51
|
Pietranera L, Saravia FE, Roig P, Lima A, De Nicola AF. Protective effects of estradiol in the brain of rats with genetic or mineralocorticoid-induced hypertension. Psychoneuroendocrinology 2008; 33:270-81. [PMID: 18164826 DOI: 10.1016/j.psyneuen.2007.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/12/2007] [Accepted: 11/19/2007] [Indexed: 12/15/2022]
Abstract
Abnormalities of hippocampus and hypothalamus are commonly observed in rats with genetic (SHR) or mineralocorticoid/salt-induced hypertension. In the hippocampus, changes include decreased cell proliferation in the dentate gyrus (DG), astrogliosis and decreased neuronal density in the hilus, whereas in the hypothalamus expression of arginine vasopressin (AVP) is markedly elevated. Here, we report that estradiol treatment overturns these abnormalities. We used 16-week-old male SHR with blood pressure (BP) approximately 190 mmHg and their normotensive Wistar-Kyoto (WKY) controls, and male Sprague-Dawley rats made hypertensive by administration of 10mg deoxycorticosterone acetate (DOCA) every other day plus 1% NaCl as drinking fluid for 4 weeks (BP approximately 160 mmHg). Controls received oil vehicle plus 1% NaCl only. Half of the animals in each group were implanted s.c. with a single estradiol benzoate pellet weighing 14 mg for 2 weeks. Estradiol-treated SHR and DOCA-salt rats showed, in comparison to their respective steroid-free groups: (a) enhanced proliferation in the DG measured by bromodeoxyuridine incorporation; (b) decreased number of glial fibrillary acidic protein (GFAP) immunopositive astrocytes; (c) increased density of neurons in the hilus of the DG, and (d) decreased hypothalamic AVP mRNA expression. These results indicate that neuronal and glial alterations of hypertensive models are plastic events reversible by steroid treatment. The estradiol protective effects may be of pharmacological interest to attenuate the consequences of hypertensive encephalopathy.
Collapse
|
52
|
De Nicola AF, Pietranera L, Beauquis J, Ferrini MG, Saravia FE. Steroid protection in aging and age-associated diseases. Exp Gerontol 2008; 44:34-40. [PMID: 18445514 DOI: 10.1016/j.exger.2008.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/08/2008] [Accepted: 03/10/2008] [Indexed: 11/26/2022]
Abstract
Neuroactive steroids are secretory products of peripheral endocrine glands that modulate a variety of brain functions. A close relationship between neuroactive steroid structure and function becomes most evident under pathological circumstances. On one side, overproduction of glucocorticoid and mineralocorticoid neuroactive steroids may be detrimental to the hippocampus, which is enriched in glucocorticoid receptors (GR) and mineralocorticoid receptors (MR). Thus, a dysfunction of the adrenocortical system in aging and age-associated diseases (diabetes, hypertension) is able to cause hippocampal damage. Whereas aging and uncontrolled diabetes show a predominant GR overdrive, a MR overdrive characterizes hypertensive animals. Some abnormalities commonly found in the hippocampus of aging, diabetic and hypertensive animals include decreased neurogenesis, astrogliosis and neuronal loss in the hilus of the dentate gyrus (DG). On the other side, and in contrast to adrenal gland-derived steroids, estrogens qualify as hippocampal neuroprotectants. Given to middle-age mice, estrogens stimulated proliferation and differentiation of newborn cells in the DG, decreased astrogliosis and increased hilar neuronal number. Similar estrogen effects were obtained in mice with streptozotocin-induced diabetes and in spontaneously hypertensive rats (SHR). The results suggest that in aging and age-associated diseases, adrenocortical steroid overdrive sensitizes the hippocampus to the pathological milieu imposed by a pre-existing degeneration or illness. In this setting, estradiol neuroprotection rescues hippocampal parameters previously altered by the pathological environment.
Collapse
|
53
|
Garay L, Gonzalez Deniselle MC, Gierman L, Meyer M, Lima A, Roig P, De Nicola AF. Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neuroimmunomodulation 2008; 15:76-83. [PMID: 18667803 DOI: 10.1159/000135627] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Based on evidence that pregnant women with multiple sclerosis (MS) show a decline in the relapse rate during the third trimester and an increase during the first 3 months postpartum, the suggestion was made that high levels of circulating sex steroids are responsible for pregnancy-mediated neuroprotection. As both estradiol (E(2)) and progesterone exert neuroprotective and myelinating effects on the nervous system, the effects of sex steroids were studied in the experimental autoimmune encephalomyelitis (EAE) model of MS. METHODS EAE was induced in female C57BL/6 mice by administration of a myelin oligodendrocyte protein (MOG(40-45)) peptide. Clinical signs of EAE, myelin protein expression and neuronal parameters were determined in mice with or without hormonal treatment. RESULTS Progesterone given prior to EAE induction attenuated the clinical scores of the disease, slightly delayed disease onset and decreased demyelination foci, according to luxol fast blue staining (LFB), myelin basic protein (MBP) and proteolipid protein (PLP) and mRNA expression. Motoneuron expression of Na,K-ATPase mRNA was also enhanced by progesterone. In turn, combined E(2) plus progesterone therapy more effectively prevented neurological deficits, fully restored LFB staining, MBP and PLP immunoreactivity and avoided inflammatory cell infiltration. On the neuronal side, steroid biotherapy increased brain-derived neurotrophic factor (BDNF) mRNA. CONCLUSION Early treatment with progesterone alone or more evidently in combination with E(2) showed a clinical benefit and produced myelinating and neuroprotective effects in mice with MOG(40-45)-induced EAE. Therefore, sex steroids should be considered as potential novel therapeutic strategies for MS.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Central Nervous System/drug effects
- Central Nervous System/pathology
- Central Nervous System/physiopathology
- Disease Models, Animal
- Drug Synergism
- Drug Therapy, Combination
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Estradiol/metabolism
- Estradiol/pharmacology
- Estradiol/therapeutic use
- Female
- Humans
