51
|
Hennig K, Abi-Ghanem J, Bunescu A, Meniche X, Biliaut E, Ouattara AD, Lewis MD, Kelly JM, Braillard S, Courtemanche G, Chatelain E, Béquet F. Metabolomics, lipidomics and proteomics profiling of myoblasts infected with Trypanosoma cruzi after treatment with different drugs against Chagas disease. Metabolomics 2019; 15:117. [PMID: 31440849 DOI: 10.1007/s11306-019-1583-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/17/2019] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Chagas disease, the most important parasitic infection in Latin America, is caused by the intracellular protozoan Trypanosoma cruzi. To treat this disease, only two nitroheterocyclic compounds with toxic side effects exist and frequent treatment failures are reported. Hence there is an urgent need to develop new drugs. Recently, metabolomics has become an efficient and cost-effective strategy for dissecting drug mode of action, which has been applied to bacteria as well as parasites, such as different Trypanosome species and forms. OBJECTIVES We assessed if the metabolomics approach can be applied to study drug action of the intracellular amastigote form of T. cruzi in a parasite-host cell system. METHODS We applied a metabolic fingerprinting approach (DI-MS and NMR) to evaluate metabolic changes induced by six different (candidate) drugs in a parasite-host cell system. In a second part of our study, we analyzed the impact of two drugs on polar metabolites, lipid and proteins to evaluate if affected pathways can be identified. RESULTS Metabolic signatures, obtained by the fingerprinting approach, resulted in three different clusters. Two can be explained by already known of mode actions, whereas the three experimental drugs formed a separate cluster. Significant changes induced by drug action were observed in all the three metabolic fractions (polar metabolites, lipids and proteins). We identified a general impact on the TCA cycle, but no specific pathways could be attributed to drug action, which might be caused by a high percentage of common metabolome between a eukaryotic host cell and a eukaryotic parasite. Additionally, ion suppression effects due to differences in abundance between host cells and parasites may have occurred. CONCLUSION We validated the metabolic fingerprinting approach to a complex host-cell parasite system. This technique can potentially be applied in the early stage of drug discovery and could help to prioritize early leads or reconfirmed hits for further development.
Collapse
|
52
|
Foscolos AS, Papanastasiou I, Tsotinis A, Taylor MC, Kelly JM. Synthesis and Evaluation of Nifurtimox-Adamantane Adducts with Trypanocidal Activity. ChemMedChem 2019; 14:1227-1231. [PMID: 31066972 DOI: 10.1002/cmdc.201900165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/11/2019] [Indexed: 11/08/2022]
Abstract
The synthesis and pharmacological evaluation of C1-substituted adamantane hydrazones, their C2-substituted isomers, and C1-substituted adamantane furanoic carboxamides is described. These new adamantane derivatives exhibited an interesting pharmacological profile in terms of trypanocidal activity and selectivity. The most active adduct with the best selectivity in this study was found to be the phenylacetoxy hydrazone 1 b (2-[4-(tricyclo[3.3.1.13,7 ]dec-1-yl)phenyl]-N'-[(5-nitrofuran-2-yl)methylene]acetohydrazide; EC50 =11±0.9 nm, SITb =770).
Collapse
|
53
|
Giannakopoulou E, Pardali V, Frakolaki E, Siozos V, Myrianthopoulos V, Mikros E, Taylor MC, Kelly JM, Vassilaki N, Zoidis G. Scaffold hybridization strategy towards potent hydroxamate-based inhibitors of Flaviviridae viruses and Trypanosoma species. MEDCHEMCOMM 2019; 10:991-1006. [PMID: 31303998 DOI: 10.1039/c9md00200f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Infections with Flaviviridae viruses, such as hepatitis C virus (HCV) and dengue virus (DENV) pose global health threats. Infected individuals are at risk of developing chronic liver failure or haemorrhagic fever respectively, often with a fatal outcome if left untreated. Diseases caused by tropical parasites of the Trypanosoma species, T. brucei and T. cruzi, constitute significant socioeconomic burden in sub-Saharan Africa and continental Latin America, yet drug development is under-funded. Anti-HCV chemotherapy is associated with severe side effects and high cost, while dengue has no clinically approved therapy and antiparasitic drugs are outdated and difficult to administer. Moreover, drug resistance is an emerging concern. Consequently, the need for new revolutionary chemotherapies is urgent. By utilizing a molecular framework combination approach, we combined two distinct chemical entities with proven antiviral and trypanocidal activity into a novel hybrid scaffold attached by an acetohydroxamic acid group (CH2CONHOH), aiming at derivatives with dual activity. The novel spiro-carbocyclic substituted hydantoin analogues were rationally designed, synthesized and evaluated for their potency against three HCV genotypes (1b, 3a, 4a), DENV and two Trypanosoma species (T. brucei, T. cruzi). They exhibited significant EC50 values and remarkable selectivity indices. Several modifications were undertaken to further explore the structure activity relationships (SARs) and confirm the pivotal role of the acetohydroxamic acid metal binding group.
