51
|
Hansen JS, Zhao X, Irmler M, Liu X, Hoene M, Scheler M, Li Y, Beckers J, Hrabĕ de Angelis M, Häring HU, Pedersen BK, Lehmann R, Xu G, Plomgaard P, Weigert C. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery. Diabetologia 2015; 58:1845-54. [PMID: 26067360 DOI: 10.1007/s00125-015-3584-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/13/2015] [Indexed: 12/24/2022]
Abstract
AIMS/HYPOTHESIS The therapeutic benefit of physical activity to prevent and treat type 2 diabetes is commonly accepted. However, the impact of the disease on the acute metabolic response is less clear. To this end, we investigated the effect of type 2 diabetes on exercise-induced plasma metabolite changes and the muscular transcriptional response using a complementary metabolomics/transcriptomics approach. METHODS We analysed 139 plasma metabolites and hormones at nine time points, and whole genome expression in skeletal muscle at three time points, during a 60 min bicycle ergometer exercise and a 180 min recovery phase in type 2 diabetic patients and healthy controls matched for age, percentage body fat and maximal oxygen consumption (VO2). RESULTS Pathway analysis of differentially regulated genes upon exercise revealed upregulation of regulators of GLUT4 (SLC2A4RG, FLOT1, EXOC7, RAB13, RABGAP1 and CBLB), glycolysis (HK2, PFKFB1, PFKFB3, PFKM, FBP2 and LDHA) and insulin signal mediators in diabetic participants compared with controls. Notably, diabetic participants had normalised rates of lactate and insulin levels, and of glucose appearance and disappearance, after exercise. They also showed an exercise-induced compensatory regulation of genes involved in biosynthesis and metabolism of amino acids (PSPH, GATM, NOS1 and GLDC), which responded to differences in the amino acid profile (consistently lower plasma levels of glycine, cysteine and arginine). Markers of fat oxidation (acylcarnitines) and lipolysis (glycerol) did not indicate impaired metabolic flexibility during exercise in diabetic participants. CONCLUSIONS/INTERPRETATION Type 2 diabetic individuals showed specific exercise-regulated gene expression. These data provide novel insight into potential mechanisms to ameliorate the disturbed glucose and amino acid metabolism associated with type 2 diabetes.
Collapse
|
52
|
Hansen JS, Clemmesen JO, Secher NH, Hoene M, Drescher A, Weigert C, Pedersen BK, Plomgaard P. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol Metab 2015; 4:551-60. [PMID: 26266087 PMCID: PMC4529499 DOI: 10.1016/j.molmet.2015.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 05/31/2015] [Accepted: 06/05/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND & AIMS Fibroblast growth factor 21 (FGF-21) is a liver-derived metabolic regulator induced by energy deprivation. However, its regulation in humans is incompletely understood. We addressed the origin and regulation of FGF-21 secretion in humans. METHODS By determination of arterial-to-venous differences over the liver and the leg during exercise, we evaluated the organ-specific secretion of FGF-21 in humans. By four different infusion models manipulating circulating glucagon and insulin, we addressed the interaction of these hormones on FGF-21 secretion in humans. RESULTS We demonstrate that the splanchnic circulation secretes FGF-21 at rest and that it is rapidly enhanced during exercise. In contrast, the leg does not contribute to the systemic levels of FGF-21. To unravel the mechanisms underlying the regulation of exercise-induced hepatic release of FGF-21, we manipulated circulating glucagon and insulin. These studies demonstrated that in humans glucagon stimulates splanchnic FGF-21 secretion whereas insulin has an inhibitory effect. CONCLUSIONS Collectively, our data reveal that 1) in humans, the splanchnic bed contributes to the systemic FGF-21 levels during rest and exercise; 2) under normo-physiological conditions FGF-21 is not released from the leg; 3) a dynamic interaction of glucagon-to-insulin ratio regulates FGF-21 secretion in humans.
