51
|
Shaw P, Sharp W, Sudre G, Wharton A, Greenstein D, Chakravarty MM, Lerch JP, Rapoport J. Subcortical and cortical morphological anomalies as an endophenotype in obsessive-compulsive disorder. Mol Psychiatry 2015; 20:224-31. [PMID: 24514568 PMCID: PMC5912882 DOI: 10.1038/mp.2014.3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023]
Abstract
Endophentoypes, quantifiable traits lying on the causal chain between a clinical phenotype and etiology, can be used to accelerate genomic discovery in obsessive-compulsive disorder (OCD). Here we identify the neuroanatomic changes that are shared by 22 OCD adult and adolescent patients and 25 of their unaffected siblings who are at genetic risk for the disorder. Comparisons were made against 47 age and sex matched healthy controls. We defined the surface morphology of the striatum, globus pallidus and thalamus, and thickness of the cerebral cortex. Patients with OCD show significant surface expansion compared with healthy controls, following adjustment for multiple comparisons, in interconnected regions of the caudate, thalamus and right orbitofrontal cortex. Their unaffected siblings show similar, significant expansion, most marked in the ventromedial caudate bilaterally, the right pulvinar thalamic nucleus and the right orbitofrontal cortex. These regions define a network that has been consistently implicated in OCD. In addition, both patients with OCD and unaffected siblings showed similar increased thickness of the right precuneus, which receives rich input from the thalamic pulvinar nuclei and the left medial temporal cortex. Anatomic change within the orbitofrontostriatal and posterior brain circuitry thus emerges as a promising endophenotype for OCD.
Collapse
|
Research Support, N.I.H., Intramural |
10 |
68 |
52
|
Leoutsakos JMS, Yan H, Anderson WS, Asaad WF, Baltuch G, Burke A, Chakravarty MM, Drake KE, Foote KD, Fosdick L, Giacobbe P, Mari Z, McAndrews MP, Munro CA, Oh ES, Okun MS, Pendergrass JC, Ponce FA, Rosenberg PB, Sabbagh MN, Salloway S, Tang-Wai DF, Targum SD, Wolk D, Lozano AM, Smith GS, Lyketsos CG. Deep Brain Stimulation Targeting the Fornix for Mild Alzheimer Dementia (the ADvance Trial): A Two Year Follow-up Including Results of Delayed Activation. J Alzheimers Dis 2018; 64:597-606. [PMID: 29914028 PMCID: PMC6518401 DOI: 10.3233/jad-180121] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Given recent challenges in developing new treatments for Alzheimer dementia (AD), it is vital to explore alternate treatment targets, such as neuromodulation for circuit dysfunction. We previously reported an exploratory Phase IIb double-blind trial of deep brain stimulation targeting the fornix (DBS-f) in mild AD (the ADvance trial). We reported safety but no clinical benefits of DBS-f versus the delayed-on (sham) treatment in 42 participants after one year. However, secondary post hoc analyses of the one-year data suggested a possible DBS-f benefit for participants≥65 years. OBJECTIVE To examine the long-term safety and clinical effects of sustained and delayed-on DBS-f treatment of mild AD after two years. METHODS 42 participants underwent implantation of DBS-f electrodes, with half randomized to active DBS-f stimulation (early on) for two years and half to delayed-on (sham) stimulation after 1 year to provide 1 year of active DBS-f stimulation (delayed on). We evaluated safety and clinical outcomes over the two years of the trial. RESULTS DBS-f had a favorable safety profile with similar rates of adverse events across both trial phases (years 1 and 2) and between treatment arms. There were no differences between treatment arms on any primary clinical outcomes. However, post-hoc age group analyses suggested a possible benefit among older (>65) participants. CONCLUSION DBS-f was safe. Additional study of mechanisms of action and methods for titrating stimulation parameters will be needed to determine if DBS has potential as an AD treatment. Future efficacy studies should focus on patients over age 65.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
66 |
53
|
Voineskos AN, Felsky D, Kovacevic N, Tiwari AK, Zai C, Chakravarty MM, Lobaugh NJ, Shenton ME, Rajji TK, Miranda D, Pollock BG, Mulsant BH, McIntosh AR, Kennedy JL. Oligodendrocyte genes, white matter tract integrity, and cognition in schizophrenia. ACTA ACUST UNITED AC 2012; 23:2044-57. [PMID: 22772651 DOI: 10.1093/cercor/bhs188] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte genes and white matter tracts have been implicated in the pathophysiology of schizophrenia and may play an important etiopathogenic role in cognitive dysfunction in schizophrenia. The objective of the present study in 60 chronic schizophrenia patients individually matched to 60 healthy controls was to determine whether 1) white matter tract integrity influences cognitive performance, 2) oligodendrocyte gene variants influence white matter tract integrity and cognitive performance, and 3) effects of oligodendrocyte gene variants on cognitive performance are mediated via white matter tract integrity. We used the partial least-squares multivariate approach to ascertain relationships among oligodendrocyte gene variants, integrity of cortico-cortical and subcortico-cortical white matter tracts, and cognitive performance. Robust relationships among oligodendrocyte gene variants, white matter tract integrity, and cognitive performance were found in both patients and controls. We also showed that effects of gene variants on cognitive performance were mediated by the integrity of white matter tracts. Our results were strengthened by bioinformatic analyses of gene variant function. To our knowledge, this is the first study that has brought together these lines of investigation in the same population and highlights the importance of the oligodendrocyte/white matter pathway in schizophrenia, particularly as it pertains to cognitive function.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
64 |
54
|