Collapse
|
54
|
Popov AB, Stolić I, Krstulović L, Taylor MC, Kelly JM, Tomić S, Tumir L, Bajić M, Raić-Malić S. Novel symmetric bis-benzimidazoles: Synthesis, DNA/RNA binding and antitrypanosomal activity. Eur J Med Chem 2019; 173:63-75. [PMID: 30986572 DOI: 10.1016/j.ejmech.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The novel benzimidazol-2-yl-fur-5-yl-(1,2,3)-triazolyl dimeric series with aliphatic and aromatic central linkers was successfully prepared with the aim of assessing binding affinity to DNA/RNA and antitrypanosomal activity. UV-Visible spectroscopy, thermal denaturation showed interaction of heterocyclic bis-amidines with ctDNA. Circular dichroism studies indicated uniform orientation of heterocyclic bis-amidines along the chiral double helix axis, revealing minor groove binding as the dominant binding mode. The amidino fragment and 1,4-bis(oxymethylene)phenyl spacer were the main determinants of activity against Trypanosoma brucei. The bis-benzimidazole imidazoline 15c, which had antitrypanosomal potency in the submicromolar range and DNA interacting properties, emerged as a candidate for further structural optimization to obtain more effective agents to combat trypanosome infections.
Collapse
|
55
|
Georgiadis MO, Kourbeli V, Ioannidou V, Karakitsios E, Papanastasiou I, Tsotinis A, Komiotis D, Vocat A, Cole ST, Taylor MC, Kelly JM. Synthesis of diphenoxyadamantane alkylamines with pharmacological interest. Bioorg Med Chem Lett 2019; 29:1278-1281. [PMID: 30981579 DOI: 10.1016/j.bmcl.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/31/2023]
Abstract
In this work, the synthesis and the pharmacological evaluation of diphenoxyadamantane alkylamines Ia-f and IIa-f is described. The new diphenoxy-substituted adamantanes share structural features present in trypanocidal and antitubercular agents. 1-Methylpiperazine derivative Ia is the most potent against T. brucei compound, whilst its hexylamine congener IIf exhibits a significant antimycobacterial activity.
Collapse
|
56
|
Rao SPS, Barrett MP, Dranoff G, Faraday CJ, Gimpelewicz CR, Hailu A, Jones CL, Kelly JM, Lazdins-Helds JK, Mäser P, Mengel J, Mottram JC, Mowbray CE, Sacks DL, Scott P, Späth GF, Tarleton RL, Spector JM, Diagana TT. Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infect Dis 2019; 5:152-157. [PMID: 30543391 DOI: 10.1021/acsinfecdis.8b00298] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kinetoplastid parasites have caused human disease for millennia. Significant achievements have been made toward developing new treatments for leishmaniasis (particularly on the Indian subcontinent) and for human African trypanosomiasis (HAT). Moreover, the sustained decrease in the incidence of HAT has made the prospect of elimination a tantalizing reality. Despite the gains, no new chemical or biological entities to treat kinetoplastid diseases have been registered in more than three decades, and more work is needed to discover safe and effective therapies for patients with Chagas disease and leishmaniasis. Advances in tools for drug discovery and novel insights into the biology of the host-parasite interaction may provide opportunities for accelerated progress. Here, we summarize the output from a gathering of scientists and physicians who met to discuss the current status and future directions in drug discovery for kinetoplastid diseases.
