect cells, and were used as substrates in protein kinase assays. The first variant contained a point mutation in the eIF2B epsilon cDNA that converted the glycogen synthase kinase-3 (GSK-3) phosphorylation site, Ser535, to a nonphosphorylatable Ala residue. In the second variant, the putative GSK-3 'priming' site, Ser539, was converted to Asp. Based on the pattern of phosphorylation of the wildtype and two variant forms of eIF2B epsilon using casein kinase (CK)-I, CK-II, or GSK-3 as well as that observed with skeletal muscle extracts, we conclude that the predominant eIF2B epsilon kinase in psoas muscle is GSK-3. Thus, insulin-mediated changes in eIF2B activity are likely to involve GSK-3.
Collapse
|
636
|
Renault L, Nassar N, Wittinghofer A, Roth M, Vetter IR. Crystallization and preliminary X-ray analysis of human RCC1, the regulator of chromosome condensation. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 1999; 55:272-5. [PMID: 10089422 DOI: 10.1107/s0907444998007768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/1998] [Accepted: 06/01/1998] [Indexed: 11/10/2022]
Abstract
RCC1, the regulator of chromosome condensation, is the guanine nucleotide-exchange factor (GEF) of the GTP-binding protein Ran. Its GEF activity on Ran makes it a key element in nucleo-cytoplasmic transport and cell-cycle regulation. Crystals of human RCC1 suitable for X-ray analysis have been obtained using the seeding technique in hanging drops with sodium citrate as a precipitant. The crystals diffract to 1.7 A at 100 K and belong to the space group P1, with unit-cell parameters a = 49.5, b = 84.3, c = 84.9 A, alpha = 113.0, beta = 103.9,gamma = 103.3 degrees. The Matthews parameter (Vm) and the self-rotation function are consistent with three molecules in the unit cell, which is confirmed by the averaged single isomorphous replacement (SIR) electron-density map.
Collapse
|
637
|
Cussac D, Vidal M, Leprince C, Liu WQ, Cornille F, Tiraboschi G, Roques BP, Garbay C. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity. FASEB J 1999; 13:31-8. [PMID: 9872927 DOI: 10.1096/fasebj.13.1.31] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the aim of interrupting the growth factor-stimulated Ras signaling pathway at the level of the Grb2-Sos interaction, a peptidimer, made of two identical proline-rich sequences from Sos linked by a lysine spacer, was designed using structural data from Grb2 and a proline-rich peptide complexed with its SH3 domains. The peptidimer affinity for Grb2 is 40 nM whereas that of the monomer is 16 microM, supporting the dual recognition of both Grb2 SH3 domains by the dimer. At 50 nM, the peptidimer blocks selectively Grb2-Sos complexation in ER 22 (CCL 39 fibroblasts overexpressing epidermal growth factor receptor) cellular extracts. The peptidimer specifically recognizes Grb2 and does not interact with PI3K or Nck, two SH3 domain-containing adaptors. The peptidimer was modified to enter cells by coupling to a fragment of Antennapedia homeodomain. At 10 microM, the conjugate inhibits the Grb2-Sos interaction (100%) and MAP kinase (ERK1 and ERK2) phosphorylation (60%) without modifying cellular growth of ER 22 cells. At the same concentration, the conjugate also inhibits both MAP kinase activation induced by nerve growth factor or epidermal growth factor in PC12 cells, and differentiation triggered by nerve growth factor. Finally, when tested for its antiproliferative activity, the conjugate was an efficient inhibitor of the colony formation of transformed NIH3T3/HER2 cells grown in soft agar, with an IC50 of around 1 microM. Thus, the designed peptidimers appear to be interesting leads to investigate signaling and intracellular processes and for designing selective inhibitors of tumorigenic Ras-dependent processes.