Chakravarty MM, Sadikot AF, Germann J, Hellier P, Bertrand G, Collins DL. Comparison of piece-wise linear, linear, and nonlinear atlas-to-patient warping techniques: analysis of the labeling of subcortical nuclei for functional neurosurgical applications. Hum Brain Mapp 2010; 30:3574-95. [PMID: 19387981 DOI: 10.1002/hbm.20780] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Digital atlases are commonly used in pre-operative planning in functional neurosurgical procedures performed to minimize the symptoms of Parkinson's disease. These atlases can be customized to fit an individual patient's anatomy through atlas-to-patient warping procedures. Once fitted to pre-operative magnetic resonance imaging (MRI) data, the customized atlas can be used to plan and navigate surgical procedures. Linear, piece-wise linear and nonlinear registration methods have been used to customize different digital atlases with varying accuracies. Our goal was to evaluate eight different registration methods for atlas-to-patient customization of a new digital atlas of the basal ganglia and thalamus to demonstrate the value of nonlinear registration for automated atlas-based subcortical target identification in functional neurosurgery. In this work, we evaluate the accuracy of two automated linear techniques, two piece-wise linear techniques (requiring the identification of manually placed anatomical landmarks), and four different automated nonlinear atlas-to-patient warping techniques (where two of the four nonlinear techniques are variants of the ANIMAL algorithm). Since a gold standard of the subcortical anatomy is not available, manual segmentations of the striatum, globus pallidus, and thalamus are used to derive a silver standard for evaluation. Four different metrics, including the kappa statistic, the mean distance between the surfaces, the maximum distance between surfaces, and the total structure volume are used to compare the warping techniques. The results show that nonlinear techniques perform statistically better than linear and piece-wise linear techniques. In addition, the results demonstrate statistically significant differences between the nonlinear techniques, with the ANIMAL algorithm yielding better results.
Collapse
|
Journal Article |
15 |
61 |
55
|
Sussman D, Leung RC, Chakravarty MM, Lerch JP, Taylor MJ. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy. Brain Behav 2016; 6:e00457. [PMID: 27066310 PMCID: PMC4802426 DOI: 10.1002/brb3.457] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. METHODS One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. RESULTS Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. CONCLUSION This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.
Collapse
|
research-article |
9 |
61 |
56
|
Dalby RB, Chakravarty MM, Ahdidan J, Sørensen L, Frandsen J, Jonsdottir KY, Tehrani E, Rosenberg R, Ostergaard L, Videbech P. Localization of white-matter lesions and effect of vascular risk factors in late-onset major depression. Psychol Med 2010; 40:1389-1399. [PMID: 19895719 DOI: 10.1017/s0033291709991656] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Several studies suggest that patients with late-onset major depression (MD) have an increased load of cerebral white-matter lesions (WMLs) compared with age-matched controls. Vascular risk factors such as hypertension and smoking may confound such findings. Our aim was to investigate the association between the localization and load of WMLs in late-onset MD with respect to vascular risk factors. METHOD We examined 22 consecutive patients with late-onset first-episode MD and 22 age- and gender-matched controls using whole-brain magnetic resonance imaging (MRI). The localization, number and volume of WMLs were compared between patients and controls, while testing the effect of vascular risk factors. RESULTS Among subjects with one or more WMLs, patients displayed a significantly higher WML density in two white-matter tracts: the left superior longitudinal fasciculus and the right frontal projections of the corpus callosum. These tracts are part of circuitries essential for cognitive and emotional functions. Analyses revealed no significant difference in the total number and volume of WMLs between groups. Patients and controls showed no difference in vascular risk factors, except for smoking. Lesion load was highly correlated with smoking. CONCLUSIONS Our results indicate that lesion localization rather than lesion load differs between patients with late-onset MD and controls. Increased lesion density in regions associated with cognitive and emotional functions may be crucial in late-onset MD, and vascular risk factors such as smoking may play an important role in the pathophysiology of late-onset MD, consistent with the vascular depression hypothesis.
Collapse
|
|
15 |
58 |
57
|
Chakravarty MM, Rapoport JL, Giedd JN, Raznahan A, Shaw P, Collins DL, Lerch JP, Gogtay N. Striatal shape abnormalities as novel neurodevelopmental endophenotypes in schizophrenia: a longitudinal study. Hum Brain Mapp 2014; 36:1458-69. [PMID: 25504933 DOI: 10.1002/hbm.22715] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/15/2014] [Accepted: 11/30/2014] [Indexed: 01/04/2023] Open
Abstract