Collapse
|
57
|
Keane PM, Tory J, Towrie M, Sazanovich IV, Cardin CJ, Quinn SJ, Hartl F, Kelly JM, Long C. Spectro-electrochemical Studies on [Ru(TAP) 2(dppz)] 2+-Insights into the Mechanism of its Photosensitized Oxidation of Oligonucleotides. Inorg Chem 2018; 58:663-671. [PMID: 30540448 DOI: 10.1021/acs.inorgchem.8b02859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[Ru(TAP)2(dppz)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene; dppz = dipyrido[3,2- a:2',3'- c]phenazine) is known to photo-oxidize guanine in DNA. Whether this oxidation proceeds by direct photoelectron transfer or by proton-coupled electron transfer is still unknown. To help distinguish between these mechanisms, spectro-electrochemical experiments have been carried out with [Ru(TAP)2(dppz)]2+ in acetonitrile. The UV-vis and mid-IR spectra obtained for the one-electron reduced product were compared to those obtained by picosecond transient absorption and time-resolved infrared experiments of [Ru(TAP)2(dppz)]2+ bound to guanine-containing DNA. An interesting feature of the singly reduced species is an electronic transition in the near-IR region (with λmax at 1970 and 2820 nm). Density functional and time-dependent density functional theory simulations of the vibrational and electronic spectra of [Ru(TAP)2(dppz)]2+, the reduced complex [Ru(TAP)2(dppz)]+, and four isomers of [Ru(TAP)(TAPH)(dppz)]2+ (a possible product of proton-coupled electron transfer) were performed. Significantly, these predict absorption bands at λ > 1900 nm (attributed to a ligand-to-metal charge-transfer transition) for [Ru(TAP)2(dppz)]+ but not for [Ru(TAP)(TAPH)(dppz)]2+. Both the UV-vis and mid-IR difference absorption spectra of the electrochemically generated singly reduced species [Ru(TAP)2(dppz)]+ agree well with the transient absorption and time-resolved infrared spectra previously determined for the transient species formed by photoexcitation of [Ru(TAP)2(dppz)]2+ intercalated in guanine-containing DNA. This suggests that the photochemical process in DNA proceeds by photoelectron transfer and not by a proton-coupled electron transfer process involving formation of [Ru(TAP)(TAPH)(dppz)]2+, as is proposed for the reaction with 5'-guanosine monophosphate. Additional infrared spectro-electrochemical measurements and density functional calculations have also been carried out on the free TAP ligand. These show that the TAP radical anion in acetonitrile also exhibits strong broad near-IR electronic absorption (λmax at 1750 and 2360 nm).
Collapse
|
58
|
Bistrović A, Krstulović L, Stolić I, Drenjančević D, Talapko J, Taylor MC, Kelly JM, Bajić M, Raić-Malić S. Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA. J Enzyme Inhib Med Chem 2018; 33:1323-1334. [PMID: 30165753 PMCID: PMC6127852 DOI: 10.1080/14756366.2018.1484733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 02/09/2023] Open
Abstract
Amidinobenzimidazole derivatives connected to 1-aryl-substituted 1,2,3-triazole through phenoxymethylene linkers 7a-7e, 8a-8e, and 9a-9e were designed and synthesised with the aim of evaluating their anti-bacterial and anti-trypanosomal activities and DNA/RNA binding affinity. Results from anti-bacterial evaluations of antibiotic-resistant pathogenic bacteria revealed that both o-chlorophenyl-1,2,3-triazole and N-isopropylamidine moieties in 8c led to strong inhibitory activity against resistant Gram-positive bacteria, particularly the MRSA strain. Furthermore, the non-substituted amidine and phenyl ring in 7a induced a marked anti-bacterial effect, with potency against ESBL-producing Gram-negative E. coli better than those of the antibiotics ceftazidime and ciprofloxacin. UV-Vis and CD spectroscopy, as well as thermal denaturation assays, indicated that compounds 7a and 8c showed also binding affinities towards ctDNA. Anti-trypanosomal evaluations showed that the p-methoxyphenyl-1,2,3-triazole moiety in 7b and 9b enhanced inhibitory activity against T. brucei, with 8b being more potent than nifurtimox, and having minimal toxicity towards mammalian cells.