Collapse
|
638
|
Saito Y, Yamanushi T, Oka T, Nakano A. Identification of SEC12, SED4, truncated SEC16, and EKS1/HRD3 as multicopy suppressors of ts mutants of Sar1 GTPase. J Biochem 1999; 125:130-7. [PMID: 9880808 DOI: 10.1093/oxfordjournals.jbchem.a022249] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The yeast SAR1 gene encodes a low-molecular-weight GTPase which is essential for the formation of transport vesicles from the endoplasmic reticulum (ER). To understand how the Sar1p function is regulated in its GTPase cycle, we searched for multicopy suppressors of sar1 temperature-sensitive mutants and identified SEC12, SED4, truncated SEC16, and EKS1. EKS1 turns out to be identical to HRD3, which was independently isolated as a gene implicated in the degradation of an HMG-CoA reductase isozyme, Hmg2p. In this paper, we show that the product of EKS1/HRD3 is a type-I transmembrane glycoprotein and resides in the ER. The eks1/hrd3 disrupted cells are normal in growth and transport of cargo proteins, but missecrete BiP (Kar2p). The overexpression of EKS1/HRD3, which stabilizes Hmg2p, did not affect the stability of wild-type or mutant Sar1p or any early Sec proteins we examined. These results suggest that the role of Eks1p/Hrd3p is not involved in the ER protein degradation in general but rather required for the maintenance of the ER membrane functions. The novel genetic interactions unveiled between SAR1, SEC12, SEC16, and SED4 will provide useful information as to how the complex machinery of vesicle budding operates.
Collapse
|
639
|
Abstract
One of the adaptor proteins, Nck, comprises a single SH2 domain and three SH3 domains that are important in protein-protein interactions. The in vivo association of Nck with the guanine nucleotide exchange factor Sos has been well documented; however, the precise nature of the interaction is unclear. To determine which SH3 domains are involved in the Nck-Sos interaction, individual SH3 domains of Nck were generated as glutathione S-transferase fusion proteins. We found that exclusively the third (C-terminal) SH3 domain of Nck has the ability to bind to Sos. In addition, in [35S]methionine labelled K562 cells, a 100,000 Mr protein was found to be associated with the third SH3 domain of Nck. This protein was identified as dynamin, a GTP-binding protein that has been implicated in clathrin-coated vesicle formation. Dynamin and Nck co-precipitated when cell lysates were immunoprecipitated with anti-Nck antibody. These data suggest that Nck may contribute to Ras activation and the function of dynamin in membrane trafficking through its third SH3 domain.
Collapse
|
640
|
Sato M, Sato K, Nishikawa S, Hirata A, Kato J, Nakano A. The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Mol Cell Biol 1999; 19:471-83. [PMID: 9858571 PMCID: PMC83905 DOI: 10.1128/mcb.19.1.471] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1998] [Accepted: 09/16/1998] [Indexed: 11/20/2022] Open
Abstract
As an approach to understand the molecular mechanisms of endoplasmic reticulum (ER) protein sorting, we have isolated yeast rer mutants that mislocalize a Sec12-Mfalpha1p fusion protein from the ER to later compartments of the secretory pathway (S. Nishikawa and A. Nakano, Proc. Natl. Acad. Sci. USA 90:8179-8183, 1993). The temperature-sensitive rer2 mutant mislocalizes different types of ER membrane proteins, suggesting that RER2 is involved in correct localization of ER proteins in general. The rer2 mutant shows several other characteristic phenotypes: slow growth, defects in N and O glycosylation, sensitivity to hygromycin B, and abnormal accumulation of membranes, including the ER and the Golgi membranes. RER2 and SRT1, a gene whose overexpression suppresses rer2, encode novel proteins similar to each other, and their double disruption is lethal. RER2 homologues are found not only in eukaryotes but also in many prokaryote species and thus constitute a large gene family which has been well conserved during evolution. Taking a hint from the phenotype of newly established mutants of the Rer2p homologue of Escherichia coli, we discovered that the rer2 mutant is deficient in the activity of cis-prenyltransferase, a key enzyme of dolichol synthesis. This and other lines of evidence let us conclude that members of the RER2 family of genes encode cis-prenyltransferase itself. The difference in phenotypes between the rer2 mutant and previously obtained glycosylation mutants suggests a novel, as-yet-unknown role of dolichol.
Collapse
|
641
|
Kigawa T, Endo M, Ito Y, Shirouzu M, Kikuchi A, Yokoyama S. Solution structure of the Ras-binding domain of RGL. FEBS Lett 1998; 441:413-8. [PMID: 9891982 DOI: 10.1016/s0014-5793(98)01596-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The RGL protein, a homolog of the Ral GDP dissociation stimulator (RalGDS), has been identified as a downstream effector of Ras. In the present study, the solution structure of the Ras-binding domain of RGL (RGL-RBD) was determined by NMR spectroscopy. The overall fold of RGL-RBD consists of a five-stranded beta-sheet and two alpha-helices, which is the same topology as that of RalGDS-RBD. The backbone chemical shift perturbation of RGL-RBD upon interaction with the GTP analog-bound Ras was also examined. The solution structure of RGL-RBD, especially around some of the Ras-interacting residues, is appreciably different from that of RalGDS-RBD.