There are varying, often conflicting, reports with respect to altered striatal volume and morphometry in the major psychoses due to the influences of antipsychotic medications on striatal volume. Thus, disassociating disease effects from those of medication become exceedingly difficult. For the first time, using a longitudinally studied sample of structural magnetic resonance images from patients with childhood onset schizophrenia (COS; neurobiologically contiguous with the adult onset form of schizophrenia), their nonpsychotic siblings (COSSIBs), and novel shape mapping algorithms that are volume independent, we report the familial contribution of striatal morphology in schizophrenia. The results of our volumetric analyses demonstrate age-related increases in overall striatal volumes specific only to COS. However, both COS and COSSIBs showed overlapping shape differences in the striatal head, which normalized in COSSIBs by late adolescence. These results mirror previous studies from our group, demonstrating cortical thickness deficits in COS and COSSIBs as these deficits normalize in COSSIBs in the same age range as our striatal findings. Finally, there is a single region of nonoverlapping outward displacement in the dorsal aspect of the caudate body, potentially indicative of a response to medication. Striatal shape may be considered complimentary to volume as an endophenotype, and, in some cases may provide information that is not detectable using standard volumetric techniques. Our striatal shape findings demonstrate the striking localization of abnormalities in striatal the head. The neuroanatomical localization of these findings suggest the presence of abnormalities in the striatal-prefrontal circuits in schizophrenia and resilience mechanisms in COSSIBs with age dependent normalization.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
58 |
58
|
Guo T, Chau V, Peyvandi S, Latal B, McQuillen PS, Knirsch W, Synnes A, Feldmann M, Naef N, Chakravarty MM, De Petrillo A, Duerden EG, Barkovich AJ, Miller SP. White matter injury in term neonates with congenital heart diseases: Topology & comparison with preterm newborns. Neuroimage 2019; 185:742-749. [PMID: 29890324 PMCID: PMC6289608 DOI: 10.1016/j.neuroimage.2018.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neonates with congenital heart disease (CHD) are at high risk of punctate white matter injury (WMI) and impaired brain development. We hypothesized that WMI in CHD neonates occurs in a characteristic distribution that shares topology with preterm WMI and that lower birth gestational age (GA) is associated with larger WMI volume. OBJECTIVE (1) To quantitatively assess the volume and location of WMI in CHD neonates across three centres. (2) To compare the volume and spatial distribution of WMI between term CHD neonates and preterm neonates using lesion mapping. METHODS In 216 term born CHD neonates from three prospective cohorts (mean birth GA: 39 weeks), WMI was identified in 86 neonates (UBC: 29; UCSF: 43; UCZ: 14) on pre- and/or post-operative T1 weighted MRI. WMI was manually segmented and volumes were calculated. A standard brain template was generated. Probabilistic WMI maps (total, pre- and post-operative) were developed in this common space. Using these maps, WMI in the term CHD neonates was compared with that in preterm neonates: 58 at early-in-life (mean postmenstrual age at scan 32.2 weeks); 41 at term-equivalent age (mean postmenstrual age at scan 40.1 weeks). RESULTS The total WMI volumes of CHD neonates across centres did not differ (p = 0.068): UBC (median = 84.6 mm3, IQR = 26-174.7 mm3); UCSF (median = 104 mm3, IQR = 44-243 mm3); UCZ (median = 121 mm3, IQR = 68-200.8 mm3). The spatial distribution of WMI in CHD neonates showed strong concordance across centres with predilection for anterior and posterior rather than central lesions. Predominance of anterior lesions was apparent on the post-operative WMI map relative to the pre-operative map. Lower GA at birth predicted an increasing volume of WMI across the full cohort (41.1 mm3 increase of WMI per week decrease in gestational age; 95% CI 11.5-70.8; p = 0.007), when accounting for centre and heart lesion. While WMI in term CHD and preterm neonates occurs most commonly in the intermediate zone/outer subventricular zone there is a paucity of central lesions in the CHD neonates relative to preterms. CONCLUSIONS WMI in term neonates with CHD occurs in a characteristic topology. The spatial distribution of WMI in term neonates with CHD reflects the expected maturation of pre-oligodendrocytes such that the central regions are less vulnerable than in the preterm neonates.
Collapse
|
Comparative Study |
6 |
58 |
59
|
Bhagwat N, Viviano JD, Voineskos AN, Chakravarty MM. Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data. PLoS Comput Biol 2018; 14:e1006376. [PMID: 30216352 PMCID: PMC6157905 DOI: 10.1371/journal.pcbi.1006376] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 09/26/2018] [Accepted: 07/18/2018] [Indexed: 01/18/2023] Open
Abstract
Computational models predicting symptomatic progression at the individual level can be highly beneficial for early intervention and treatment planning for Alzheimer's disease (AD). Individual prognosis is complicated by many factors including the definition of the prediction objective itself. In this work, we present a computational framework comprising machine-learning techniques for 1) modeling symptom trajectories and 2) prediction of symptom trajectories using multimodal and longitudinal data. We perform primary analyses on three cohorts from Alzheimer's Disease Neuroimaging Initiative (ADNI), and a replication analysis using subjects from Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). We model the prototypical symptom trajectory classes using clinical assessment scores from mini-mental state exam (MMSE) and Alzheimer's Disease Assessment Scale (ADAS-13) at nine timepoints spanned over six years based on a hierarchical clustering approach. Subsequently we predict these trajectory classes for a given subject using magnetic resonance (MR) imaging, genetic, and clinical variables from two timepoints (baseline + follow-up). For prediction, we present a longitudinal Siamese neural-network (LSN) with novel architectural modules for combining multimodal data from two timepoints. The trajectory modeling yields two (stable and decline) and three (stable, slow-decline, fast-decline) trajectory classes for MMSE and ADAS-13 assessments, respectively. For the predictive tasks, LSN offers highly accurate performance with 0.900 accuracy and 0.968 AUC for binary MMSE task and 0.760 accuracy for 3-way ADAS-13 task on ADNI datasets, as well as, 0.724 accuracy and 0.883 AUC for binary MMSE task on replication AIBL dataset.