Collapse
|
59
|
Adjogatse E, Erskine P, Wells SA, Kelly JM, Wilden JD, Chan AWE, Selwood D, Coker A, Wood S, Cooper JB. Structure and function of L-threonine-3-dehydrogenase from the parasitic protozoan Trypanosoma brucei revealed by X-ray crystallography and geometric simulations. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:861-876. [DOI: 10.1107/s2059798318009208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Abstract
Two of the world's most neglected tropical diseases, human African trypanosomiasis (HAT) and Chagas disease, are caused by protozoan parasites of the genus Trypanosoma. These organisms possess specialized metabolic pathways, frequently distinct from those in humans, which have potential to be exploited as novel drug targets. This study elucidates the structure and function of L-threonine-3-dehydrogenase (TDH) from T. brucei, the causative pathogen of HAT. TDH is a key enzyme in the metabolism of L-threonine, and an inhibitor of TDH has been shown to have trypanocidal activity in the procyclic form of T. brucei. TDH is a nonfunctional pseudogene in humans, suggesting that it may be possible to rationally design safe and specific therapies for trypanosomiasis by targeting this parasite enzyme. As an initial step, the TDH gene from T. brucei was expressed and the three-dimensional structure of the enzyme was solved by X-ray crystallography. In multiple crystallographic structures, T. brucei TDH is revealed to be a dimeric short-chain dehydrogenase that displays a considerable degree of conformational variation in its ligand-binding regions. Geometric simulations of the structure have provided insight into the dynamic behaviour of this enzyme. Furthermore, structures of TDH bound to its natural substrates and known inhibitors have been determined, giving an indication of the mechanism of catalysis of the enzyme. Collectively, these results provide vital details for future drug design to target TDH or related enzymes.
Collapse
|
60
|
Lewis MD, Francisco AF, Jayawardhana S, Langston H, Taylor MC, Kelly JM. Imaging the development of chronic Chagas disease after oral transmission. Sci Rep 2018; 8:11292. [PMID: 30050153 PMCID: PMC6062536 DOI: 10.1038/s41598-018-29564-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Chagas disease is a zoonosis caused by the protozoan parasite Trypanosoma cruzi. Transmission cycles are maintained by haematophagous triatomine bug vectors that carry infective T. cruzi in their faeces. Most human infections are acquired by contamination of mucosal membranes with triatomine faeces after being bitten, however, T. cruzi can be transmitted by several other routes. Oral transmission is an increasingly important aspect of Chagas disease epidemiology, typically involving food or drink products contaminated with triatomines. This has recently caused numerous outbreaks and been linked to unusually severe acute infections. The long-term impact of oral transmission on infection dynamics and disease pathogenesis is unclear. We used highly sensitive bioluminescence imaging and quantitative histopathology to study orally transmitted T. cruzi infections in mice. Both metacyclic and bloodform trypomastigotes were infectious via the oral cavity, but only metacyclics led to established infections by intra-gastric gavage. Mice displayed only mild acute symptoms but later developed significantly increased myocardial collagen content (p = 0.017), indicative of fibrosis. Gastrointestinal tissues and skin were the principal chronic infection reservoirs. Chronic phase parasite load profiles, tissue distribution and myocardial fibrosis severity were comparable to needle-injected controls. Thus, the oral route neither exacerbates nor ameliorates experimental Chagas disease.
Collapse
|
61
|
Olmo F, Costa FC, Mann GS, Taylor MC, Kelly JM. Optimising genetic transformation of Trypanosoma cruzi using hydroxyurea-induced cell-cycle synchronisation. Mol Biochem Parasitol 2018; 226:34-36. [PMID: 29990513 PMCID: PMC6254250 DOI: 10.1016/j.molbiopara.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 11/29/2022]
Abstract
A straightforward method for optimising Trypanosoma cruzi transfection efficiency. Facilitated by hydroxyurea-induced cell-cycle synchronization. Applicable to both episomal and integrative-mediated transformation. Reduces the time required to generate genetically modified cell lines. Increases the number of stably transformed clones.