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Myelin Basic Protein/drug effects
- Myelin Basic Protein/genetics
- Myelin Basic Protein/metabolism
- Myelin Proteolipid Protein/drug effects
- Myelin Proteolipid Protein/genetics
- Myelin Proteolipid Protein/metabolism
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Neurosecretory Systems/immunology
- Progesterone/metabolism
- Progesterone/pharmacology
- Progesterone/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Sodium-Potassium-Exchanging ATPase/genetics
- Treatment Outcome
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
|
54
|
Garay L, Gonzalez Deniselle MC, Lima A, Roig P, De Nicola AF. Effects of progesterone in the spinal cord of a mouse model of multiple sclerosis. J Steroid Biochem Mol Biol 2007; 107:228-37. [PMID: 17692515 DOI: 10.1016/j.jsbmb.2007.03.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 03/14/2007] [Indexed: 01/03/2023]
Abstract
The spinal cord is a target of progesterone (PROG), as demonstrated by the expression of intracellular and membrane PROG receptors and by its myelinating and neuroprotective effects in trauma and neurodegeneration. Here we studied PROG effects in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis characterized by demyelination and immune cell infiltration in the spinal cord. Female C57BL/6 mice were immunized with a myelin oligodendrocyte glycoprotein peptide (MOG(40-54)). One week before EAE induction, mice received single pellets of PROG weighing either 20 or 100 mg or remained free of steroid treatment. On average, mice developed clinical signs of EAE 9-10 days following MOG administration. The spinal cord white matter of EAE mice showed inflammatory cell infiltration and circumscribed demyelinating areas, demonstrated by reductions of luxol fast blue (LFB) staining, myelin basic protein (MBP) and proteolipid protein (PLP) immunoreactivity (IR) and PLP mRNA expression. In motoneurons, EAE reduced the expression of the alpha 3 subunit of Na,K-ATPase mRNA. In contrast, EAE mice receiving PROG showed less inflammatory cell infiltration, recovery of myelin proteins and normal grain density of neuronal Na,K-ATPase mRNA. Clinically, PROG produced a moderate delay of disease onset and reduced the clinical scores. Thus, PROG attenuated disease severity, and reduced the inflammatory response and the occurrence of demyelination in the spinal cord during the acute phase of EAE.
Collapse
|
55
|
Schumacher M, Guennoun R, Stein DG, De Nicola AF. Progesterone: Therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 2007; 116:77-106. [PMID: 17659348 DOI: 10.1016/j.pharmthera.2007.06.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/01/2007] [Indexed: 11/24/2022]
Abstract
Progesterone and its metabolites promote the viability of neurons in the brain and spinal cord. Their neuroprotective effects have been documented in different lesion models, including traumatic brain injury (TBI), experimentally induced ischemia, spinal cord lesions and a genetic model of motoneuron disease. Progesterone plays an important role in developmental myelination and in myelin repair, and the aging nervous system appears to remain sensitive to some of progesterone's beneficial effects. Thus, the hormone may promote neuroregeneration by several different actions by reducing inflammation, swelling and apoptosis, thereby increasing the survival of neurons, and by promoting the formation of new myelin sheaths. Recognition of the important pleiotropic effects of progesterone opens novel perspectives for the treatment of brain lesions and diseases of the nervous system. Over the last decade, there have been a growing number of studies showing that exogenous administration of progesterone or some of its metabolites can be successfully used to treat traumatic brain and spinal cord injury, as well as ischemic stroke. Progesterone can also be synthesized by neurons and by glial cells within the nervous system. This finding opens the way for a promising therapeutic strategy, the use of pharmacological agents, such as ligands of the translocator protein (18 kDa) (TSPO; the former peripheral benzodiazepine receptor or PBR), to locally increase the synthesis of steroids with neuroprotective and neuroregenerative properties. A concept is emerging that progesterone may exert different actions and use different signaling mechanisms in normal and injured neural tissue.
Collapse
|
56
|
Saravia F, Beauquis J, Pietranera L, De Nicola AF. Neuroprotective effects of estradiol in hippocampal neurons and glia of middle age mice. Psychoneuroendocrinology 2007; 32:480-92. [PMID: 17459595 DOI: 10.1016/j.psyneuen.2007.02.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 01/23/2007] [Accepted: 02/01/2007] [Indexed: 11/15/2022]
Abstract
During aging the hippocampus experiences structural, molecular, and functional alterations. Protection from age-related disorders is provided by several factors, including estrogens. Since aging defects start at middle age, we studied if 17 beta-estradiol (E(2)) protected the hippocampus at this age period. Middle age (10-12 month old) male C57Bl/6 mice were implanted sc with E(2) (15 microg) or cholesterol pellets. Ten days afterwards they received bromodeoxyuridine (BrdU) 4 and 2h before killing to study cell proliferation in the dentate gyrus (DG). A pronounced depletion of BrdU+cells in the DG was found in cholesterol-treated middle age mice, accompanied by astrocytosis, and by neuronal loss in the hilus. Middle age mice receiving E(2) showed increased number of BrdU+cells while the other parameters were remarkably attenuated. When steroid treatment was prolonged for 2 months to study migration of cells in the granular layer of the DG, cell migration was unaffected by E(2). However, E(2)-treated middle age mice presented higher cell density and increased staining for doublecortin, a marker for differentiating neurons. Thus, from the three basic steps of adult neurogenesis (proliferation, migration, and differentiation), E(2) stimulated progenitor proliferation - even after long exposure to E(2) studied by Ki67 immunocytochemistry - and differentiation towards a neuronal lineage. This result, in conjunction with recovery from other aging indicators as increased deposits of the aging pigment lipofuscin in DG cells, loss of hilar neurons and astrocytosis supports a wide range protection of hippocampal function of middle age mice by estrogenic hormones.
