51
|
Abstract
PURPOSE OF REVIEW We provide an overview of pancreas pathology in type 1 diabetes (T1D) in the context of its clinical stages. RECENT FINDINGS Recent studies of pancreata from organ donors with T1D and non-diabetic donors expressing T1D-associated autoantibodies reveal pathological changes/disease mechanisms beyond the well-known loss of β cells and lymphocytic infiltrates of the islets (insulitis), including β-cell stress, dysfunction, and viral infections. Pancreas pathology evolves through disease stages, is asynchronous, and demonstrates a chronic disease that remains active years after diagnosis. Critically, β-cell loss is not complete at onset, although young age is associated with increased severity. The recognition of multiple pathogenic alterations and the chronic nature of disease mechanisms during and after the development of T1D inform improved clinical trial design and reveal additional targets for therapeutic manipulation, in the context of an expanded time window for intervention.
Collapse
|
52
|
Churlaud G, Rosenzwajg M, Cacoub P, Saadoun D, Valteau-Couanet D, Chaput N, Pugliese A, Klatzmann D. IL-2 antibodies in type 1 diabetes and during IL-2 therapy. Diabetologia 2018; 61:2066-2068. [PMID: 29860627 DOI: 10.1007/s00125-018-4649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
|
53
|
Redondo MJ, Geyer S, Steck AK, Sharp S, Wentworth JM, Weedon MN, Antinozzi P, Sosenko J, Atkinson M, Pugliese A, Oram RA. A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk. Diabetes Care 2018; 41:1887-1894. [PMID: 30002199 PMCID: PMC6105323 DOI: 10.2337/dc18-0087] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/06/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We tested the ability of a type 1 diabetes (T1D) genetic risk score (GRS) to predict progression of islet autoimmunity and T1D in at-risk individuals. RESEARCH DESIGN AND METHODS We studied the 1,244 TrialNet Pathway to Prevention study participants (T1D patients' relatives without diabetes and with one or more positive autoantibodies) who were genotyped with Illumina ImmunoChip (median [range] age at initial autoantibody determination 11.1 years [1.2-51.8], 48% male, 80.5% non-Hispanic white, median follow-up 5.4 years). Of 291 participants with a single positive autoantibody at screening, 157 converted to multiple autoantibody positivity and 55 developed diabetes. Of 953 participants with multiple positive autoantibodies at screening, 419 developed diabetes. We calculated the T1D GRS from 30 T1D-associated single nucleotide polymorphisms. We used multivariable Cox regression models, time-dependent receiver operating characteristic curves, and area under the curve (AUC) measures to evaluate prognostic utility of T1D GRS, age, sex, Diabetes Prevention Trial-Type 1 (DPT-1) Risk Score, positive autoantibody number or type, HLA DR3/DR4-DQ8 status, and race/ethnicity. We used recursive partitioning analyses to identify cut points in continuous variables. RESULTS Higher T1D GRS significantly increased the rate of progression to T1D adjusting for DPT-1 Risk Score, age, number of positive autoantibodies, sex, and ethnicity (hazard ratio [HR] 1.29 for a 0.05 increase, 95% CI 1.06-1.6; P = 0.011). Progression to T1D was best predicted by a combined model with GRS, number of positive autoantibodies, DPT-1 Risk Score, and age (7-year time-integrated AUC = 0.79, 5-year AUC = 0.73). Higher GRS was significantly associated with increased progression rate from single to multiple positive autoantibodies after adjusting for age, autoantibody type, ethnicity, and sex (HR 2.27 for GRS >0.295, 95% CI 1.47-3.51; P = 0.0002). CONCLUSIONS The T1D GRS independently predicts progression to T1D and improves prediction along T1D stages in autoantibody-positive relatives.