Collapse
|
research-article |
7 |
58 |
60
|
Xiao Y, Fonov V, Bériault S, Subaie FA, Chakravarty MM, Sadikot AF, Pike GB, Collins DL. Multi-contrast unbiased MRI atlas of a Parkinson’s disease population. Int J Comput Assist Radiol Surg 2014; 10:329-41. [DOI: 10.1007/s11548-014-1068-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/29/2014] [Indexed: 11/24/2022]
|
|
11 |
56 |
61
|
Miller AM, Bansal R, Hao X, Sanchez-Pena JP, Sobel LJ, Liu J, Xu D, Zhu H, Chakravarty MM, Durkin K, Ivanov I, Plessen KJ, Kellendonk CB, Peterson BS. Enlargement of thalamic nuclei in Tourette syndrome. ACTA ACUST UNITED AC 2010; 67:955-64. [PMID: 20819989 DOI: 10.1001/archgenpsychiatry.2010.102] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT The basal ganglia and thalamus together connect in parallel closed-loop circuits with the cortex. Previous imaging studies have shown modifications of the basal ganglia and cortical targets in individuals with Tourette syndrome (TS), but less is known regarding the role of the thalamus in TS pathogenesis. OBJECTIVE To study the morphological features of the thalamus in children and adults with TS. DESIGN A cross-sectional, case-control study using anatomical magnetic resonance imaging. SETTING University research center. PARTICIPANTS The 283 participants included 149 with TS and 134 normal control individuals aged 6 to 63 years. MAIN OUTCOME MEASURES Conventional volumes and measures of surface morphology of the thalamus. RESULTS Analyses of conventional volumes and surface morphology were consistent in demonstrating an enlargement in TS-affected thalami. Overall volumes were 5% larger in the group composed of children and adults with TS. Statistical maps of surface contour demonstrated enlargement over the lateral thalamus. Post hoc testing indicated that differences in IQ, comorbid illnesses, and medication use did not account for these findings. CONCLUSIONS Morphological abnormalities in the thalamus, together with the disturbances reported in the sensorimotor cortex, striatum, and globus pallidus, support the hypothesis of a circuitwide disorder within motor pathways in TS. The connectivity and function of the numerous and diverse thalamic nuclei within cortical-subcortical circuits constitute an anatomical crossroad wherein enlargement of motor nuclei may represent activity-dependent hypertrophy within this component of cortical-subcortical motor circuits, or an adaptive response within a larger putative compensatory system that could thereby directly modulate activity in motor circuits to attenuate the severity of tics.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
56 |
62
|
Jones SL, Dufoix R, Laplante DP, Elgbeili G, Patel R, Chakravarty MM, King S, Pruessner JC. Larger Amygdala Volume Mediates the Association Between Prenatal Maternal Stress and Higher Levels of Externalizing Behaviors: Sex Specific Effects in Project Ice Storm. Front Hum Neurosci 2019; 13:144. [PMID: 31156408 PMCID: PMC6528106 DOI: 10.3389/fnhum.2019.00144] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/15/2019] [Indexed: 01/18/2023] Open
Abstract
Introduction: The amygdala is a brain structure involved in emotional regulation. Studies have shown that larger amygdala volumes are associated with behavioral disorders. Prenatal maternal depression is associated with structural changes in the amygdala, which in turn, is predictive of an increase in behavioral problems. Girls may be particularly vulnerable. However, it is not known whether disaster-related prenatal maternal stress (PNMS), or which aspect of the maternal stress experience (i.e., objective hardship, subjective distress, and cognitive appraisal), influences amygdala volumes. Nor is it known whether amygdala volumes mediate the effect of PNMS on behavioral problems in girls and boys. Aims: To assess whether aspects of PNMS are associated with amygdala volume, to determine whether timing of exposure moderates the effect, and to test whether amygdala volume mediates the association between PNMS and internalizing and externalizing problems in 11½ year old children exposed in utero, to varying levels of disaster-related PNMS. Methods: Bilateral amygdala volumes (AGV) and total brain volume (TBV) were acquired using magnetic resonance imaging, from 35 boys and 33 girls whose mothers were pregnant during the January 1998 Quebec Ice Storm. The mothers' disaster-related stress was assessed in June 1998. Child internalizing and externalizing problems were assessed at 11½ years using the Child Behavior Checklist (CBCL). Hierarchical regression analyses and mediation analyses were conducted on boys and girls separately, controlling for perinatal and postnatal factors. Results: In boys, subjective distress was associated with larger right AGV/TBV when mothers where exposed during late pregnancy, which in turn explained higher levels of externalizing behavior. However, when adjusting for postnatal factors, the effect was no longer significant. In girls, later gestational exposure to the ice storm was associated with larger AGV/TBV, but here, higher levels of objective PNMS were associated with more externalizing problems, which was, in part, mediated by larger AGV/TBV. No effects were detected on internalizing behaviors. Conclusion: These results suggest that the effects of PNMS on amygdala development and externalizing symptoms, as assessed in boys and girls in early adolescence, can be influenced by the timing of the stress in pregnancy, and the particular aspect of the mother's stress experience.
Collapse
|
research-article |
6 |
55 |
63
|
Marečková K, Weinbrand Z, Chakravarty MM, Lawrence C, Aleong R, Leonard G, Perron M, Pike GB, Richer L, Veillette S, Pausova Z, Paus T. Testosterone-mediated sex differences in the face shape during adolescence: subjective impressions and objective features. Horm Behav 2011; 60:681-90. [PMID: 21983236 DOI: 10.1016/j.yhbeh.2011.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/17/2011] [Accepted: 09/21/2011] [Indexed: 11/26/2022]
Abstract
Sex identification of a face is essential for social cognition. Still, perceptual cues indicating the sex of a face, and mechanisms underlying their development, remain poorly understood. Previously, our group described objective age- and sex-related differences in faces of healthy male and female adolescents (12-18 years of age), as derived from magnetic resonance images (MRIs) of the adolescents' heads. In this study, we presented these adolescent faces to 60 female raters to determine which facial features most reliably predicted subjective sex identification. Identification accuracy correlated highly with specific MRI-derived facial features (e.g. broader forehead, chin, jaw, and nose). Facial features that most reliably cued male identity were associated with plasma levels of testosterone (above and beyond age). Perceptible sex differences in face shape are thus associated with specific facial features whose emergence may be, in part, driven by testosterone.