Collapse
|
57
|
Gonzalez Deniselle MC, Garay L, Gonzalez S, Saravia F, Labombarda F, Guennoun R, Schumacher M, De Nicola AF. Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Exp Neurol 2007; 203:406-14. [PMID: 17052708 DOI: 10.1016/j.expneurol.2006.08.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 08/11/2006] [Accepted: 08/24/2006] [Indexed: 12/20/2022]
Abstract
Progesterone (PROG) shows neuroprotective effects in nervous system diseases. The Wobbler mouse, a model of motoneuron degeneration, suffers a mutation of the Vsp154 gene on chromosome 11 leading to motoneuron vacuolation and astrocytosis of the spinal cord. Previous work has demonstrated beneficial effects of PROG in the Wobbler mouse. As an extension of this work, we now studied steroid effects on neuronal brain-derived neurotrophic factor (BDNF) mRNA and protein, on choline acetyltransferase (ChAT) immunoreactivity (IR) and activity in the spinal cord, and on recovery of muscle atrophy. Wobbler mice received implants of PROG pellets (20 mg) at 6 and 10 weeks of age and were killed at 14 weeks. In situ hybridization for BDNF mRNA demonstrated that grain density in large (>600 microm2) and medium size (<600 microm2) ventral horn neurons was decreased in untreated Wobblers, whereas PROG treatment increased BDNF mRNA in both neuronal types. PROG also induced a subcellular redistribution of BDNF protein, which in controls and steroid-naive Wobblers showed a predominant perinuclear and nucleolar location, whereas after PROG treatment, it was detected in cytoplasmic aggregates. ChAT activity was reduced by 55.3% in muscles of untreated Wobbler mice, whereas a significant increment was obtained after PROG treatment. Wobblers also showed reduced number of ChAT positive motoneurons, but this number was restored to normal by PROG. Finally, the pronounced biceps atrophy of steroid-naive Wobbler mice was slightly but significantly increased by PROG-treatment. Considering the important role played by neurotrophins on neuronal function, changes in BDNF might be part of the PROG activated-pathways to provide neuroprotection and re-establish neurotransmission and neuromuscular function in this degeneration model.
Collapse
|
58
|
De Nicola AF, Saravia FE, Beauquis J, Pietranera L, Ferrini MG. Estrogens and neuroendocrine hypothalamic-pituitary-adrenal axis function. FRONTIERS OF HORMONE RESEARCH 2006; 35:157-168. [PMID: 16809931 DOI: 10.1159/000094324] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The function of the HPA axis is subject to regulation by many factors, which achieve relevance under normal and pathological conditions. In the case of aging, this period of life is associated with disturbances of the HPA axis and signs of hippocampal vulnerability. We examined 20-month-old male rats, in which abnormalities of the HPA axis included altered response to stress, reduced effectiveness of the steroid negative feedback and low expression of hippocampal glucocorticoid receptors (GR). Estrogen treatment of aging rats normalized the response to stress, restored the dexamethasone inhibition of the stress response and increased GR density in defined hippocampal areas. Although estrogens could influence the hippocampus of aging animals directly, their effects could be also mediated by estrogen-sensitive forebrain cholinergic neurons projecting to the hippocampus. Additionally, estrogens normalized the deficient granule cell proliferation that aging mice present in the dentate gyrus, and attenuated several markers of hippocampal aging, such as astrocytosis, high lipofucsin content and neuronal loss in the hilus of the dentate gyrus. These effects may be important for the regulation of the HPA axis, in the context that hippocampal function as a whole was normalized by estrogen action. Therefore, estrogens are powerful neuroprotectants in cases of hippocampal dysfunction, and as part of this effect, they contribute to stabilize the function of the HPA axis.
Collapse
|
59
|
Saravia FE, Beauquis J, Revsin Y, Homo-Delarche F, de Kloet ER, De Nicola AF. Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment. Cell Mol Neurobiol 2006; 26:943-57. [PMID: 16807785 DOI: 10.1007/s10571-006-9096-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 10/05/2005] [Indexed: 10/24/2022]
Abstract
1. A recently recognized complication of uncontrolled diabetes mellitus is the encephalopathy involving, among other regions, the hippocampus. Since estrogens bring neuroprotection in cases of brain injury and degenerative diseases, we have studied if estradiol (E2) administration counteracts some hippocampal abnormalities of streptozotocin (STZ)-diabetic adult mice. 2. We first report the ability of E2 to modulate neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ) of diabetic mice. Using bromodeoxyuridine (BrdU) to label newly generated cells, a strong reduction in cell proliferation was obtained in DG and SVZ of mice sacrificed 20 days after STZ administration. The reduction was completely relieved by 10 days of E2 pellet implantation, which increased 30-fold the circulating E2 levels. 3. Diabetic mice also showed abnormal expression of astrocyte markers in hippocampus. Thus, increased number of GFAP(+) cells, indicative of astrogliosis, and increased number of apolipoprotein-E (Apo-E)(+) astrocytes, a marker of ongoing neuronal dysfunction, was found in stratum radiatum below the CA1 hippocampal subfield of diabetic mice. Both parameters were reverted to normal by the E2 regime that upregulated cell proliferation. 4. The studies demonstrated that hippocampal neuropathology of uncontrolled diabetes is a reversible condition and sensitive to estrogen treatment. Studies in animal models may open up new venues for understanding the beneficial role of steroid hormones in diabetic encephalopathy.