Collapse
|
54
|
Dotta F, Ventriglia G, Snowhite IV, Pugliese A. MicroRNAs: markers of β-cell stress and autoimmunity. Curr Opin Endocrinol Diabetes Obes 2018; 25:237-245. [PMID: 29846238 DOI: 10.1097/med.0000000000000420] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We discuss current knowledge about microRNAs (miRNAs) in type 1 diabetes (T1D), an autoimmune disease leading to severe loss of pancreatic β-cells. We describe: the role of cellular miRNAs in regulating immune functions and pathways impacting insulin secretion and β-cell survival; circulating miRNAs as disease biomarkers. RECENT FINDINGS Studies examined miRNAs in experimental models and patients, including analysis of tissues from organ donors, peripheral blood cells, and circulating miRNAs in serum, plasma, and exosomes. Studies employed diverse designs and methodologies to detect miRNAs and measure their levels. Selected miRNAs have been linked to the regulation of key biological pathways and disease pathogenesis; several circulating miRNAs are associated with having T1D, islet autoimmunity, disease progression, and immune and metabolic functions, for example, C-peptide secretion, in multiple studies. SUMMARY A growing literature reveals multiple roles of miRNAs in T1D, provide new clues into the regulation of disease mechanisms, and identify reproducible associations. Yet challenges remain, and the field will benefit from joint efforts to analyze results, compare methodologies, formally test the robustness of miRNA associations, and ultimately move towards validating robust miRNA biomarkers.
Collapse
|
55
|
Redondo MJ, Steck AK, Pugliese A. Genetics of type 1 diabetes. Pediatr Diabetes 2018; 19:346-353. [PMID: 29094512 PMCID: PMC5918237 DOI: 10.1111/pedi.12597] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/23/2022] Open
Abstract
Type 1 diabetes (T1D) results from immune-mediated loss of pancreatic beta cells leading to insulin deficiency. It is the most common form of diabetes in children, and its incidence is on the rise. This article reviews the current knowledge on the genetics of T1D. In particular, we discuss the influence of HLA and non-HLA genes on T1D risk and disease progression through the preclinical stages of the disease, and the development of genetic scores that can be applied to disease prediction. Racial/ethnic differences, challenges and future directions in the genetics of T1D are also discussed.
Collapse
|
56
|
Ciaiolo C, Ferrero D, Pugliese A, Biglino A, Marletto G, Tonello M, Colzani G, Marietti G. Enhancement of Methotrexate Cytotoxicity by Modulation of Proliferative Activity in Normal and Neoplastic t Lymphocytes and in a Myeloid Leukemia Cell Line. TUMORI JOURNAL 2018; 74:537-42. [PMID: 3064371 DOI: 10.1177/030089168807400507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent advances in the modulation of cell kinetics with growth factors suggest that the effect of cyclespecific cytostatic drugs can be enhanced by combination with such factors. The truth of this hypothesis was investigated by studying the effect of phytohemoagglutinin and/or interlenkin 2 on the sensitivity to methotrexate (MTX) of normal T lymphocytes and of lymphoblastis of a patient with acute T-cell lymphoid leukemia. In both cases, inhibition of proliferation by MTX was increased from less than 30% in resting cells or those sub-optimally stimulated, in the case of leukemic blasts, to 68-83% in maximally stimulated cells. Similar results were observed when the AML 193 human myeloid leukemia line was stimulated with human recombinant granulocyte macrophage colony stimulation factor (GM-CSF). Under basal proliferation conditions, the addition of 1 μg/ml and 10 (μ/ml MTX was followed by 48% and 72% inhibition respectively. When 1 ng/ml GM-CSF (40 I.U./ml) was present, these figures rose to 89% and 91%. It is thus clear that growth factor-induced cell proliferation increases sensitivity to cyclespecific cytostatic agents. There is thus a biological premise for new perspectives in antineoplastic therapy.