Collapse
|
|
14 |
54 |
64
|
Magon S, May A, Stankewitz A, Goadsby PJ, Schankin C, Ashina M, Amin FM, Seifert CL, Mallar Chakravarty M, Müller J, Sprenger T. Cortical abnormalities in episodic migraine: A multi-center 3T MRI study. Cephalalgia 2018; 39:665-673. [PMID: 30525946 DOI: 10.1177/0333102418795163] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Several previous studies have investigated cortical abnormalities, specifically cortical thickness, in patients with migraine, with variable results. The relatively small sample sizes of most previous studies may partially explain these inconsistencies. OBJECTIVE To investigate differences of cortical thickness between control subjects and migraineurs in a large cohort. METHODS Three Tesla MRI data of 131 patients (38 with and 93 without aura) and 115 control subjects were analysed. A vertex-wise linear model was applied controlling for age, gender and MRI scanner to investigate differences between groups and determine the impact of clinical factors on cortical thickness measures. RESULTS Migraineurs showed areas of thinned cortex compared with controls bilaterally in the central sulcus, in the left middle-frontal gyrus, in left visual cortices and the right occipito-temporal gyrus. Frequency of migraine attacks and the duration of the disorder had a significant impact on cortical thickness in the sensorimotor cortex and middle-frontal gyrus. Patients without aura showed thinner cortex than controls bilaterally in the central sulcus and in the middle frontal gyrus, in the left primary visual cortices, in the left supramarginal gyrus and in the right cuneus. Patients with aura showed clusters of thinner cortex bilaterally in the subparietal sulcus (between the precuneus and posterior cingulate cortex), in the left intraparietal sulcus and in the right anterior cingulate. CONCLUSION These results indicate cortical abnormalities in specific brain regions in migraineurs. Some of the observed abnormalities may reflect a genetic susceptibility towards developing migraine attacks, while others are probably a consequence of repeated head pain attacks.
Collapse
|
Multicenter Study |
7 |
53 |
65
|
Tremblay-Mercier J, Madjar C, Das S, Pichet Binette A, Dyke SOM, Étienne P, Lafaille-Magnan ME, Remz J, Bellec P, Louis Collins D, Natasha Rajah M, Bohbot V, Leoutsakos JM, Iturria-Medina Y, Kat J, Hoge RD, Gauthier S, Tardif CL, Mallar Chakravarty M, Poline JB, Rosa-Neto P, Evans AC, Villeneuve S, Poirier J, Breitner JCS. Open science datasets from PREVENT-AD, a longitudinal cohort of pre-symptomatic Alzheimer's disease. Neuroimage Clin 2021; 31:102733. [PMID: 34192666 PMCID: PMC8254111 DOI: 10.1016/j.nicl.2021.102733] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
To move Alzheimer Disease (AD) research forward it is essential to collect data from large cohorts, but also make such data available to the global research community. We describe the creation of an open science dataset from the PREVENT-AD (PResymptomatic EValuation of Experimental or Novel Treatments for AD) cohort, composed of cognitively unimpaired older individuals with a parental or multiple-sibling history of AD. From 2011 to 2017, 386 participants were enrolled (mean age 63 years old ± 5) for sustained investigation among whom 349 have retrospectively agreed to share their data openly. Repositories are findable through the unified interface of the Canadian Open Neuroscience Platform and contain up to five years of longitudinal imaging data, cerebral fluid biochemistry, neurosensory capacities, cognitive, genetic, and medical information. Imaging data can be accessed openly at https://openpreventad.loris.ca while most of the other information, sensitive by nature, is accessible by qualified researchers at https://registeredpreventad.loris.ca. In addition to being a living resource for continued data acquisition, PREVENT-AD offers opportunities to facilitate understanding of AD pathogenesis.
Collapse
|
research-article |
4 |
51 |
66
|
Ahdidan J, Hviid LB, Chakravarty MM, Ravnkilde B, Rosenberg R, Rodell A, Stødkilde-Jørgensen H, Videbech P. Longitudinal MR study of brain structure and hippocampus volume in major depressive disorder. Acta Psychiatr Scand 2011; 123:211-9. [PMID: 21219263 DOI: 10.1111/j.1600-0447.2010.01644.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine whether long-term course of treated major depression has an effect on the structure of the brain and the hippocampal volume. METHOD An 11-year follow-up procedure was used with data collection at baseline and again at follow-up. Tensor-based morphometry (TBM) and automatic hippocampal volume measure was performed on different datasets. The baseline dataset consisted of T1-weighted magnetic resonance images (MRIs) of 24 in-patients suffering from major depression and 33 healthy controls. The second dataset consisted of T1-weighted MRIs of 31 remitted depressive patients and 36 healthy controls. The longitudinal dataset consisted of 19 patients and 19 matched healthy controls present at both the first and the second dataset. Brain segmentation and hippocampal segmentation were fully automated and were based on a spatial normalization to the International Consortium of Brain Mapping (ICBM) non-linear model. RESULTS Depressed patients were found to have smaller temporal lobes bilaterally, medulla and right hippocampus at baseline. However, these changes were not found at follow-up 11 years later. Moreover, these changes did not significantly correlate with the illness outcome. CONCLUSION Brain structure changes seem to be state dependent in major depression, only occurring in acute episode of major depression and normalizing after remission.
Collapse
|
|
14 |
48 |
67
|
Mankiw C, Park MTM, Reardon PK, Fish AM, Clasen LS, Greenstein D, Giedd JN, Blumenthal JD, Lerch JP, Chakravarty MM, Raznahan A. Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization. J Neurosci 2017; 37:5221-5231. [PMID: 28314818 PMCID: PMC5456105 DOI: 10.1523/jneurosci.2158-16.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences-including their spatial distribution, potential biological determinants, and independence from brain volume variation-lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male-female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size.SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy.