Collapse
|
60
|
Labombarda F, Gonzalez S, Gonzalez Deniselle MC, Garay L, Guennoun R, Schumacher M, De Nicola AF. Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord. J Neurotrauma 2006; 23:181-92. [PMID: 16503802 DOI: 10.1089/neu.2006.23.181] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is now widely accepted that progesterone (PROG) brings neuroprotection in lesions of the peripheral and central nervous system. Spinal cord trauma leads to neuronal degeneration, astrogliosis, demyelination, and proliferation of oligodendrocyte-precursor cells (OPCs). In this work, we studied the effects of PROG on myelin-related parameters in rats with complete spinal cord transection (TRX). To this end, sham-operated controls and rats with TRX at thoracic level T10 received vehicle or PROG (4 mg/kg/day) during 3 days. Three variables were measured in the lumbar L4 region below the lesion: (1) expression of myelin basic protein (MBP) at the protein and mRNA levels; (2) density of NG2-immunopositive cells as markers for OPCs; and (3) number of cells immunopositive for RIP, an antibody staining mature oligodendrocytes. TRX decreased MBP immunostaining in the corticospinal tract (CST) and dorsal ascending tract (DAT) but not the ventral funiculus (VF). NG2+ cells, which were detected in low number in controls, increased after TRX in the gray and white matter. RIP-positive cell number, however, remained unchanged. PROG treatment of rats with TRX enhanced the expression of MBP protein and mRNA in CST and DAT, but not VF and highly stimulated the number of cells showing NG2 immunostaining over untreated lesioned rats. Instead, density of RIP positive cells was similar in the PROG-treated and untreated lesioned groups. We propose that PROG effects on expression of MBP and the number of NG2 immunopositive cells may contribute to neuroprotection, as they go in parallel with previous results showing enhanced biochemical and morphological parameters of motoneurons of animals with TRX receiving PROG treatment.
Collapse
|
61
|
De Nicola AF, Gonzalez SL, Labombarda F, González Deniselle MC, Garay L, Guennoun R, Schumacher M. Progesterone Treatment of Spinal Cord Injury: Effects on Receptors, Neurotrophins, and Myelination. J Mol Neurosci 2006; 28:3-15. [PMID: 16632872 DOI: 10.1385/jmn:28:1:3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 11/30/1999] [Accepted: 06/28/2005] [Indexed: 11/11/2022]
Abstract
In addition to its traditional role in reproduction, progesterone (PROG) has demonstrated neuroprotective and promyelinating effects in lesions of the peripheral and central nervous systems, including the spinal cord. The latter is a target of PROG, as nuclear receptors, as well as membrane receptors, are expressed by neurons and/or glial cells. When spinal cord injury (SCI) is produced at the thoracic level, several genes become sensitive to PROG in the region caudal to the lesion site. Although the cellular machinery implicated in PROG neuroprotection is only emerging, neurotrophins, their receptors, and signaling cascades might be part of the molecules involved in this process. In rats with SCI, a 3-d course of PROG treatment increased the mRNA of brain-derived neurotrophic factor (BDNF) and BDNF immunoreactivity in perikaryon and processes of motoneurons, whereas chromatolysis was strongly prevented. The increased expression of BDNF correlated with increased immunoreactivity for the BDNF receptor TrkB and for phosphorylated cAMP-responsive element binding in motoneurons. In the same SCI model, PROG restored myelination, according to measurements of myelin basic protein (MBP) and mRNA levels, and further increased the density of NG2+-positive oligodendrocyte progenitors. These cells might be involved in remyelination of the lesioned spinal cord. Interestingly, similarities in the regulation of molecular parameters and some cellular events attributed to PROG and BDNF (i.e., choline acetyltransferase, Na,K-ATPase, MBP, chromatolysis) suggest that BDNF and PROG might share intracellular pathways. Furthermore, PROG-induced BDNF might regulate, in a paracrine or autocrine fashion, the function of neurons and glial cells and prevent the generation of damage.
Collapse
|
62
|
Gonzalez Deniselle MC, Garay L, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF. Progesterone restores retrograde labeling of cervical motoneurons in Wobbler mouse motoneuron disease. Exp Neurol 2005; 195:518-23. [PMID: 16095593 DOI: 10.1016/j.expneurol.2005.06.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 06/13/2005] [Indexed: 12/16/2022]
Abstract
The Wobbler mouse, a mutant characterized by motoneuron degeneration in the cervical spinal cord, has been used to test the efficacy of novel treatments for human motoneuron diseases (HMD). Previous reports have shown that slow axonal transport is impaired in Wobblers and other models of HMD. Since progesterone (PROG) corrects some morphological, molecular, and functional abnormalities of Wobbler mice, we studied if steroid exposure for 8 weeks restored retrograde axonal transport by measuring motoneuron labeling after injection of fluorogold into the limb muscles. The dye was injected into forelimb biceps bracchii and flexor or into the rearlimb gastrocnemius muscles; 6 days later, the number of fluorescent motoneurons and the total number of cresyl violet stained motoneurons were counted in the cervical (C5-T1) or lumbar (L3-L5) spinal cord regions. A pronounced reduction (- 42.2%) of the percent of fluorescent motoneurons in Wobbler mice cervical cord was noted, which was significantly corrected after PROG treatment. In contrast, labeling of lumbar motoneurons was not reduced in Wobbler mice and was not affected by PROG treatment. In no case PROG showed an effect in control mice. Concomitantly, PROG slightly but significantly increased biceps weight of Wobbler mice. Behaviorally, PROG-treated Wobblers performed better on a motor test (hanging time from a horizontal rope) compared to untreated counterparts. We postulate a dual role for PROG in the Wobbler mouse, in part by prevention of motoneuron degeneration and also by enhancement of axonal transport. The latter mechanism could improve the traffic of neurotrophic factors from the forelimb muscles into the ailing motoneurons, improving neuromuscular function in this murine model of HMD.