Collapse
|
642
|
Ren Y, Li R, Zheng Y, Busch H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 1998; 273:34954-60. [PMID: 9857026 DOI: 10.1074/jbc.273.52.34954] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho-related small GTPases are critical elements involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. The Dbl-like guanine nucleotide exchange factors (GEF) have been implicated in direct activation of these GTPases. Here we have identified a new member of the Dbl family, GEF-H1, by screening a human HeLa cell cDNA library. GEF-H1 encodes a 100-kDa protein containing the conserved structural array of a Dbl homology domain in tandem with a pleckstrin homology domain and is most closely related to the lfc oncogene, but additionally it contains a unique coiled-coil domain at the carboxyl terminus. Biochemical analysis reveals that GEF-H1 is capable of stimulating guanine nucleotide exchange of Rac and Rho but is inactive toward Cdc42, TC10, or Ras. Moreover, GEF-H1 binds to Rac and Rho proteins in both the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound states without detectable affinity for Cdc42 or Ras. Immunofluorescence reveals that GEF-H1 colocalizes with microtubules through the carboxyl-terminal coiled-coil domain. Overexpression of GEF-H1 in COS-7 cells results in induction of membrane ruffles. These results suggest that GEF-H1 may have a direct role in activation of Rac and/or Rho and in bringing the activated GTPase to specific target sites such as microtubules.
Collapse
|
643
|
Schwoebel ED, Talcott B, Cushman I, Moore MS. Ran-dependent signal-mediated nuclear import does not require GTP hydrolysis by Ran. J Biol Chem 1998; 273:35170-5. [PMID: 9857054 DOI: 10.1074/jbc.273.52.35170] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear import of classical nuclear localization sequence-containing proteins involves the assembly of an import complex at the cytoplasmic face of the nuclear pore complex (NPC) followed by movement of this complex through the NPC and release of the import substrate into the nuclear interior. This process has historically been thought to require nucleotide hydrolysis as a source of energy. We found, using hydrolysis-resistant GTP analogs and a mutant Ran unable to hydrolyze GTP, that transport of classical nuclear localization sequence containing substrate through the NPC and release of the substrate into the nucleus did not require hydrolysis of GTP by Ran. In fact, for movement of this type of import substrate into the nuclear interior we did not observe a requirement for hydrolysis of any nucleotide triphosphate. We did, however, find that a pool of free GTP (or its structural equivalent) must be added, probably because the GDP Ran that is added must be converted to GTP Ran during the import process. We found that a requirement for GTP hydrolysis can be restored to an import mixture consisting of recombinant import factors by the addition of RCC1, the Ran guanine nucleotide exchange factor.
Collapse
|
644
|
Giglione C, Parmeggiani A. Raf-1 is involved in the regulation of the interaction between guanine nucleotide exchange factor and Ha-ras. Evidences for a function of Raf-1 and phosphatidylinositol 3-kinase upstream to Ras. J Biol Chem 1998; 273:34737-44. [PMID: 9856997 DOI: 10.1074/jbc.273.52.34737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The observation that activated c-Ha-Ras p21 interacts with diverse protein ligands suggests the existence of mechanisms that regulate multiple interactions with Ras. This work studies the influence of the Ras effector c-Raf-1 on the action of guanine nucleotide exchange factors (GEFs) on Ha-Ras in vitro. Purified GEFs (the catalytic domain of yeast Sdc25p and the full-length and catalytic domain of mouse CDC25Mm) and the Ras binding domains (RBDs) of Raf-1 (Raf (1-149) and Raf (51-131)) were used. Our results show that not only the intrinsic GTP/GTP exchange on Ha-Ras but also the GEF-stimulated exchange is inhibited in a concentration-dependent manner by the RBDs of Raf. Conversely, the scintillation proximity assay, which monitors the effect of GEF on the Ras.Raf complex, showed that the binding of Raf and GEF to Ha-Ras.GTP is mutually exclusive. The various GEFs used yielded comparable results. It is noteworthy that under more physiological conditions mimicking the cellular GDP/GTP ratio, Raf enhances the GEF-stimulated GDP/GTP exchange on Ha-Ras, in agreement with the sequestration of Ras.GTP by Raf. Consistent with our results, the GEF-stimulated exchange of Ha-Ras.GTP was also inhibited by another effector of Ras, the RBD (amino acid residues 133-314) of phosphatidylinositol 3-kinase p110alpha. Our data show that Raf-1 and phosphatidylinositol 3-kinase can influence the upstream activation of Ha-Ras. The interference between Ras effectors and GEF could be a regulatory mechanism to promote the activity of Ha-Ras in the cell.