Collapse
|
Research Support, N.I.H., Intramural |
8 |
47 |
68
|
Tarumi R, Tsugawa S, Noda Y, Plitman E, Honda S, Matsushita K, Chavez S, Sawada K, Wada M, Matsui M, Fujii S, Miyazaki T, Chakravarty MM, Uchida H, Remington G, Graff-Guerrero A, Mimura M, Nakajima S. Levels of glutamatergic neurometabolites in patients with severe treatment-resistant schizophrenia: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology 2020; 45:632-640. [PMID: 31842203 PMCID: PMC7021829 DOI: 10.1038/s41386-019-0589-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/08/2019] [Accepted: 12/07/2019] [Indexed: 01/20/2023]
Abstract
Approximately 30% of patients with schizophrenia do not respond to antipsychotics and are thus considered to have treatment-resistant schizophrenia (TRS). To date, only four studies have examined glutamatergic neurometabolite levels using proton magnetic resonance spectroscopy (1H-MRS) in patients with TRS, collectively suggesting that glutamatergic dysfunction may be implicated in the pathophysiology of TRS. Notably, the TRS patient population in these studies had mild-to-moderate illness severity, which is not entirely reflective of what is observed in clinical practice. In this present work, we compared glutamate + glutamine (Glx) levels in the dorsal anterior cingulate cortex (dACC) and caudate among patients with TRS, patients with non-TRS, and healthy controls (HCs), using 3T 1H-MRS (PRESS, TE = 35 ms). TRS criteria were defined by severe positive symptoms (i.e., ≥5 on 2 Positive and Negative Syndrome Scale (PANSS)-positive symptom items or ≥4 on 3 PANSS-positive symptom items), despite standard antipsychotic treatment. A total of 95 participants were included (29 TRS patients [PANSS = 111.2 ± 20.4], 33 non-TRS patients [PANSS = 49.8 ± 13.7], and 33 HCs). dACC Glx levels were higher in the TRS group vs. HCs (group effect: F[2,75] = 4.74, p = 0.011; TRS vs. HCs: p = 0.012). No group differences were identified in the caudate. There were no associations between Glx levels and clinical severity in either patient group. Our results are suggestive of greater heterogeneity in TRS relative to non-TRS with respect to dACC Glx levels, necessitating further research to determine biological subtypes of TRS.
Collapse
|
research-article |
5 |
46 |
69
|
Chung JK, Plitman E, Nakajima S, Chow TW, Chakravarty MM, Caravaggio F, Gerretsen P, Brown EE, Iwata Y, Mulsant BH, Graff-Guerrero A. Lifetime History of Depression Predicts Increased Amyloid-β Accumulation in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2016; 45:907-19. [PMID: 25633681 DOI: 10.3233/jad-142931] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mounting evidence associates a lifetime history of major depression (LMD) with an increased risk for Alzheimer's disease (AD). Studies have shown that major depression (MD) is strongly linked to pathophysiological markers of AD, such as cortical amyloid-β (Aβ) burden. However, no imaging studies have shown in vivo whether an LMD is linked to increased Aβ accumulation in patients with mild cognitive impairment (MCI) in four cortical regions that have been highly associated with increased Aβ deposition in previous literature: frontal, cingulate, parietal, and temporal. Drawing from the ADNI database, we found that patients with amnestic MCI (aMCI) and an LMD (n = 39) had significantly higher 18F-Florbetapir standardized uptake value ratios, a surrogate measure of Aβ deposition, mainly in the bilateral frontal cortex, compared to patients with aMCI without an LMD (n = 39) (p = 0.02). This difference was not explained by current depressive symptoms, vascular risk factors, or the use of different PET scanners. The results were reliable employing two independent methods for analysis: region-of-interest and voxel-based analyses. Increased Aβ in the bilateral frontal lobes may be a biomarker of depressive symptomology in aMCI patients. Further studies should test whether higher Aβ predicts future conversion into AD in this population.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
44 |
70
|
Park MTM, Raznahan A, Shaw P, Gogtay N, Lerch JP, Chakravarty MM. Neuroanatomical phenotypes in mental illness: identifying convergent and divergent cortical phenotypes across autism, ADHD and schizophrenia. J Psychiatry Neurosci 2018; 43:170094. [PMID: 29402375 PMCID: PMC5915241 DOI: 10.1503/jpn.170094] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/01/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND There is evidence suggesting neuropsychiatric disorders share genomic, cognitive and clinical features. Here, we ask if autism-spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) and schizophrenia share neuroanatomical variations. METHODS First, we used measures of cortical anatomy to estimate spatial overlap of neuroanatomical variation using univariate methods. Next, we developed a novel methodology to determine whether cortical deficits specifically target or are "enriched" within functional resting-state networks. RESULTS We found cortical anomalies were preferentially enriched across functional networks rather than clustering spatially. Specifically, cortical thickness showed significant enrichment between patients with ASD and those with ADHD in the default mode network, between patients with ASD and those with schizophrenia in the frontoparietal and limbic networks, and between patients with ADHD and those with schizophrenia in the ventral attention network. Networks enriched in cortical thickness anomalies were also strongly represented in functional MRI results (Neurosynth; r = 0.64, p = 0.032). LIMITATIONS We did not account for variable symptom dimensions and severity in patient populations, and our cross-sectional design prevented longitudinal analyses of developmental trajectories. CONCLUSION These findings suggest that common deficits across neuropsychiatric disorders cannot simply be characterized as arising out of local changes in cortical grey matter, but rather as entities of both local and systemic alterations targeting brain networks.