The limited flexibility and time-consuming nature of the genetic manipulation procedures applicable to Trypanosoma cruzi continue to restrict the functional dissection of this parasite. We hypothesised that transformation efficiency could be enhanced if electroporation was timed to coincide with DNA replication. To test this, we generated epimastigote cultures enriched at the G1/S boundary using hydroxyurea-induced cell-cycle synchronisation, and then electroporated parasites at various time points after release from the cell-cycle block. We found a significant increase in transformation efficiency, with both episomal and integrative constructs, when cultures were electroporated 1 h after hydroxyurea removal. It was possible to generate genetically modified populations in less than 2 weeks, compared to the normal 4–6 weeks, with a 5 to 8-fold increase in the number of stably transformed clones. This straightforward optimisation step can be widely applied and should help streamline functional studies in T. cruzi.
Collapse
|
62
|
Vilen M, Kelly JM, Kankainen A, Brodeur M, Aprahamian A, Canete L, Eronen T, Jokinen A, Kuta T, Moore ID, Mumpower MR, Nesterenko DA, Penttilä H, Pohjalainen I, Porter WS, Rinta-Antila S, Surman R, Voss A, Äystö J. Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for r-Process Calculations. PHYSICAL REVIEW LETTERS 2018; 120:262701. [PMID: 30004755 DOI: 10.1103/physrevlett.120.262701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/17/2018] [Indexed: 06/08/2023]
Abstract
The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. ^{158}Nd, ^{160}Pm, ^{162}Sm, and ^{164-166}Gd have been measured for the first time, and the precisions for ^{156}Nd, ^{158}Pm, ^{162,163}Eu, ^{163}Gd, and ^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S_{2n} and neutron pairing energy metrics D_{n}. The data do not support the existence of a subshell closure at N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated r-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar r-process abundances are observed.
Collapse
|
63
|
Keane PM, Kelly JM. Transient absorption and time-resolved vibrational studies of photophysical and photochemical processes in DNA-intercalating polypyridyl metal complexes or cationic porphyrins. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
64
|
Schonhoft JD, Monteiro C, Plate L, Eisele YS, Kelly JM, Boland D, Parker CG, Cravatt BF, Teruya S, Helmke S, Maurer M, Berk J, Sekijima Y, Novais M, Coelho T, Powers ET, Kelly JW. Peptide probes detect misfolded transthyretin oligomers in plasma of hereditary amyloidosis patients. Sci Transl Med 2018; 9:9/407/eaam7621. [PMID: 28904227 DOI: 10.1126/scitranslmed.aam7621] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/29/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
Increasing evidence supports the hypothesis that soluble misfolded protein assemblies contribute to the degeneration of postmitotic tissue in amyloid diseases. However, there is a dearth of reliable nonantibody-based probes for selectively detecting oligomeric aggregate structures circulating in plasma or deposited in tissues, making it difficult to scrutinize this hypothesis in patients. Hence, understanding the structure-proteotoxicity relationships driving amyloid diseases remains challenging, hampering the development of early diagnostic and novel treatment strategies. We report peptide-based probes that selectively label misfolded transthyretin (TTR) oligomers circulating in the plasma of TTR hereditary amyloidosis patients exhibiting a predominant neuropathic phenotype. These probes revealed that there are much fewer misfolded TTR oligomers in healthy controls, in asymptomatic carriers of mutations linked to amyloid polyneuropathy, and in patients with TTR-associated cardiomyopathies. The absence of misfolded TTR oligomers in the plasma of cardiomyopathy patients suggests that the tissue tropism observed in the TTR amyloidoses is structure-based. Misfolded oligomers decrease in TTR amyloid polyneuropathy patients treated with disease-modifying therapies (tafamidis or liver transplant-mediated gene therapy). In a subset of TTR amyloid polyneuropathy patients, the probes also detected a circulating TTR fragment that disappeared after tafamidis treatment. Proteomic analysis of the isolated TTR oligomers revealed a specific patient-associated signature composed of proteins that likely associate with the circulating TTR oligomers. Quantification of plasma oligomer concentrations using peptide probes could become an early diagnostic strategy, a response-to-therapy biomarker, and a useful tool for understanding structure-proteotoxicity relationships in the TTR amyloidoses.