Collapse
|
57
|
Kusmartseva I, Beery M, Philips T, Selman S, Jadhav P, Wasserfall C, Muller A, Pugliese A, Longmate JA, Schatz DA, Atkinson MA, Kaddis JS. Hospital time prior to death and pancreas histopathology: implications for future studies. Diabetologia 2018; 61:954-958. [PMID: 29128936 PMCID: PMC5844815 DOI: 10.1007/s00125-017-4494-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/12/2017] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Diabetes research studies routinely rely upon the use of tissue samples from human organ donors. It remains unclear whether the length of hospital stay prior to organ donation affects the presence of cells infiltrating the pancreas or the frequency of replicating beta cells. METHODS To address this, 39 organ donors without diabetes were matched for age, sex, BMI and ethnicity in groups of three. Within each group, donors varied by length of hospital stay immediately prior to organ donation (<3 days, 3 to <6 days, or ≥6 days). Serial sections from tissue blocks in the pancreas head, body and tail regions were immunohistochemically double stained for insulin and CD45, CD68, or Ki67. Slides were electronically scanned and quantitatively analysed for cell positivity. RESULTS No differences in CD45+, CD68+, insulin+, Ki67+ or Ki67+/insulin+ cell frequencies were found when donors were grouped according to duration of hospital stay. Likewise, no interactions were observed between hospitalisation group and pancreas region, age, or both; however, with Ki67 staining, cell frequencies were greater in the body vs the tail region of the pancreas (∆ 0.65 [unadjusted 95% CI 0.25, 1.04]; p = 0.002) from donors <12 year of age. Interestingly, frequencies were less in the body vs tail region of the pancreas for both CD45+ cells (∆ -0.91 [95% CI -1.71, -0.10]; p = 0.024) and insulin+ cells (∆ -0.72 [95% CI -1.10, -0.34]; p < 0.001). CONCLUSIONS/INTERPRETATION This study suggests that immune or replicating beta cell frequencies are not affected by the length of hospital stay prior to donor death in pancreases used for research. DATA AVAILABILITY All referenced macros (adopted and developed), calculations, programming code and numerical dataset files (including individual-level donor data) are freely available on GitHub through Zenodo at https://doi.org/10.5281/zenodo.1034422.
Collapse
|
58
|
Baidal DA, Sanchez J, Alejandro R, Blaschke CE, Hirani K, Matheson DL, Messinger S, Pugliese A, Rafkin LE, Roque LA, Vera Ortiz JM, Ricordi C. POSEIDON study: a pilot, safety and feasibility trial of high-dose omega3 fatty acids and high-dose cholecalciferol supplementation in type 1 diabetes. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2018; 6:e2489. [PMID: 33834083 PMCID: PMC8025938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The anti-inflammatory and immunomodulatory properties of high-dose omega-3 fatty acids and Vitamin D, and the initial encouraging results from case reports on the use of this supplementation in new-onset Type 1 Diabetes (T1D), support further testing of this combination strategy. This intervention appears to be well tolerated, affordable, and sufficiently safe to be further tested in randomized prospective trials to determine whether this combination therapy may be of assistance to halt progression of autoimmunity and/or preserve residual beta-cell function in subjects with new onset and established T1D of up to 10 years duration. In addition, the 1st PreDiRe T1D conference (Preventing Disease and its Recurrence in Type 1 Diabetes - see Editorial in this issue) was organized to discuss initial results and possible alternative/complementary strategies, for collaborative international expansion of these trials, to include strategies for disease prevention. Our POSEIDON clinical trial will test the use of high dose vitamin D3 and highly purified Omega-3 fatty acids in new onset and established T1D. The draft of the study protocol, in addition to the informed consent and assent, is now shared open access to facilitate its international implementation by interested physicians and centers that would like to further test this approach through clinical trials.
Collapse
|
59
|
Simeonovic CJ, Popp SK, Starrs LM, Brown DJ, Ziolkowski AF, Ludwig B, Bornstein SR, Wilson JD, Pugliese A, Kay TWH, Thomas HE, Loudovaris T, Choong FJ, Freeman C, Parish CR. Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans. PLoS One 2018; 13:e0191360. [PMID: 29415062 PMCID: PMC5802856 DOI: 10.1371/journal.pone.0191360] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.