Collapse
|
53
|
Gejl KD, Hvid LG, Willis SJ, Andersson E, Holmberg HC, Jensen R, Frandsen U, Hansen J, Plomgaard P, Ørtenblad N. Repeated high-intensity exercise modulates Ca2+sensitivity of human skeletal muscle fibers. Scand J Med Sci Sports 2015; 26:488-97. [DOI: 10.1111/sms.12483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2015] [Indexed: 12/17/2022]
|
54
|
Olesen J, Biensø RS, Meinertz S, van Hauen L, Rasmussen SM, Gliemann L, Plomgaard P, Pilegaard H. Impact of training status on LPS-induced acute inflammation in humans. J Appl Physiol (1985) 2014; 118:818-29. [PMID: 25549765 DOI: 10.1152/japplphysiol.00725.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/28/2014] [Indexed: 01/17/2023] Open
Abstract
The aim of the present study was to examine the impact of training status on the ability to induce a lipopolysaccharide (LPS)-induced inflammatory response systemically as well as in skeletal muscle (SkM) and adipose tissue (AT) in human subjects. Seventeen young (23.8 ± 2.5 yr of age) healthy male subjects were included in the study with eight subjects assigned to a trained (T) group and nine subjects assigned to an untrained (UT) group. On the experimental day, catheters were inserted in the femoral artery and vein of one leg for blood sampling and a bolus of 0.3 ng LPS/kg body wt was injected into an antecubital vein in the forearm. Femoral arterial blood flow was measured by ultrasound Doppler, and arterial and venous blood samples were drawn before (Pre) LPS injection and 30, 60, 90, and 120 min after the LPS injection. Vastus lateralis muscle and abdominal subcutaneous AT biopsies were obtained Pre and 60 and 120 min after the LPS injection. LPS increased the systemic plasma TNFα and IL-6 level as well as the TNFα and IL-6 mRNA content in SkM and AT of both UT and T. However, whereas the LPS-induced inflammatory response in SkM was enhanced in T subjects relative to UT, the inflammatory response systemically and in AT was somewhat delayed in T subjects relative to UT. The present findings highlight that training status affects the ability to induce a LPS-induced acute inflammatory response in a tissue-specific manner.
Collapse
|
55
|
Harder-Lauridsen NM, Krogh-Madsen R, Holst JJ, Plomgaard P, Leick L, Pedersen BK, Fischer CP. Effect of IL-6 on the insulin sensitivity in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2014; 306:E769-78. [PMID: 24473436 DOI: 10.1152/ajpendo.00571.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elevated interleukin-6 (IL-6) levels are associated with type 2 diabetes, but its role in glucose metabolism is controversial. We investigated the effect of IL-6 on insulin-stimulated glucose metabolism in type 2 diabetes patients and hypothesized that an acute, moderate IL-6 elevation would increase the insulin-mediated glucose uptake. Men with type 2 diabetes not treated with insulin [n = 9, age 54.9 ± 9.7 (mean ± SD) yr, body mass index 34.8 ± 6.1 kg/m(2), HbA1c 7.0 ± 1.0%] received continuous intravenous infusion with either recombinant human IL-6 (rhIL-6) or placebo. After 1 h with placebo or rhIL-6, a 3-h hyperinsulinemic-isoglycemic clamp was initiated. Whole body glucose metabolism was measured using stable isotope-labeled tracers. Signal transducer and activator of transcription 3 (STAT3) phosphorylation and suppressor of cytokine signaling 3 (SOCS3) expression were measured in muscle biopsies. Whole body energy expenditure was measured using indirect calorimetry. In response to the infusion of rhIL-6, circulating levels of IL-6 (P < 0.001), neutrophils (P < 0.001), and cortisol (P < 0.001) increased while lymphocytes decreased (P < 0.01). However, IL-6 infusion did not change glucose infusion rate, rate of appearance, or rate of disappearance during the clamp. While IL-6 enhanced phosphorylation of STAT3 in skeletal muscle (P = 0.041), the expression of SOCS3 remained unchanged. Whole body oxygen uptake (P < 0.01) and expired carbon dioxide (P < 0.01) increased during rhIL-6 infusion. In summary, although IL-6 induced local and systemic responses, the insulin-stimulated glucose uptake was not affected. While different contributing factors may be involved, our results are in contrast to our hypothesis and previous findings in young, healthy men.