Collapse
|
65
|
Kelly JM, Rizoli S, Veigas P, Hollands S, Min A. Using rotational thromboelastometry clot firmness at 5 minutes (ROTEM ® EXTEM A5) to predict massive transfusion and in-hospital mortality in trauma: a retrospective analysis of 1146 patients. Anaesthesia 2018; 73:1103-1109. [PMID: 29658985 PMCID: PMC6120456 DOI: 10.1111/anae.14297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2018] [Indexed: 12/31/2022]
Abstract
Viscoelastic assays such as TEG® and ROTEM® are increasingly used to guide transfusion of blood products. The EXTEM assay maximum clot firmness (MCF) is a ROTEM measure available after 25–29 min used to guide early decisions. EXTEM A10, the clot firmness at 10 min, is an accepted early surrogate, but investigators differ on whether A5, the clot firmness at 5 min, is acceptable. We re‐examined this in a retrospective observational analysis of 1146 trauma patients in one centre who had ROTEM data recorded. A5 and A10 both correlated well with maximum clot firmness, with Pearson coefficients of r = 0.92 and r = 0.96, respectively. The correlations of A5, A10 and maximum clot firmness with requirement for massive transfusion were all similarly high, with c‐stats of 0.87, 0.89 and 0.90, respectively. The correlations with mortality were also similar but weaker, with c‐stats of 0.67, 0.69 and 0.69, respectively. Using a previously validated cut‐off of A5 < 35 mm to predict massive transfusion gave a sensitivity of 95%, specificity 83%, positive predictive value 9.3% and negative predictive value 100%. Using a value of A5 < 29 mm, for a pragmatic positive predictive value of 20%, gave a sensitivity of 67%, specificity 95% and negative predictive value 99%. Whether aiming for a high sensitivity or a strong predictive value, A5 was non‐inferior to A10 and actually missed fewer cases needing massive transfusion. A5 has similar utility to both A10 and maximum clot firmness as an early measure of clot firmness, and a low A5 value is strongly predictive of the need for massive transfusion.
Collapse
|
66
|
Artigas A, Sola I, Taylor MC, Clos MV, Perez B, Kelly JM, Munoz-Torrero D. Synthesis and Biological Evaluation of Heteroarylnonanenitriles as Potential Antitrypanosomal Agents: Serendipitous Discovery of Novel Anticholinesterase Hits. LETT ORG CHEM 2018. [DOI: 10.2174/1570178615666171219164459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
|
68
|
Zoidis G, Tsotinis A, Tsatsaroni A, Taylor MC, Kelly JM, Efstathiou A, Smirlis D, Fytas G. Lipophilic conformationally constrained spiro carbocyclic 2,6-diketopiperazine-1-acetohydroxamic acid analogues as trypanocidal and leishmanicidal agents: An extended SAR study. Chem Biol Drug Des 2017; 91:408-421. [PMID: 28834291 DOI: 10.1111/cbdd.13088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/18/2017] [Accepted: 08/09/2017] [Indexed: 01/13/2023]
Abstract
We have previously described a number of lipophilic conformationally constrained spiro carbocyclic 2,6-diketopiperazine (2,6-DKP)-1-acetohydroxamic acids as potent antitrypanosomal agents. In this report, we extend the SAR analysis in this class of compounds with respect to in vitro growth inhibition of Trypanosoma and Leishmania parasites. Introduction of bulky hydrophobic substituents at the vicinal position of the basic nitrogen atom in the spiro carbocyclic 2,6-DKP ring system can provide analogues which are potently active against bloodstream form Trypanosoma brucei and exhibit significant activities toward Trypanosoma cruzi epimastogotes and Leishmania infantum promastigotes and intracellular amastigotes. In particular, compounds possessing a benzyl or 4-chlorobenzyl substituent were found to be the most active growth inhibitors, with activities in the low nanomolar and low micromolar ranges for T. brucei and L. infantum, respectively. The benzyl-substituted (S)-enantiomer was the most potent derivative against T. brucei (IC50 = 6.8 nm), T. cruzi (IC50 = 0.21 μm), and L. infantum promastigotes (IC50 = 2.67 μm) and intracellular amastigotes (IC50 = 2.60 μm). Moreover, the (R)-chiral benzyl-substituted derivative and its racemic counterpart displayed significant activities against L. donovani. Importantly, the active compounds show high selectivity in comparison with two mammalian cell lines.