Collapse
|
60
|
Redondo MJ, Geyer S, Steck AK, Sosenko J, Anderson M, Antinozzi P, Michels A, Wentworth J, Xu P, Pugliese A. TCF7L2 Genetic Variants Contribute to Phenotypic Heterogeneity of Type 1 Diabetes. Diabetes Care 2018; 41:311-317. [PMID: 29025879 PMCID: PMC5780048 DOI: 10.2337/dc17-0961] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/17/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The phenotypic diversity of type 1 diabetes suggests heterogeneous etiopathogenesis. We investigated the relationship of type 2 diabetes-associated transcription factor 7 like 2 (TCF7L2) single nucleotide polymorphisms (SNPs) with immunologic and metabolic characteristics at type 1 diabetes diagnosis. RESEARCH DESIGN AND METHODS We studied TrialNet participants with newly diagnosed autoimmune type 1 diabetes with available TCF7L2 rs4506565 and rs7901695 SNP data (n = 810; median age 13.6 years; range 3.3-58.6). We modeled the influence of carrying a TCF7L2 variant (i.e., having 1 or 2 minor alleles) on the number of islet autoantibodies and oral glucose tolerance test (OGTT)-stimulated C-peptide and glucose measures at diabetes diagnosis. All analyses were adjusted for known confounders. RESULTS The rs4506565 variant was a significant independent factor of expressing a single autoantibody, instead of multiple autoantibodies, at diagnosis (odds ratio [OR] 1.66 [95% CI 1.07, 2.57], P = 0.024). Interaction analysis demonstrated that this association was only significant in participants ≥12 years old (n = 504; OR 2.12 [1.29, 3.47], P = 0.003) but not younger ones (n = 306, P = 0.73). The rs4506565 variant was independently associated with higher C-peptide area under the curve (AUC) (P = 0.008) and lower mean glucose AUC (P = 0.0127). The results were similar for the rs7901695 SNP. CONCLUSIONS In this cohort of individuals with new-onset type 1 diabetes, type 2 diabetes-linked TCF7L2 variants were associated with single autoantibody (among those ≥12 years old), higher C-peptide AUC, and lower glucose AUC levels during an OGTT. Thus, carriers of the TCF7L2 variant had a milder immunologic and metabolic phenotype at type 1 diabetes diagnosis, which could be partly driven by type 2 diabetes-like pathogenic mechanisms.
Collapse
|
61
|
Battaglia M, Anderson MS, Buckner JH, Geyer SM, Gottlieb PA, Kay TWH, Lernmark Å, Muller S, Pugliese A, Roep BO, Greenbaum CJ, Peakman M. Erratum to: Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia 2017; 60:2540. [PMID: 28948305 PMCID: PMC6828087 DOI: 10.1007/s00125-017-4446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
62
|
Battaglia M, Anderson MS, Buckner JH, Geyer SM, Gottlieb PA, Kay TWH, Lernmark Å, Muller S, Pugliese A, Roep BO, Greenbaum CJ, Peakman M. Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia 2017; 60:2139-2147. [PMID: 28770323 PMCID: PMC5838353 DOI: 10.1007/s00125-017-4384-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is an autoimmune disease arising from the destruction of pancreatic insulin-producing beta cells. The disease represents a continuum, progressing sequentially at variable rates through identifiable stages prior to the onset of symptoms, through diagnosis and into the critical periods that follow, culminating in a variable depth of beta cell depletion. The ability to identify the very earliest of these presymptomatic stages has provided a setting in which prevention strategies can be trialled, as well as furnishing an unprecedented opportunity to study disease evolution, including intrinsic and extrinsic initiators and drivers. This niche opportunity is occupied by Type 1 Diabetes TrialNet, an international consortium of clinical trial centres that leads the field in intervention and prevention studies, accompanied by deep longitudinal bio-sampling. In this review, we focus on discoveries arising from this unique bioresource, comprising more than 70,000 samples, and outline the processes and science that have led to new biomarkers and mechanistic insights, as well as identifying new challenges and opportunities. We conclude that via integration of clinical trials and mechanistic studies, drawing in clinicians and scientists and developing partnership with industry, TrialNet embodies an enviable and unique working model for understanding a disease that to date has no cure and for designing new therapeutic approaches.