Collapse
|
56
|
Lindegaard B, Ditlevsen S, Plomgaard P, Mittendorfer B, Pedersen BK. Acute reduction of lipolysis reduces adiponectin and IL-18: evidence from an intervention study with acipimox and insulin. Diabetologia 2013; 56:2034-43. [PMID: 23811808 PMCID: PMC3737430 DOI: 10.1007/s00125-013-2964-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/22/2013] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Low-grade inflammation is a feature of chronic diseases such as type 2 diabetes and lipodystrophy. It is associated with abdominal adiposity, increased levels of NEFA, hyperinsulinaemia and low adiponectin levels. However, the causal relationship between impaired metabolism and inflammation is not understood. We explored the anti-lipolytic effect of acipimox and insulin on adiponectin and adipocyte-associated cytokines in patients with lipodystrophy. METHODS In a randomised placebo-controlled crossover design using nine patients with non-diabetic, HIV-associated lipodystrophy, we assessed whether (1) overnight administration of a low dose of acipimox and/or (2) insulin-induced suppression of NEFA flux altered circulating plasma levels of adiponectin, IL-18, TNF-α and IL-6 in the basal condition and in a two-stage euglycaemic-hyperinsulinaemic clamp combined with stable isotopes (insulin infusion rates 20 mU m(-2) min(-1) and 50 mU m(-2) min(-1)). RESULTS Insulin decreased plasma NEFA in a dose-dependent manner (p < 0.0001). Acipimox reduced basal plasma NEFAs and plasma NEFAs during the low-dose insulin infusion compared with placebo (p < 0.0001 for acipimox effect). Plasma adiponectin and plasma IL-18 were reduced during both situations where lipolysis was inhibited (p < 0.0001 for acipimox effect; p < 0.0001 and p < 0.05 for insulin effect on plasma adiponectin and plasma IL-18, respectively). In contrast, plasma IL-6 and plasma TNF-α did not change during low NEFA concentrations. CONCLUSIONS/INTERPRETATION Using two different tools to manipulate lipolysis, the present study found that acute inhibition of lipolysis reduces levels of adiponectin and IL-18 in patients with HIV-associated lipodystrophy.
Collapse
|
57
|
Hansen J, Rinnov A, Krogh-Madsen R, Fischer CP, Andreasen AS, Berg RMG, Møller K, Pedersen BK, Plomgaard P. Plasma follistatin is elevated in patients with type 2 diabetes: relationship to hyperglycemia, hyperinsulinemia, and systemic low-grade inflammation. Diabetes Metab Res Rev 2013; 29:463-72. [PMID: 23564759 DOI: 10.1002/dmrr.2415] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/10/2013] [Accepted: 03/01/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Plasma follistatin is elevated in patients with low-grade inflammation and insulin resistance as observed with polycystic ovary syndrome. In the present study, we evaluated plasma follistatin in patients with type 2 diabetes characterised by low-grade inflammation and assessed the acute effects of hyperglycemia, hyperinsulinemia and LPS on plasma follistatin. METHODS Baseline plasma follistatin and inflammatory biomarkers were measured in a cross-sectional study that involved 95 patients with type 2 diabetes and 103 matched controls. To determine the acute effect of hyperglycemia and hyperinsulinemia on follistatin, hyperglycemic and hyperinsulinemic-euglycemic clamps were performed in five healthy males. Furthermore, 15 patients with type 2 diabetes and 22 healthy controls were challenged with low-dose LPS to determine the effect on follistatin. RESULTS Patients with type 2 diabetes have higher HOMA2-IR values mean [95% CI] 1.64 [1.40-1.93] versus mean 0.86 [0.75-0.99], p < 0.001 and inflammatory markers compared with controls. Baseline plasma follistatin is elevated in patients with type 2 diabetes compared with controls mean 1564 [1456-1680] versus mean 1328 [1225-1440] ng/L, p = 0.003 and correlates with fasting glucose levels (r = 0.44, p < 0.0001), 2 h glucose (r = 0.48, p < 0.0001), HbA1c (r = 0.41, p < 0.0001), triacylglycerol (r = 0.28, p = 0.008) and total cholesterol (r = 0.33, p = 0.004) in patients but not in controls. No correlation exists between plasma follistatin and inflammatory biomarkers in either of the groups. Neither hyperglycemia, hyperinsulinemia nor LPS increase plasma follistatin. CONCLUSIONS Plasma follistatin is moderately elevated in patients with type 2 diabetes. Our findings suggest that this is not likely caused by hyperglycemia, hyperinsulinemia or systemic low-grade inflammation.