Collapse
|
69
|
Brand S, Ko EJ, Viayna E, Thompson S, Spinks D, Thomas M, Sandberg L, Francisco AF, Jayawardhana S, Smith VC, Jansen C, De Rycker M, Thomas J, MacLean L, Osuna-Cabello M, Riley J, Scullion P, Stojanovski L, Simeons FRC, Epemolu O, Shishikura Y, Crouch SD, Bakshi TS, Nixon CJ, Reid IH, Hill AP, Underwood TZ, Hindley SJ, Robinson SA, Kelly JM, Fiandor JM, Wyatt PG, Marco M, Miles TJ, Read KD, Gilbert IH. Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi. J Med Chem 2017; 60:7284-7299. [PMID: 28844141 PMCID: PMC5601362 DOI: 10.1021/acs.jmedchem.7b00463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Chagas’
disease, caused by the protozoan parasite Trypanosoma
cruzi, is the most common cause of cardiac-related
deaths in endemic regions of Latin America. There is an urgent need
for new safer treatments because current standard therapeutic options,
benznidazole and nifurtimox, have significant side effects and are
only effective in the acute phase of the infection with limited efficacy
in the chronic phase. Phenotypic high content screening against the
intracellular parasite in infected VERO cells was used to identify
a novel hit series of 5-amino-1,2,3-triazole-4-carboxamides (ATC).
Optimization of the ATC series gave improvements in potency, aqueous
solubility, and metabolic stability, which combined to give significant
improvements in oral exposure. Mitigation of a potential Ames and hERG liability ultimately led to two promising compounds, one of which demonstrated significant suppression of parasite burden in a mouse model of Chagas’ disease.
Collapse
|
70
|
Keane PM, Hall JP, Poynton FE, Poulsen BC, Gurung SP, Clark IP, Sazanovich IV, Towrie M, Gunnlaugsson T, Quinn SJ, Cardin CJ, Kelly JM. Inosine Can Increase DNA′s Susceptibility to Photo‐oxidation by a RuIIComplex due to Structural Change in the Minor Groove. Chemistry 2017; 23:10344-10351. [DOI: 10.1002/chem.201701447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 11/08/2022]
|
71
|
Cardin CJ, Kelly JM, Quinn SJ. Photochemically active DNA-intercalating ruthenium and related complexes - insights by combining crystallography and transient spectroscopy. Chem Sci 2017; 8:4705-4723. [PMID: 28936338 PMCID: PMC5596416 DOI: 10.1039/c7sc01070b] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
Recent research on the study of the interaction of ruthenium polypyridyl compounds and defined sequence nucleic acids is reviewed. Particular emphasis is paid to complexes [Ru(LL)2(Int)]2+ containing potentially intercalating ligands (Int) such as dipyridophenazine (dppz), which are known to display light-switching or photo-oxidising behaviour, depending on the nature of the ancillary ligands. X-ray crystallography has made a key contribution to our understanding, and the first complete survey of structural results is presented. These include sequence, enantiomeric, substituent and structural specificities. The use of ultrafast transient spectroscopic methods to probe the ultrafast processes for complexes such as [Ru(TAP)2(dppz)]2+ and [Ru(phen)2(dppz)]2+ when bound to mixed sequence oligonucleotides are reviewed with particular attention being paid to the complementary advantages of transient (visible) absorption and time-resolved (mid) infra-red techniques to probe spectral changes in the metal complex and in the nucleic acid. The observed photophysical properties are considered in light of the structural information obtained from X-ray crystallography. In solution, metal complexes can be expected to bind at more than one DNA step, so that a perfect correlation of the photophysical properties and factors such as the orientation or penetration of the ligand into the intercalation pocket should not be expected. This difficulty can be obviated by carrying out TRIR studies in the crystals. Dppz complexes also undergo insertion, especially with mismatched sequences. Future areas for study such as those involving non-canonical forms of DNA, such as G-quadruplexes or i-motifs are also briefly considered.