Collapse
|
63
|
Jacobsen LM, Haller MJ, Parish A, Gurka MJ, Levine SR, Wasserfall C, Campbell-Thompson M, Kaddis J, Pugliese A, Atkinson MA, Schatz DA. High Illicit Drug Abuse and Suicide in Organ Donors With Type 1 Diabetes. Diabetes Care 2017; 40:e122-e123. [PMID: 28679687 DOI: 10.2337/dc17-0996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/13/2017] [Indexed: 02/03/2023]
|
64
|
Snowhite IV, Allende G, Sosenko J, Pastori RL, Messinger Cayetano S, Pugliese A. Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes. Diabetologia 2017; 60:1409-1422. [PMID: 28500393 PMCID: PMC5839115 DOI: 10.1007/s00125-017-4294-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS MicroRNAs (miRNAs) are key regulators of gene expression and novel biomarkers for many diseases. We investigated the hypothesis that serum levels of some miRNAs would be associated with islet autoimmunity and/or progression to type 1 diabetes. METHODS We measured levels of 93 miRNAs most commonly detected in serum. This retrospective cohort study included 150 autoantibody-positive and 150 autoantibody-negative family-matched siblings enrolled in the TrialNet Pathway to Prevention Study. This was a young cohort (mean age = 11 years), and most autoantibody-positive relatives were at high risk because they had multiple autoantibodies, with 39/150 (26%, progressors) developing type 1 diabetes within an average 8.7 months of follow-up. We analysed miRNA levels in relation to autoantibody status, future development of diabetes and OGTT C-peptide and glucose indices of disease progression. RESULTS Fifteen miRNAs were differentially expressed when comparing autoantibody-positive/negative siblings (range -2.5 to 1.3-fold). But receiver operating characteristic (ROC) analysis indicated low specificity and sensitivity. Seven additional miRNAs were differentially expressed among autoantibody-positive relatives according to disease progression; ROC returned significant AUC values and identified miRNA cut-off levels associated with an increased risk of disease in both cross-sectional and survival analyses. Levels of several miRNAs showed significant correlations (r values range 0.22-0.55) with OGTT outcomes. miR-21-3p, miR-29a-3p and miR-424-5p had the most robust associations. CONCLUSIONS/INTERPRETATION Serum levels of selected miRNAs are associated with disease progression and confer additional risk of the development of type 1 diabetes in young autoantibody-positive relatives. Further studies, including longitudinal assessments, are warranted to further define miRNA biomarkers for prediction of disease risk and progression.
Collapse
|
65
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.
Collapse
|
66
|
Steck AK, Xu P, Geyer S, Redondo MJ, Antinozzi P, Wentworth JM, Sosenko J, Onengut-Gumuscu S, Chen WM, Rich SS, Pugliese A. Can Non-HLA Single Nucleotide Polymorphisms Help Stratify Risk in TrialNet Relatives at Risk for Type 1 Diabetes? J Clin Endocrinol Metab 2017; 102:2873-2880. [PMID: 28520980 PMCID: PMC5546868 DOI: 10.1210/jc.2016-4003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/11/2017] [Indexed: 01/10/2023]
Abstract
CONTEXT Genome-wide association studies identified >50 type 1 diabetes (T1D) associated non-human leukocyte antigens (non-HLA) loci. OBJECTIVE The purpose of this study was to assess the contribution of non-HLA single nucleotide polymorphisms (SNPs) to risk of disease progression. DESIGN AND SETTING The TrialNet Pathway to Prevention Study follows relatives of T1D patients for development of autoantibodies (Abs) and T1D. PARTICIPANTS Using the Immunochip, we analyzed 53 diabetes-associated, non-HLA SNPs in 1016 Ab-positive, at-risk non-Hispanic white relatives. MAIN OUTCOME MEASURE Effect of SNPs on the development of multiple Abs and T1D. RESULTS Cox proportional analyses included all substantial non-HLA SNPs, HLA genotypes, relationship to proband, sex, age at initial screening, initial Ab type, and number. Factors involved in progression from single to multiple Abs included age at screening, relationship to proband, HLA genotypes, and rs3087243 (cytotoxic T lymphocyte antigen-4). Significant factors for diabetes progression included age at screening, Ab number, HLA genotypes, rs6476839 [GLIS family zinc finger 3 (GLIS3)], and rs3184504 [SH2B adaptor protein 3 (SH2B3)]. When glucose area under the curve (AUC) was included, factors involved in disease progression included glucose AUC, age at screening, Ab number, relationship to proband, HLA genotypes, rs6476839 (GLIS3), and rs7221109 (CCR7). In stratified analyses by age, glucose AUC, age at screening, sibling, HLA genotypes, rs6476839 (GLIS3), and rs4900384 (C14orf64) were significantly associated with progression to diabetes in participants <12 years old, whereas glucose AUC, sibling, rs3184504 (SH2B3), and rs4900384 (C14orf64) were significant in those ≥12. CONCLUSIONS In conclusion, we identified five non-HLA SNPs associated with increased risk of progression from Ab positivity to disease that may improve risk stratification for prevention trials.