Collapse
|
research-article |
7 |
44 |
71
|
Landau AM, Chakravarty MM, Clark CM, Zis AP, Doudet DJ. Electroconvulsive therapy alters dopamine signaling in the striatum of non-human primates. Neuropsychopharmacology 2011; 36:511-8. [PMID: 20944554 PMCID: PMC3055667 DOI: 10.1038/npp.2010.182] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective therapies for depression and has beneficial motor effects in parkinsonian patients. However, little is known about the mechanisms of therapeutic action of ECT for either condition. The aim of this work was to explore the impact of ECT on dopaminergic function in the striatum of non-human primates. Rhesus monkeys underwent a course of six ECT treatments under a human clinical protocol. Longitudinal effects on the dopaminergic nigrostriatal system were studied over 6 weeks using the in vivo capabilities of positron emission tomography (PET). PET scans were performed prior to the onset of ECT treatments and at 24-48 h, 8-10 days, and 6 weeks after the final ECT treatment. Early increases in dopamine transporter and vesicular monoamine transporter 2 binding returned to baseline levels by 6 weeks post-ECT. Transient increases in D1 receptor binding were also observed, whereas the binding potential to D2 receptors was unaltered. The increase in dopaminergic neurotransmission suggested by our results may account in part for the therapeutic effect of ECT in mood disorders and Parkinson's disease.
Collapse
|
research-article |
14 |
43 |
72
|
Rollins CPE, Gallino D, Kong V, Ayranci G, Devenyi GA, Germann J, Chakravarty MM. Contributions of a high-fat diet to Alzheimer's disease-related decline: A longitudinal behavioural and structural neuroimaging study in mouse models. NEUROIMAGE-CLINICAL 2018; 21:101606. [PMID: 30503215 PMCID: PMC6413478 DOI: 10.1016/j.nicl.2018.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/26/2018] [Accepted: 11/18/2018] [Indexed: 11/28/2022]
Abstract
Obesity is recognized as a significant risk factor for Alzheimer's disease (AD). Studies have supported that obesity accelerates AD-related pathophysiology and memory impairment in mouse models of AD. However, the nature of the brain structure-behaviour relationship mediating this acceleration remains unclear. In this manuscript we evaluated the impact of adolescent obesity on the brain morphology of the triple transgenic mouse model of AD (3xTg) and a non-transgenic control model of the same background strain (B6129s) using longitudinally acquired structural magnetic resonance imaging (MRI). At 8 weeks of age, animals were placed on a high-fat diet (HFD) or an ingredient-equivalent control diet (CD). Structural images were acquired at 8, 16, and 24 weeks. At 25 weeks, animals underwent the novel object recognition (NOR) task and the Morris water maze (MWM) to assess short-term non-associative memory and spatial memory, respectively. All analyses were carried out across four groups: B6129s-CD and -HFD and 3xTg-CD and -HFD. Neuroanatomical changes in MRI-derived brain morphology were assessed using volumetric and deformation-based analyses. HFD-induced obesity during adolescence exacerbated brain volume alterations by adult life in the 3xTg mouse model in comparison to control-fed mice and mediated volumetric alterations of select brain regions, such as the hippocampus. Further, HFD-induced obesity aggravated memory in all mice, lowering certain memory measures of B6129s control mice to the level of 3xTg mice maintained on a CD. Moreover, decline in the volumetric trajectories of hippocampal regions for all mice were associated with the degree of spatial memory impairments on the MWM. Our results suggest that obesity may interact with the brain changes associated with AD-related pathology in the 3xTg mouse model to aggravate brain atrophy and memory impairments and similarly impair brain structural integrity and memory capacity of non-transgenic mice. Further insight into this process may have significant implications in the development of lifestyle interventions for treatment of AD. Adolescent high-fat diet-induced obesity altered adult brain morphology and memory-related behaviours in a mouse model of AD High-fat feeding exacerbated brain volume changes in a mouse model of AD High-fat feeding mediated volumetric alterations of select brain regions, such as the hippocampus Degree of impairment on a spatial memory task showed linear trends with brain structural changes in AD-related regions High-fat feeding lowered certain memory measures of non-transgenic control mice
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
43 |
73
|
Baer LH, Park MTM, Bailey JA, Chakravarty MM, Li KZH, Penhune VB. Regional cerebellar volumes are related to early musical training and finger tapping performance. Neuroimage 2015; 109:130-9. [PMID: 25583606 DOI: 10.1016/j.neuroimage.2014.12.076] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 11/25/2022] Open
Abstract
The cerebellum has been associated with timing on the millisecond scale and with musical rhythm and beat processing. Early musical training (before age 7) is associated with enhanced rhythm synchronization performance and differences in cortical motor areas and the corpus callosum. In the present study, we examined the relationships between regional cerebellar volumes, early musical training, and timing performance. We tested adult musicians and non-musicians on a standard finger tapping task, and extracted cerebellar gray and white matter volumes using a novel multi-atlas automatic segmentation pipeline. We found that early-trained musicians had reduced volume in bilateral cerebellar white matter and right lobules IV, V and VI, compared to late-trained musicians. Strikingly, better timing performance, greater musical experience and an earlier age of start of musical training were associated with smaller cerebellar volumes. Better timing performance was specifically associated with smaller volumes of right lobule VI. Collectively, these findings support the sensitivity of the cerebellum to the age of initiation of musical training and suggest that lobule VI plays a role in timing. The smaller cerebellar volumes associated with musical training and timing performance may be a reflection of more efficiently implemented low-level timing and sensorimotor processes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
41 |
74
|
Bordeleau M, Fernández de Cossío L, Chakravarty MM, Tremblay MÈ. From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Front Cell Neurosci 2021; 14:612705. [PMID: 33536875 PMCID: PMC7849357 DOI: 10.3389/fncel.2020.612705] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Providing the appropriate quantity and quality of food needed for both the mother's well-being and the healthy development of the offspring is crucial during pregnancy. However, the macro- and micronutrient intake also impacts the body's regulatory supersystems of the mother, such as the immune, endocrine, and nervous systems, which ultimately influence the overall development of the offspring. Of particular importance is the association between unhealthy maternal diet and neurodevelopmental disorders in the offspring. Epidemiological studies have linked neurodevelopmental disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and schizophrenia, to maternal immune activation (MIA) during gestation. While the deleterious consequences of diet-induced MIA on offspring neurodevelopment are increasingly revealed, neuroinflammation is emerging as a key underlying mechanism. In this review, we compile the evidence available on how the mother and offspring are both impacted by maternal dietary imbalance. We specifically explore the various inflammatory and anti-inflammatory effects of dietary components and discuss how changes in inflammatory status can prime the offspring brain development toward neurodevelopmental disorders. Lastly, we discuss research evidence on the mechanisms that sustain the relationship between maternal dietary imbalance and offspring brain development, involving altered neuroinflammatory status in the offspring, as well as genetic to cellular programming notably of microglia, and the evidence that the gut microbiome may act as a key mediator.