Collapse
|
645
|
Tatsis N, Lannigan DA, Macara IG. The function of the p190 Rho GTPase-activating protein is controlled by its N-terminal GTP binding domain. J Biol Chem 1998; 273:34631-8. [PMID: 9852136 DOI: 10.1074/jbc.273.51.34631] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p190 is a GTPase-activating protein (GAP) for the Rho family of GTPases. The GAP domain of p190 is at the C terminus of the protein. At its N terminus, p190 contains a GTP binding domain of unknown significance. We have introduced a mutation (Ser36 --> Asn) into this domain of p190 that decreased its ability to bind guanine nucleotide when expressed as a hemagglutinin (HA)-tagged protein in COS cells. In vitro, both the wild type and S36N mutant HA-p190 proteins showed similar GAP activities toward RhoA, but when expressed in NIH 3T3 fibroblasts only wild type p190 appeared able to function as a RhoGAP. Wild type HA-p190 induced a phenotype of rounded cells with long, beaded extensions similar to that seen when Rho function is disrupted by ADP-ribosylation. HA-p190(S36N), although expressed at a similar level to the wild type protein, had no discernible effect on the cells. The beaded extension phenotype induced by wild type HA-p190 required GAP function. A GAP-defective mutant, p190(R1283A), had no effect on cell morphology. Moreover, the beaded extension phenotype could be suppressed by co-expression of a gain-of-function Rho mutant, RhoA(G14V), or Rac mutant, Rac1(G12V). Activation of the Jun kinase (JNK) via muscarinic receptors was inhibited by wild type HA-p190, but JNK activity was enhanced by the S36N mutant. Co-expression of HA-p190 with a fragment containing only the mutated GTP binding domain partially inhibited the beaded extension phenotype, suggesting that it may sequester a factor required for p190 function. Taken together these data demonstrate that within the cell, the Rho/Rac GAP activity of p190 can be regulated by the N-terminal GTP binding domain.
Collapse
|
646
|
Oishi H, Sasaki T, Nagano F, Ikeda W, Ohya T, Wada M, Ide N, Nakanishi H, Takai Y. Localization of the Rab3 small G protein regulators in nerve terminals and their involvement in Ca2+-dependent exocytosis. J Biol Chem 1998; 273:34580-5. [PMID: 9852129 DOI: 10.1074/jbc.273.51.34580] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rab3 small G protein subfamily (Rab3) consists of four members, Rab3A, -B, -C, and -D. We have recently isolated and characterized the Rab3 regulators, GDP/GTP exchange protein (GEP) and GTPase activating protein (GAP), both of which are specific for the Rab3 subfamily. Rab3 GEP stimulates the conversion of the GDP-bound inactive form to the GTP-bound active form, whereas Rab3 GAP stimulates the reverse reaction. Of the four members of the Rab3 subfamily, evidence is accumulating that Rab3A is involved in Ca2+-dependent exocytosis, particularly in neurotransmitter release. We first analyzed the subcellular localization of Rab3 GEP and GAP in rat brain. Subcellular fractionation analysis showed that both Rab3 GEP and GAP were enriched in the synaptic soluble fraction. Immunocytochemical analysis in primary cultured rat hippocampal neurons showed that both Rab3 GEP and GAP were concentrated at the presynaptic nerve terminals. We then examined whether Rab3 GEP and GAP were involved in Ca2+-dependent exocytosis by use of human growth hormone (GH) co-expression assay system of cultured PC12 cells. Overexpression of the deletion mutant of Rab3 GEP possessing the catalytic activity reduced the high K+-induced GH release without affecting the basal GH release, whereas that of the deletion mutant lacking the catalytic activity showed no effect on the high K+-induced GH release. In contrast, overexpression of Rab3 GAP or its deletion mutant possessing the catalytic activity did not affect the high K+-induced GH release or the basal GH release. These results indicate that Rab3 GEP and GAP are colocalized with Rab3A at the synaptic release sites and suggest that they regulate the activity of Rab3A and are involved in Ca2+-dependent exocytosis.