Collapse
|
63
|
Revsin Y, Saravia F, Roig P, Lima A, de Kloet ER, Homo-Delarche F, De Nicola AF. Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 2005; 1038:22-31. [PMID: 15748869 DOI: 10.1016/j.brainres.2004.12.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 12/14/2004] [Accepted: 12/17/2004] [Indexed: 11/23/2022]
Abstract
The influence of diabetes mellitus on brain pathology is increasingly recognized. Previous contributions of our laboratory demonstrated in models of type 1 diabetes (nonobese diabetic and streptozotocin (STZ)-treated mice), a marked astrogliosis and neurogenesis deficit in hippocampus and increased expression of hypothalamic neuropeptides. In the present investigation, we further analyzed alterations of astroglia and neurons in the hippocampus of mice 1 month after STZ-induced diabetes. Results showed that these STZ-diabetic mice presented: (a) increased number of astrocytes positive for apolipoprotein-E (Apo-E), a marker of ongoing neuronal dysfunction; (b) abnormal expression of early gene products associated with neuronal activation, including a high number of Jun + neurons in CA1 and CA3 layers and dentate gyrus, and of Fos-expressing neurons in CA3 layer; (c) augmented activity of NADPH-diaphorase, linked to oxidative stress, in CA3 region. These data support the concept that uncontrolled diabetes leads to hippocampal pathology, which adjoin to changes in other brain structures such as hypothalamus and cerebral cortex.
Collapse
|
64
|
Gonzalez SL, Labombarda F, Gonzalez Deniselle MC, Mougel A, Guennoun R, Schumacher M, De Nicola AF. Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. J Steroid Biochem Mol Biol 2005; 94:143-9. [PMID: 15862959 DOI: 10.1016/j.jsbmb.2005.01.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Both types of cells express classical intracellular PROG receptors (PR), while neurons additionally express the PROG membrane-binding site called 25-Dx. In motoneurons from rats with spinal cord injury (SCI), PROG restores to normal the deficient levels of choline acetyl-transferase and of alpha3 subunit Na,K-ATPase mRNA, while levels of the growth associated protein GAP-43 mRNA are further stimulated. Recent studies suggest that neurotrophins are possible mediators of hormone action, and in agreement with this assumption, PROG treatment of rats with SCI increases the expression of brain-derived neurotrophic factor (BDNF) at both the mRNA and protein levels in ventral horn motoneurons. In situ hybridization (ISH) has shown that SCI reduces BDNF mRNA levels by 50% in spinal motoneurons, while PROG administration to injured rats (4mg/kg/day during 3 days, s.c.) elicits a three-fold increase in grain density. In addition to enhancement of mRNA levels, PROG increases BDNF immunoreactivity in perikaryon and cell processes of motoneurons of the lesioned spinal cord, and also prevents the lesion-induced chromatolytic degeneration of spinal cord motoneurons as determined by Nissl staining. Our findings strongly indicate that motoneurons of the spinal cord are targets of PROG, as confirmed by the expression of PR and the regulation of molecular parameters. PROG enhancement of endogenous neuronal BDNF could provide a trophic environment within the lesioned spinal cord and might be part of the PROG activated-pathways to provide neuroprotection. Thus, PROG treatment constitutes a new approach to sustain neuronal function after injury.
Collapse
|
65
|
González Deniselle MC, Garay L, López-Costa JJ, González S, Mougel A, Guennoun R, Schumacher M, De Nicola AF. Progesterone treatment reduces NADPH-diaphorase/nitric oxide synthase in Wobbler mouse motoneuron disease. Brain Res 2004; 1014:71-9. [PMID: 15212993 DOI: 10.1016/j.brainres.2004.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
Previous work demonstrated that progesterone (PROG) treatment attenuates morphological, molecular and functional abnormalities in the spinal cord of the Wobbler (Wr) mouse, a genetic model of motoneuron degeneration. Wr mice show a marked up-regulation of the nitric oxide synthesizing enzyme (NOS). Since nitric oxide is a highly reactive species, it may play a role in neuropathology of Wr mice. We now studied if PROG neuroprotection involved changes of NOS activity in motoneurons and astrocytes, determined by the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHD) histochemical reaction. Two and four-month-old Wr mice at the progressive and stabilization stages of the disease, respectively, and their age-matched controls were left untreated or received a single 20-mg PROG pellet for 18 days. PROG reduced the high number of NADPHD-active motoneurons and white matter astrocytes in 2-month-old Wr mice but was unable to change the low number of NADPHD-active motoneurons in 4-month-old Wr mice or astrocytes in this age group. A large number of motoneurons in 2-month-old Wr mice showed a vacuolated phenotype, which was significantly reverted by PROG treatment. In summary, PROG treatment during the early symptomatic stage of the disease caused a significant reduction of NADPHD-active motoneurons and astrocytes and also reduced vacuolated degenerating cells, suggesting that blockade of NO synthesis and oxidative damage may contribute to steroid neuroprotection.