Collapse
|
Review |
4 |
39 |
75
|
Grandjean J, Desrosiers-Gregoire G, Anckaerts C, Angeles-Valdez D, Ayad F, Barrière DA, Blockx I, Bortel A, Broadwater M, Cardoso BM, Célestine M, Chavez-Negrete JE, Choi S, Christiaen E, Clavijo P, Colon-Perez L, Cramer S, Daniele T, Dempsey E, Diao Y, Doelemeyer A, Dopfel D, Dvořáková L, Falfán-Melgoza C, Fernandes FF, Fowler CF, Fuentes-Ibañez A, Garin CM, Gelderman E, Golden CEM, Guo CCG, Henckens MJAG, Hennessy LA, Herman P, Hofwijks N, Horien C, Ionescu TM, Jones J, Kaesser J, Kim E, Lambers H, Lazari A, Lee SH, Lillywhite A, Liu Y, Liu YY, López-Castro A, López-Gil X, Ma Z, MacNicol E, Madularu D, Mandino F, Marciano S, McAuslan MJ, McCunn P, McIntosh A, Meng X, Meyer-Baese L, Missault S, Moro F, Naessens DMP, Nava-Gomez LJ, Nonaka H, Ortiz JJ, Paasonen J, Peeters LM, Pereira M, Perez PD, Pompilus M, Prior M, Rakhmatullin R, Reimann HM, Reinwald J, Del Rio RT, Rivera-Olvera A, Ruiz-Pérez D, Russo G, Rutten TJ, Ryoke R, Sack M, Salvan P, Sanganahalli BG, Schroeter A, Seewoo BJ, Selingue E, Seuwen A, Shi B, Sirmpilatze N, Smith JAB, Smith C, Sobczak F, Stenroos PJ, Straathof M, Strobelt S, Sumiyoshi A, Takahashi K, Torres-García ME, Tudela R, van den Berg M, van der Marel K, van Hout ATB, Vertullo R, Vidal B, Vrooman RM, Wang VX, Wank I, Watson DJG, Yin T, Zhang Y, Zurbruegg S, Achard S, Alcauter S, Auer DP, Barbier EL, Baudewig J, Beckmann CF, Beckmann N, Becq GJPC, Blezer ELA, Bolbos R, Boretius S, Bouvard S, Budinger E, Buxbaum JD, Cash D, Chapman V, Chuang KH, Ciobanu L, Coolen BF, Dalley JW, Dhenain M, Dijkhuizen RM, Esteban O, Faber C, Febo M, Feindel KW, Forloni G, Fouquet J, Garza-Villarreal EA, Gass N, Glennon JC, Gozzi A, Gröhn O, Harkin A, Heerschap A, Helluy X, Herfert K, Heuser A, Homberg JR, Houwing DJ, Hyder F, Ielacqua GD, Jelescu IO, Johansen-Berg H, Kaneko G, Kawashima R, Keilholz SD, Keliris GA, Kelly C, Kerskens C, Khokhar JY, Kind PC, Langlois JB, Lerch JP, López-Hidalgo MA, Manahan-Vaughan D, Marchand F, Mars RB, Marsella G, Micotti E, Muñoz-Moreno E, Near J, Niendorf T, Otte WM, Pais-Roldán P, Pan WJ, Prado-Alcalá RA, Quirarte GL, Rodger J, Rosenow T, Sampaio-Baptista C, Sartorius A, Sawiak SJ, Scheenen TWJ, Shemesh N, Shih YYI, Shmuel A, Soria G, Stoop R, Thompson GJ, Till SM, Todd N, Van Der Linden A, van der Toorn A, van Tilborg GAF, Vanhove C, Veltien A, Verhoye M, Wachsmuth L, Weber-Fahr W, Wenk P, Yu X, Zerbi V, Zhang N, Zhang BB, Zimmer L, Devenyi GA, Chakravarty MM, Hess A. A consensus protocol for functional connectivity analysis in the rat brain. Nat Neurosci 2023; 26:673-681. [PMID: 36973511 PMCID: PMC10493189 DOI: 10.1038/s41593-023-01286-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
38 |