Collapse
|
67
|
Campbell-Thompson ML, Atkinson MA, Butler AE, Giepmans BN, von Herrath MG, Hyöty H, Kay TW, Morgan NG, Powers AC, Pugliese A, Richardson SJ, In't Veld PA. Re-addressing the 2013 consensus guidelines for the diagnosis of insulitis in human type 1 diabetes: is change necessary? Diabetologia 2017; 60:753-755. [PMID: 28070616 PMCID: PMC5415083 DOI: 10.1007/s00125-016-4195-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
|
68
|
Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, Groop PH, Handelsman Y, Insel RA, Mathieu C, McElvaine AT, Palmer JP, Pugliese A, Schatz DA, Sosenko JM, Wilding JPH, Ratner RE. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes 2017; 66:241-255. [PMID: 27980006 PMCID: PMC5384660 DOI: 10.2337/db16-0806] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
The American Diabetes Association, JDRF, the European Association for the Study of Diabetes, and the American Association of Clinical Endocrinologists convened a research symposium, "The Differentiation of Diabetes by Pathophysiology, Natural History and Prognosis" on 10-12 October 2015. International experts in genetics, immunology, metabolism, endocrinology, and systems biology discussed genetic and environmental determinants of type 1 and type 2 diabetes risk and progression, as well as complications. The participants debated how to determine appropriate therapeutic approaches based on disease pathophysiology and stage and defined remaining research gaps hindering a personalized medical approach for diabetes to drive the field to address these gaps. The authors recommend a structure for data stratification to define the phenotypes and genotypes of subtypes of diabetes that will facilitate individualized treatment.
Collapse
|
69
|
Babon JAB, DeNicola ME, Blodgett DM, Crèvecoeur I, Buttrick TS, Maehr R, Bottino R, Naji A, Kaddis J, Elyaman W, James EA, Haliyur R, Brissova M, Overbergh L, Mathieu C, Delong T, Haskins K, Pugliese A, Campbell-Thompson M, Mathews C, Atkinson MA, Powers AC, Harlan DM, Kent SC. Corrigendum: Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med 2017; 23:264. [PMID: 28170374 DOI: 10.1038/nm0217-264a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
70
|
Burke G, Posgai AL, Wasserfall CH, Atkinson MA, Pugliese A. Raising Awareness: The Need to Promote Allocation of Pancreata From Rare Nondiabetic Donors With Pancreatic Islet Autoimmunity to Type 1 Diabetes Research. Am J Transplant 2017; 17:306-307. [PMID: 27460917 PMCID: PMC5195894 DOI: 10.1111/ajt.13983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
71
|
Bottari C, Comez L, Corezzi S, D'Amico F, Gessini A, Mele A, Punta C, Melone L, Pugliese A, Masciovecchio C, Rossi B. Correlation between collective and molecular dynamics in pH-responsive cyclodextrin-based hydrogels. Phys Chem Chem Phys 2017; 19:22555-22563. [DOI: 10.1039/c7cp04190j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The joint use of UV Raman and Brillouin scattering experiments is employed to explore phase evolutions in pH-responsive polysaccharide hydrogels.