Collapse
|
66
|
Schumacher M, Guennoun R, Robert F, Carelli C, Gago N, Ghoumari A, Gonzalez Deniselle MC, Gonzalez SL, Ibanez C, Labombarda F, Coirini H, Baulieu EE, De Nicola AF. Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Horm IGF Res 2004; 14 Suppl A:S18-S33. [PMID: 15135772 DOI: 10.1016/j.ghir.2004.03.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Progesterone (PROG) is synthesized in the brain, spinal cord and peripheral nerves. Its direct precursor pregnenolone is either derived from the circulation or from local de novo synthesis as cytochrome P450scc, which converts cholesterol to pregnenolone, is expressed in the nervous system. Pregnenolone is converted to PROG by 3beta-hydroxysteroid dehydrogenase (3beta-HSD). In situ hybridization studies have shown that this enzyme is expressed throughout the rat brain, spinal cord and dorsal root ganglia (DRG) mainly by neurons. Macroglial cells, including astrocytes, oligodendroglial cells and Schwann cells, also have the capacity to synthesize PROG, but expression and activity of 3beta-HSD in these cells are regulated by cellular interactions. Thus, Schwann cells convert pregnenolone to PROG in response to a neuronal signal. There is now strong evidence that P450scc and 3beta-HSD are expressed in the human nervous system, where PROG synthesis also takes place. Although there are only a few studies addressing the biological significance of PROG synthesis in the brain, the autocrine/paracrine actions of locally synthesized PROG are likely to play an important role in the viability of neurons and in the formation of myelin sheaths. The neuroprotective effects of PROG have recently been documented in a murine model of spinal cord motoneuron degeneration, the Wobbler mouse. The treatment of symptomatic Wobbler mice with PROG for 15 days attenuated the neuropathological changes in spinal motoneurons and had beneficial effects on muscle strength and the survival rate of the animals. PROG may exert its neuroprotective effects by regulating expression of specific genes in neurons and glial cells, which may become hormone-sensitive after injury. The promyelinating effects of PROG were first documented in the mouse sciatic nerve and in co-cultures of sensory neurons and Schwann cells. PROG also promotes myelination in the brain, as shown in vitro in explant cultures of cerebellar slices and in vivo in the cerebellar peduncle of aged rats after toxin-induced demyelination. Local synthesis of PROG in the brain and the neuroprotective and promyelinating effects of this neurosteroid offer interesting therapeutic possibilities for the prevention and treatment of neurodegenerative diseases, for accelerating regenerative processes and for preserving cognitive functions during aging.
Collapse
|
67
|
Pietranera L, Saravia F, Roig P, Lima A, De Nicola AF. Mineralocorticoid treatment upregulates the hypothalamic vasopressinergic system of spontaneously hypertensive rats. Neuroendocrinology 2004; 80:100-10. [PMID: 15475662 DOI: 10.1159/000081314] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 07/23/2004] [Indexed: 11/19/2022]
Abstract
Mineralocorticoid effects in the brain include the control of cardiovascular functions, induction of salt appetite, interaction with the vasoactive neuropeptides arginine vasopressin (AVP) and angiotensin II and development or aggravation of hypertension. In this regard, mineralocorticoids may play a pathogenic role in rats with a genetic form of hypertension (spontaneously hypertensive rats, SHR). Our objective was to compare the response of the hypothalamic vasopressinergic system to mineralocorticoid administration in SHR and control Wistar-Kyoto (WKY) rats. Sixteen-week-old male SHR showing a systolic blood pressure of 190 +/- 5 mm Hg and normotensive WKY rats (130 +/- 5 mm Hg) were treated subcutaneously with oil vehicle or a single 10-mg dose of deoxycorticosterone acetate (DOCA). After 2 h, rats were sacrificed and brains prepared for immunocytochemistry of Fos and vasopressin V1a receptor (V1aR) and for non-isotopic in situ hybridization of AVP mRNA. In the basal state, SHR demonstrated a higher number of AVP mRNA- and V1aR-immunopositive cells in the magnocellular division of the paraventricular hypothalamic nucleus (PVN) than WKY rats. After DOCA injection, SHR responded with a significant increase in both parameters with respect to vehicle-injected SHR. In WKY rats, DOCA was without effect on AVP mRNA although it increased the number of V1aR-positive cells. Changes in the number of Fos-positive nuclei were measured in the PVN, median preoptic nucleus (MnPO) and organum vasculosum of the lamina terminalis (OVLT), a circumventricular region showing anatomical connections with the PVN. In vehicle-injected rats, the PVN of SHR showed a higher number of Fos-positive nuclei than in WKY rats, whereas after DOCA treatment, a significant increment occurred in the OVLT but not in the PVN or MnPO of the SHR group only. These data suggest that the enhanced response of the vasopressinergic system to mineralocorticoids may contribute to the abnormal blood pressure of SHR.
Collapse
|
68
|
De Nicola AF, Labombarda F, Gonzalez SL, Gonzalez Deniselle MC, Guennoun R, Schumacher M. Steroid Effects on Glial Cells. Ann N Y Acad Sci 2003; 1007:317-28. [PMID: 14993064 DOI: 10.1196/annals.1286.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Repair of damage and recovery of function are fundamental endeavors for recuperation of patients and experimental animals with spinal cord injury. Steroid hormones, such as progesterone (PROG), show regenerative and myelinating properties following injury of the peripheral and central nervous system. In this work, we studied PROG effects on glial cells of the normal and transected (TRX) spinal cord, to complement previous studies in motoneurons. Both neurons and glial cells expressed the classical PROG receptor (PR), suggesting that genomic mechanisms participated in PROG action. In TRX rats, PROG treatment stimulated the number of NADPH-diaphorase (nitric oxide synthase) active astrocytes, whereas the number of astrocytes expressing the glial fibrillary acidic protein (GFAP) was stimulated in control but not in TRX rats. PROG also stimulated the immunocytochemical staining for myelin-basic protein (MBP) and the number of oligodendrocyte precursor cells expressing the chondroitin sulfate proteoglycan NG2 in TRX rats. In terms of beneficial or detrimental consequences, these PROG effects may be supportive of neuronal recuperation, as shown for several neuronal functional parameters that were normalized by PROG treatment of spinal cord injured animals. Thus, PROG effects on glial cells go in parallel with morphological and biochemical evidence of survival of damaged motoneurons.