Collapse
|
647
|
Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM. A family of cAMP-binding proteins that directly activate Rap1. Science 1998; 282:2275-9. [PMID: 9856955 DOI: 10.1126/science.282.5397.2275] [Citation(s) in RCA: 1086] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
cAMP (3',5' cyclic adenosine monophosphate) is a second messenger that in eukaryotic cells induces physiological responses ranging from growth, differentiation, and gene expression to secretion and neurotransmission. Most of these effects have been attributed to the binding of cAMP to cAMP-dependent protein kinase A (PKA). Here, a family of cAMP-binding proteins that are differentially distributed in the mammalian brain and body organs and that exhibit both cAMP-binding and guanine nucleotide exchange factor (GEF) domains is reported. These cAMP-regulated GEFs (cAMP-GEFs) bind cAMP and selectively activate the Ras superfamily guanine nucleotide binding protein Rap1A in a cAMP-dependent but PKA-independent manner. Our findings suggest the need to reformulate concepts of cAMP-mediated signaling to include direct coupling to Ras superfamily signaling.
Collapse
|
648
|
Abstract
A concentration gradient of the GTP-bound form of the GTPase Ran across nuclear pores is essential for the transport of many proteins and nucleic acids between the nuclear and cytoplasmic compartments of eukaryotic cells [1] [2] [3] [4]. The mechanisms responsible for the dynamics and maintenance of this Ran gradient have been unclear. We now show that Ran shuttles between the nucleosol and cytosol, and that cytosolic Ran accumulates rapidly in the nucleus in a saturable manner that is dependent on temperature and on the guanine-nucleotide exchange factor RCC1. Nuclear import in digitonin-permeabilized cells in the absence of added factors was minimal. The addition of energy and nuclear transport factor 2 (NTF2) [5] was sufficient for the accumulation of Ran in the nucleus. An NTF2 mutant that cannot bind Ran [6] was unable to facilitate Ran import. A GTP-bound form of a Ran mutant that cannot bind NTF2 was not a substrate for import. A dominant-negative importin-beta mutant inhibited nuclear import of Ran, whereas addition of transportin, which accumulates in the nucleus, enhanced NTF2-dependent Ran import. We conclude that NTF2 functions as a transport receptor for Ran, permitting rapid entry into the nucleus where GTP-GDP exchange mediated by RCC1 [7] converts Ran into its GTP-bound state. The Ran-GTP can associate with nuclear Ran-binding proteins, thereby creating a Ran gradient across nuclear pores.
Collapse
|
649
|
Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, Vogel W, Tortorice CG, Cardiff RD, Cross JC, Muller WJ, Pawson T. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 1998; 95:793-803. [PMID: 9865697 DOI: 10.1016/s0092-8674(00)81702-x] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proteins with SH2 and SH3 domains link tyrosine kinases to intracellular pathways. To investigate the biological functions of a mammalian SH2/SH3 adaptor, we have introduced a null mutation into the mouse gene for Grb2. Analysis of mutant embryonic stem cells, embryos, and chimeras reveals that Grb2 is required during embyrogenesis for the differentiation of endodermal cells and formation of the epiblast. Grb2 acts physiologically as an adaptor, since replacing the C terminus of the Ras activator Sos1 with the Grb2 SH2 domain yields a fusion protein that largely rescues the defects caused by the Grb2 mutation. Furthermore, Grb2 is rate limiting for mammary carcinomas induced by polyomavirus middle T antigen. These data provide genetic evidence for a mammalian Grb2-Ras signaling pathway, mediated by SH2/SH3 domain interactions, that has multiple functions in embryogenesis and cancer.
Collapse
|
650
|
Mueller PP, Grueter P, Hinnebusch AG, Trachsel H. A ribosomal protein is required for translational regulation of GCN4 mRNA. Evidence for involvement of the ribosome in eIF2 recycling. J Biol Chem 1998; 273:32870-7. [PMID: 9830035 DOI: 10.1074/jbc.273.49.32870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In amino acid-starved yeast cells, inhibition of the guanine nucleotide exchange factor eIF2B by phosphorylated translation initiation factor 2 results in increased translation of GCN4 mRNA. We isolated a suppressor of a mutant eIF2B. The suppressor prevents efficient GCN4 mRNA translation due to inactivation of the small ribosomal subunit protein Rps31 and results in low amounts of mutant 40 S ribosomal subunits. Deletion of one of two genes encoding ribosomal protein Rps17 also reduces the amounts of 40 S subunits but does not suppress eIF2B mutations or prevent efficient GCN4 translation. Our findings show that Rps31-deficient ribosomes are altered in a way that decreases the eIF2B requirement and that the small ribosomal subunit mediates the effects of low eIF2B activity on cell viability and translational regulation in response to eIF2 phosphorylation.
Collapse
|