Collapse
|
72
|
Seay HR, Yusko E, Rothweiler SJ, Zhang L, Posgai AL, Campbell-Thompson M, Vignali M, Emerson RO, Kaddis JS, Ko D, Nakayama M, Smith MJ, Cambier JC, Pugliese A, Atkinson MA, Robins HS, Brusko TM. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 2016; 1:e88242. [PMID: 27942583 DOI: 10.1172/jci.insight.88242] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The adaptive immune repertoire plays a critical role in type 1 diabetes (T1D) pathogenesis. However, efforts to characterize B cell and T cell receptor (TCR) profiles in T1D subjects have been largely limited to peripheral blood sampling and restricted to known antigens. To address this, we collected pancreatic draining lymph nodes (pLN), "irrelevant" nonpancreatic draining lymph nodes, peripheral blood mononuclear cells (PBMC), and splenocytes from T1D subjects (n = 18) and control donors (n = 9) as well as pancreatic islets from 1 T1D patient; from these tissues, we collected purified CD4+ conventional T cells (Tconv), CD4+ Treg, CD8+ T cells, and B cells. By conducting high-throughput immunosequencing of the TCR β chain (TRB) and B cell receptor (BCR) immunoglobulin heavy chain (IGH) on these samples, we sought to analyze the molecular signature of the lymphocyte populations within these tissues and of T1D. Ultimately, we observed a highly tissue-restricted CD4+ repertoire, while up to 24% of CD8+ clones were shared among tissues. We surveyed our data set for previously described proinsulin- and glutamic acid decarboxylase 65-reactive (GAD65-reactive) receptors, and interestingly, we observed a TRB with homology to a known GAD65-reactive TCR (clone GAD4.13) present in 7 T1D donors (38.9%), representing >25% of all productive TRB within Tconv isolated from the pLN of 1 T1D subject. These data demonstrate diverse receptor signatures at the nucleotide level and enriched autoreactive clones at the amino acid level, supporting the utility of coupling immunosequencing data with knowledge of characterized autoreactive receptors.
Collapse
|
73
|
Richardson SJ, Rodriguez-Calvo T, Gerling IC, Mathews CE, Kaddis JS, Russell MA, Zeissler M, Leete P, Krogvold L, Dahl-Jørgensen K, von Herrath M, Pugliese A, Atkinson MA, Morgan NG. Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Diabetologia 2016; 59:2448-2458. [PMID: 27506584 PMCID: PMC5042874 DOI: 10.1007/s00125-016-4067-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Human pancreatic beta cells may be complicit in their own demise in type 1 diabetes, but how this occurs remains unclear. One potentially contributing factor is hyperexpression of HLA class I antigens. This was first described approximately 30 years ago, but has never been fully characterised and was recently challenged as artefactual. Therefore, we investigated HLA class I expression at the protein and RNA levels in pancreases from three cohorts of patients with type 1 diabetes. The principal aims were to consider whether HLA class I hyperexpression is artefactual and, if not, to determine the factors driving it. METHODS Pancreas samples from type 1 diabetes patients with residual insulin-containing islets (n = 26) from the Network for Pancreatic Organ donors with Diabetes (nPOD), Diabetes Virus Detection study (DiViD) and UK recent-onset type 1 diabetes collections were immunostained for HLA class I isoforms, signal transducer and activator of transcription 1 (STAT1), NLR family CARD domain containing 5 (NLRC5) and islet hormones. RNA was extracted from islets isolated by laser-capture microdissection from nPOD and DiViD samples and analysed using gene-expression arrays. RESULTS Hyperexpression of HLA class I was observed in the insulin-containing islets of type 1 diabetes patients from all three tissue collections, and was confirmed at both the RNA and protein levels. The expression of β2-microglobulin (a second component required for the generation of functional HLA class I complexes) was also elevated. Both 'classical' HLA class I isoforms (i.e. HLA-ABC) as well as a 'non-classical' HLA molecule, HLA-F, were hyperexpressed in insulin-containing islets. This hyperexpression did not correlate with detectable upregulation of the transcriptional regulator NLRC5. However, it was strongly associated with increased STAT1 expression in all three cohorts. Islet hyperexpression of HLA class I molecules occurred in the insulin-containing islets of patients with recent-onset type 1 diabetes and was also detectable in many patients with disease duration of up to 11 years, declining thereafter. CONCLUSIONS/INTERPRETATION Islet cell HLA class I hyperexpression is not an artefact, but is a hallmark in the immunopathogenesis of type 1 diabetes. The response is closely associated with elevated expression of STAT1 and, together, these occur uniquely in patients with type 1 diabetes, thereby contributing to their selective susceptibility to autoimmune-mediated destruction.