Collapse
|
69
|
Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF. Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res 2002; 957:345-53. [PMID: 12445977 DOI: 10.1016/s0006-8993(02)03675-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diabetes can be associated with cerebral dysfunction in humans and animal models of the disease. Moreover, brain anomalies and alterations of the neuroendocrine system are present in type 1 diabetes (T1D) animals, such as the spontaneous nonobese diabetic (NOD) mouse model and/or the pharmacological streptozotocin (STZ)-induced model. Because of the prevalent role of astrocytes in cerebral glucose metabolism and their intimate connection with neurones, we investigated hippocampal astrocyte alterations in prediabetic and diabetic NOD mice and STZ-treated diabetic mice. The number and cell area related to the glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes were quantified in the stratum radiatum region of the hippocampus by computerized image analysis in prediabetic (2, 4 and 8 weeks of age) and diabetic (16-week-old) NOD female mice, age and sex-matched lymphocyte-deficient NODscid and C57BL/6 control mice and, finally, STZ-induced diabetic and vehicle-treated nondiabetic 16-week-old C57BL/6 female mice. Astrocyte number was higher early in life in prediabetic NOD and NODscid mice than in controls, when transient hyperinsulinemia and low glycemia were found in these strains. The number and cell area of GFAP(+) cells further increased after the onset of diabetes in NOD mice. Similarly, in STZ-treated diabetic mice, the number of GFAP(+) cells and cell area were higher than in vehicle-treated mice. In conclusion, astrocyte changes present in genetic and pharmacological models of T1D appear to reflect an adaptive process to alterations of glucose homeostasis.
Collapse
|
70
|
Gonzalez Deniselle MC, Lopez Costa JJ, Gonzalez SL, Labombarda F, Garay L, Guennoun R, Schumacher M, De Nicola AF. Basis of progesterone protection in spinal cord neurodegeneration. J Steroid Biochem Mol Biol 2002; 83:199-209. [PMID: 12650717 DOI: 10.1016/s0960-0760(02)00262-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Progesterone neuroprotection has been reported in experimental brain, peripheral nerve and spinal cord injury. To investigate for a similar role in neurodegeneration, we studied progesterone effects in the Wobbler mouse, a mutant presenting severe motoneuron degeneration and astrogliosis of the spinal cord. Implant of a single progesterone pellet (20 mg) during 15 days produced substantial changes in Wobbler mice spinal cord. Morphologically, motoneurons of untreated Wobbler mice showed severe vacuolation of intracellular organelles including mitochondria. In contrast, neuropathology was less pronounced in Wobbler mice receiving progesterone, together with a reduction of vacuolated cells and preservation of mitochondrial ultrastructure. Determination of mRNAs for the alpha 3 and beta 1 subunits of neuronal Na, K-ATPase, showed that mRNA levels in untreated mice were significantly reduced, whereas progesterone therapy re-established the expression of both subunits. Additionally, progesterone treatment of Wobbler mice attenuated the aberrant expression of the growth-associated protein (GAP-43) mRNA which otherwise occurred in motoneurons of untreated animals. The hormone, however, was without effect on astrocytosis of Wobbler mice, determined by glial fibrillary acidic protein (GFAP)-immunostaining. Lastly, progesterone treatment of Wobbler mice enhanced grip strength and prolonged survival at the end of the 15-day observation period. Recovery of morphology and molecular motoneuron parameters of Wobbler mice receiving progesterone, suggest a new and important role for this hormone in the prevention of spinal cord neurodegenerative disorders.
Collapse
|
71
|
Gonzalez Deniselle MC, López-Costa JJ, Saavedra JP, Pietranera L, Gonzalez SL, Garay L, Guennoun R, Schumacher M, De Nicola AF. Progesterone neuroprotection in the Wobbler mouse, a genetic model of spinal cord motor neuron disease. Neurobiol Dis 2002; 11:457-68. [PMID: 12586554 DOI: 10.1006/nbdi.2002.0564] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor neuron degeneration characterizes the spinal cord of patients with amyotrophic lateral sclerosis and the Wobbler mouse mutant. Considering that progesterone (PROG) provides neuroprotection in experimental ischemia and injury, its potential role in neurodegeneration was studied in the murine model. Two-month-old symptomatic Wobbler mice were left untreated or received sc a 20-mg PROG implant for 15 days. Both light and electron microscopy of Wobbler mice spinal cord showed severely affected motor neurons with profuse cytoplasmic vacuolation of the endoplasmic reticulum and/or Golgi apparatus and ruptured mitochondria with damaged cristae, a profile indicative of a type II cytoplasmic form of cell death. In contrast to untreated mice, neuropathology was less severe in Wobbler mice receiving PROG; including a reduction of vacuolation and of the number of vacuolated cells and better conservation of the mitochondrial ultrastructure. In biochemical studies, we determined the mRNA for the alpha3 subunit of Na,K-ATPase, a neuronal enzyme controlling ion fluxes, neurotransmission, membrane potential, and nutrient uptake. In untreated Wobbler mice, mRNA levels in motor neurons were reduced by half compared to controls, whereas PROG treatment of Wobbler mice restored the expression of alpha3 subunit Na,K-ATPase mRNA. Therefore, PROG was able to rescue motor neurons from degeneration, based on recovery of histopathological abnormalities and of mRNA levels of the sodium pump. However, because the gene mutation in Wobbler mice is still unknown, further studies are needed to unveil the action of PROG and the mechanism of neuronal death in this genetic model of neurodegeneration.