Collapse
|
72
|
Mac Mahon J, Pillai SC, Kelly JM, Gill LW. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO 2 , ZnO and ruthenium based complexes in a continuous flow system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:79-90. [DOI: 10.1016/j.jphotobiol.2017.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
73
|
Lewis MD, Kelly JM. Putting Infection Dynamics at the Heart of Chagas Disease. Trends Parasitol 2016; 32:899-911. [PMID: 27612651 PMCID: PMC5086431 DOI: 10.1016/j.pt.2016.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
In chronic Trypanosoma cruzi infections, parasite burden is controlled by effective, but nonsterilising immune responses. Infected cells are difficult to detect because they are scarce and focally distributed in multiple sites. However, advances in detection technologies have established a link between parasite persistence and the pathogenesis of Chagas heart disease. Long-term persistence likely involves episodic reinvasion as well as continuous infection, to an extent that varies between tissues. The primary reservoir sites in humans are not definitively known, but analysis of murine models has identified the gastrointestinal tract. Here, we highlight that quantitative, spatial, and temporal aspects of T. cruzi infection are central to a fuller understanding of the association between persistence, pathogenesis, and immunity, and for optimising treatment.
Collapse
|
74
|
Francisco AF, Jayawardhana S, Lewis MD, White KL, Shackleford DM, Chen G, Saunders J, Osuna-Cabello M, Read KD, Charman SA, Chatelain E, Kelly JM. Nitroheterocyclic drugs cure experimental Trypanosoma cruzi infections more effectively in the chronic stage than in the acute stage. Sci Rep 2016; 6:35351. [PMID: 27748443 PMCID: PMC5066210 DOI: 10.1038/srep35351] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
The insect-transmitted protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, and infects 5-8 million people in Latin America. Chagas disease is characterised by an acute phase, which is partially resolved by the immune system, but then develops as a chronic life-long infection. There is a consensus that the front-line drugs benznidazole and nifurtimox are more effective against the acute stage in both clinical and experimental settings. However, confirmative studies have been restricted by difficulties in demonstrating sterile parasitological cure. Here, we describe a systematic study of nitroheterocyclic drug efficacy using highly sensitive bioluminescence imaging of murine infections. Unexpectedly, we find both drugs are more effective at curing chronic infections, judged by treatment duration and therapeutic dose. This was not associated with factors that differentially influence plasma drug concentrations in the two disease stages. We also observed that fexinidazole and fexinidazole sulfone are more effective than benznidazole and nifurtimox as curative treatments, particularly for acute stage infections, most likely as a result of the higher and more prolonged exposure of the sulfone derivative. If these findings are translatable to human patients, they will have important implications for treatment strategies.
Collapse
|
75
|
Lewis MD, Francisco AF, Taylor MC, Jayawardhana S, Kelly JM. Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cell Microbiol 2016; 18:1429-43. [PMID: 26918803 PMCID: PMC5031194 DOI: 10.1111/cmi.12584] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/21/2016] [Indexed: 12/15/2022]
Abstract
Host and parasite diversity are suspected to be key factors in Chagas disease pathogenesis. Experimental investigation of underlying mechanisms is hampered by a lack of tools to detect scarce, pleiotropic infection foci. We developed sensitive imaging models to track Trypanosoma cruzi infection dynamics and quantify tissue-specific parasite loads, with minimal sampling bias. We used this technology to investigate cardiomyopathy caused by highly divergent parasite strains in BALB/c, C3H/HeN and C57BL/6 mice. The gastrointestinal tract was unexpectedly found to be the primary site of chronic infection in all models. Immunosuppression induced expansion of parasite loads in the gut and was followed by widespread dissemination. These data indicate that differential immune control of T. cruzi occurs between tissues and shows that the large intestine and stomach provide permissive niches for active infection. The end-point frequency of heart-specific infections ranged from 0% in TcVI-CLBR-infected C57BL/6 to 88% in TcI-JR-infected C3H/HeN mice. Nevertheless, infection led to fibrotic cardiac pathology in all models. Heart disease severity was associated with the model-dependent frequency of dissemination outside the gut and inferred cumulative heart-specific parasite loads. We propose a model of cardiac pathogenesis driven by periodic trafficking of parasites into the heart, occurring at a frequency determined by host and parasite genetics.
Collapse
|