Collapse
|
58
|
Plomgaard P, Halban PA, Bouzakri K. Bimodal impact of skeletal muscle on pancreatic β-cell function in health and disease. Diabetes Obes Metab 2012; 14 Suppl 3:78-84. [PMID: 22928567 DOI: 10.1111/j.1463-1326.2012.01641.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes is a complex disease that affects many organs directly or indirectly. Type 2 diabetes mellitus is characterized by insulin resistance with a relative deficiency in insulin secretion. It has become apparent that inter-organ communication is of great importance in the pathophysiology of diabetes. Far from being an inert tissue in terms of inter-organ communication, it is now recognized that skeletal muscle can secrete so-called myokines that can impact on the function of distant organs/tissues both favourably and unfavourably. We have proposed that communication between insulin-resistant skeletal muscle and β-cells occurs in diabetes. This is a novel route of communication that we further suggest is modified by the prevailing degree of insulin resistance of skeletal muscle. This review focuses on the various myokines [interleukin-6 (IL-6), tumor necrosis factor-α, CXCL10, follistatin and IL-8] which have been identified either after different types of exercise or in the secretome from control and insulin-resistant human skeletal myotubes. We will also summarize studies on the impact of several myokines on pancreatic β-cell proliferation, survival and function.
Collapse
|
59
|
Li X, Hansen J, Zhao X, Lu X, Weigert C, Häring HU, Pedersen BK, Plomgaard P, Lehmann R, Xu G. Independent component analysis in non-hypothesis driven metabolomics: improvement of pattern discovery and simplification of biological data interpretation demonstrated with plasma samples of exercising humans. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 910:156-62. [PMID: 22809791 DOI: 10.1016/j.jchromb.2012.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 06/03/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
In a non-hypothesis driven metabolomics approach plasma samples collected at six different time points (before, during and after an exercise bout) were analyzed by gas chromatography-time of flight mass spectrometry (GC-TOF MS). Since independent component analysis (ICA) does not need a priori information on the investigated process and moreover can separate statistically independent source signals with non-Gaussian distribution, we aimed to elucidate the analytical power of ICA for the metabolic pattern analysis and the identification of key metabolites in this exercise study. A novel approach based on descriptive statistics was established to optimize ICA model. In the GC-TOF MS data set the number of principal components after whitening and the number of independent components of ICA were optimized and systematically selected by descriptive statistics. The elucidated dominating independent components were involved in fuel metabolism, representing one of the most affected metabolic changes occurring in exercising humans. Conclusive time dependent physiological changes of the metabolic pattern under exercise conditions were detected. We conclude that after optimization ICA can successfully elucidate key metabolite pattern as well as characteristic metabolites in metabolic processes thereby simplifying the explanation of complex biological processes. Moreover, ICA is capable to study time series in complex experiments with multi-levels and multi-factors.