Collapse
|
74
|
Pugliese A. Insulitis in the pathogenesis of type 1 diabetes. Pediatr Diabetes 2016; 17 Suppl 22:31-6. [PMID: 27411434 PMCID: PMC4948864 DOI: 10.1111/pedi.12388] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which autoreactive T-cells and inflammation cause severe loss of pancreatic beta cells. Insulitis, the pathologic hallmark of T1D, is an inflammatory lesion consisting of immune cell infiltrates around and within the islets. New research initiatives and methodologies are advancing our understanding of pancreas pathology. Studies have revealed the predominant cellular types that infiltrate the islets, novel molecular aspects associated with insulitis, and the coexistence of additional pathological abnormalities. While insulitis is a critical element of T1D pathology and pathogenesis, it is typically present only in a modest proportion of islets at any given time, even at diagnosis, with overall limited relation to disease duration. Thus, the relative importance of insulitis as a determining factor of diabetes symptoms at disease onset appears to have been overestimated; growing evidence also shows that beta cell loss at diagnosis is more modest than previously thought. Thus, the sole targeting of the immune system may not afford full therapeutic efficacy if dysfunction affects beta cells that are not under immune attack and this is a key contributor to symptoms. Combination therapies that promote both immunoregulation and address beta cell dysfunction should be more effective in treating this chronic disease process. It remains a major goal to clarify the relation of insulitis with the dynamics of beta cell loss and coexisting mechanisms of dysfunction, according to clinical stage; such improved understanding is key to design therapeutic strategies that target multiple pathogenic mechanisms.
Collapse
|
75
|
Meah FA, DiMeglio LA, Greenbaum CJ, Blum JS, Sosenko JM, Pugliese A, Geyer S, Xu P, Evans-Molina C. The relationship between BMI and insulin resistance and progression from single to multiple autoantibody positivity and type 1 diabetes among TrialNet Pathway to Prevention participants. Diabetologia 2016; 59:1186-95. [PMID: 26995649 PMCID: PMC5081287 DOI: 10.1007/s00125-016-3924-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/24/2016] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS The incidence of type 1 diabetes is increasing at a rate of 3-5% per year. Genetics cannot fully account for this trend, suggesting an influence of environmental factors. The accelerator hypothesis proposes an effect of metabolic factors on type 1 diabetes risk. To test this in the TrialNet Pathway to Prevention (PTP) cohort, we analysed the influence of BMI, weight status and insulin resistance on progression from single to multiple islet autoantibodies (Aab) and progression from normoglycaemia to diabetes. METHODS HOMA1-IR was used to estimate insulin resistance in Aab-positive PTP participants. Cox proportional hazards models were used to evaluate the effects of BMI, BMI percentile (BMI%), weight status and HOMA1-IR on the progression of autoimmunity or the development of diabetes. RESULTS Data from 1,310 single and 1,897 multiple Aab-positive PTP participants were included. We found no significant relationships between BMI, BMI%, weight status or HOMA1-IR and the progression from one to multiple Aabs. Similarly, among all Aab-positive participants, no significant relationships were found between BMI, weight status or HOMA1-IR and progression to diabetes. Diabetes risk was modestly increased with increasing BMI% among the entire cohort, in obese participants 13-20 years of age and with increasing HOMA1-IR in adult Aab-positive participants. CONCLUSIONS/INTERPRETATION Analysis of the accelerator hypothesis in the TrialNet PTP cohort does not suggest a broad influence of metabolic variables on diabetes risk. Efforts to identify other potentially modifiable environmental factors should continue.
Collapse
|