Collapse
|
72
|
Saravia FE, Pietranera L, Lima A, Roig P, Revsin Y, De Nicola AF. Deoxycorticosterone stimulates the activity of nicotinamide adenine dinucleotide phosphate-diaphorase/nitric oxide synthase immunoreactivity in hypothalamic nuclei of rats. Neurosci Lett 2002; 329:344-8. [PMID: 12183045 DOI: 10.1016/s0304-3940(02)00666-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mineralocorticoids (MC) play an important role in development of salt appetite. Part of this effect involves the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, in which MC treatment increases arginine vasopressin (AVP) synthesis and release. Since the AVP system is also modulated by nitric oxide (NO), we studied if deoxycorticosterone acetate (DOCA) treatment changed the number of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) active neurons and neuronal NO synthase (nNOS)-immunoreactive (IR) cells in the PVN and SON. After four injections of DOCA (10 mg/rat per day), rats developed a salt appetite and increased NADPH-d active and nNOS-IR neurons in both nuclei. A single DOCA injection did not change salt consumption or nNOS-IR cells, but increased the number of NADPH-d positive neurons in the PVN only. Therefore, while acute MC treatment stimulated the activity of pre-existing enzyme, chronic steroid treatment recruited additional neurons showing nNOS immunoreactivity/NADPH-d activity. These data suggest a role for NO produced in the PVN and SON in DOCA stimulatory effects on AVP mRNA and salt appetite.
Collapse
|
73
|
Piroli GG, Pietranera L, Grillo CA, De Nicola AF. Dehydroepiandrosterone regulation of prolactin gene expression in the anterior pituitary does not depend on galanin induction. NEURO ENDOCRINOLOGY LETTERS 2002; 23:321-4. [PMID: 12195234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2002] [Accepted: 06/24/2002] [Indexed: 02/26/2023]
Abstract
OBJECTIVES The effects of dehydroepiandrosterone (DHEA) on galanin (GAL) and prolactin (PRL) mRNA expression in the anterior pituitary of Fischer 344 rats were studied, taking in consideration that: (1) DHEA is an androgen with estrogenic activity on pituitary lactotrophs; (2) estrogens induce prolactinomas in Fischer 344 rats; and (3) GAL has been considered the main mediator of estrogen-induced lactotroph proliferation. DESIGN Female rats were ovariectomized and used as controls or treated during 2 weeks with DHEA (500 mg/kg/day or 5 mg/kg/day or 50 mg/kg/day) or estradiol (E2, 50 microg/kg/day), as a positive control for pituitary growth and GAL induction. GAL and PRL mRNA expression were studied by in situ hybridization. RESULTS Both DHEA and E2 induced PRL mRNA synthesis. However, DHEA neither produced pituitary enlargement nor GAL induction, in contrast to E2. CONCLUSIONS Our results shows that GAL is not involved in the estrogenic activity of DHEA on pituitary lactotrophs, and suggest that DHEA effects are exerted directly on the PRL gene or through another mechanism(s) not related to GAL.
Collapse
|
74
|
Ferrini M, Bisagno V, Piroli G, Grillo C, González Deniselle MC, De Nicola AF. Effects of estrogens on choline-acetyltransferase immunoreactivity and GAP-43 mRNA in the forebrain of young and aging male rats. Cell Mol Neurobiol 2002; 22:289-301. [PMID: 12469871 DOI: 10.1023/a:1020767917795] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Previous work demonstrated that estradiol (E2) treatment prevented the abnormal response to stress and the reduction of glucocorticoid receptors (GR) in hippocampus from aging male rats. The mechanisms originating these effects were unknown. 2. In the present work, we investigated the E2 effects on the cholinergic, growth-associated protein (GAP-43) expressing neurons of the medial septum (MS) and vertical limb of diagonal band of Broca (VDB). These areas project to the hippocampus, and may be involved in the mentioned E2 effects in aging animals. Therefore, the response to E2 of choline-acetyltransferase (ChAT) in neurons and cell processes and GAP-43 mRNA as a marker of neurite outgrowth was studied in young and old male rats. 3. Young (3-4 months) and old (18-20 months) male Sprague-Dawley rats remained untreated or were implanted s.c. with a 14 mg pellet of E2 benzoate during 6 weeks. We used immoucytochemistry to determine ChAT and isotopic in situ hybridization to analyze GAP-43 mRNA expression. 4. Aging males showed a reduction in the number and length of ChAT-immunoreactive cell processes, but not in the number of positive neurons in MS and VDB. E2 reverted both parameters in old rats to levels of young animals. Regarding basal levels of GAP-43 mRNA, they were similar in old and young animals, but E2 treatment up-regulated GAP-43 mRNA expression in MS and VDB of old animals only. 5. Our data suggest that prolonged E2 treatment may affect hippocampal function of aging male rats by regulating in part the plasticity of cholinergic, GAP-43 expressing neurones of the basal forebrain. Without discarding a direct E2 effect on the limbic tissue, effects on the cholinergic system may have a pronounced impact on the neuroendocrine and stress responses of the aging hippocampus.
Collapse
|
75
|
Libertun C, De Nicola AF. Cell Mol Neurobiol 2002; 22:469-470. [DOI: 10.1023/a:1021881613853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|