Collapse
|
60
|
Brandt C, Nielsen AR, Fischer CP, Hansen J, Pedersen BK, Plomgaard P. Plasma and muscle myostatin in relation to type 2 diabetes. PLoS One 2012; 7:e37236. [PMID: 22615949 PMCID: PMC3353926 DOI: 10.1371/journal.pone.0037236] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 04/18/2012] [Indexed: 12/18/2022] Open
Abstract
Objective Myostatin is a secreted growth factor expressed in skeletal muscle tissue, which negatively regulates skeletal muscle mass. Recent animal studies suggest a role for myostatin in insulin resistance. We evaluated the possible metabolic role of myostatin in patients with type 2 diabetes and healthy controls. Design 76 patients with type 2 diabetes and 92 control subjects were included in the study. They were matched for age, gender and BMI. Plasma samples and biopsies from the vastus lateralis muscle were obtained to assess plasma myostatin and expression of myostatin in skeletal muscle. Results Patients with type 2 diabetes had higher fasting glucose (8.9 versus 5.1 mmol/L, P<0.001), plasma insulin (68.2 versus 47.2 pmol/L, P<0.002) and HOMA2-IR (1.6 versus 0.9, P<0.0001) when compared to controls. Patients with type 2 diabetes had 1.4 (P<0.01) higher levels of muscle myostatin mRNA content than the control subjects. Plasma myostatin concentrations did not differ between patients with type 2 diabetes and controls. In healthy controls, muscle myostatin mRNA correlated with HOMA2-IR (r = 0.30, P<0.01), plasma IL-6 (r = 0.34, P<0.05) and VO2 max (r = −0.26, P<0.05), however, no correlations were observed in patients with type 2 diabetes. Conclusions This study supports the idea that myostatin may have a negative effect on metabolism. However, the metabolic effect of myostatin appears to be overruled by other factors in patients with type 2 diabetes.
Collapse
|
61
|
Biensø RS, Ringholm S, Kiilerich K, Aachmann-Andersen NJ, Krogh-Madsen R, Guerra B, Plomgaard P, van Hall G, Treebak JT, Saltin B, Lundby C, Calbet JAL, Pilegaard H, Wojtaszewski JFP. GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance. Diabetes 2012; 61:1090-9. [PMID: 22403297 PMCID: PMC3331744 DOI: 10.2337/db11-0884] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To elucidate the molecular mechanisms behind physical inactivity-induced insulin resistance in skeletal muscle, 12 young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies obtained before and after. In six of the subjects, muscle biopsies were taken from both legs before and after a 3-h hyperinsulinemic euglycemic clamp performed 3 h after a 45-min, one-legged exercise. Blood samples were obtained from one femoral artery and both femoral veins before and during the clamp. Glucose infusion rate and leg glucose extraction during the clamp were lower after than before bed rest. This bed rest-induced insulin resistance occurred together with reduced muscle GLUT4, hexokinase II, protein kinase B/Akt1, and Akt2 protein level, and a tendency for reduced 3-hydroxyacyl-CoA dehydrogenase activity. The ability of insulin to phosphorylate Akt and activate glycogen synthase (GS) was reduced with normal GS site 3 but abnormal GS site 2+2a phosphorylation after bed rest. Exercise enhanced insulin-stimulated leg glucose extraction both before and after bed rest, which was accompanied by higher GS activity in the prior-exercised leg than the rested leg. The present findings demonstrate that physical inactivity-induced insulin resistance in muscle is associated with lower content/activity of key proteins in glucose transport/phosphorylation and storage.
Collapse
|
62
|
Elsøe S, Ahnström J, Christoffersen C, Hoofnagle AN, Plomgaard P, Heinecke JW, Binder CJ, Björkbacka H, Dahlbäck B, Nielsen LB. Apolipoprotein M binds oxidized phospholipids and increases the antioxidant effect of HDL. Atherosclerosis 2011; 221:91-7. [PMID: 22204862 DOI: 10.1016/j.atherosclerosis.2011.11.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Oxidation of LDL plays a key role in the development of atherosclerosis. HDL may, in part, protect against atherosclerosis by inhibiting LDL oxidation. Overexpression of HDL-associated apolipoprotein M (apoM) protects mice against atherosclerosis through a not yet clarified mechanism. Being a lipocalin, apoM contains a binding pocket for small lipophilic molecules. Here, we report that apoM likely serves as an antioxidant in HDL by binding oxidized phospholipids, thus enhancing the antioxidant potential of HDL. METHODS AND RESULTS HDL was isolated from wild type mice, apoM-deficient mice, and two lines of apoM-Tg mice with ∼2-fold and ∼10-fold increased plasma apoM, respectively. Increasing amounts of HDL-associated apoM were associated with an increase in the resistance of HDL to oxidation with Cu(2+) or 2,2'-azobis 2-methyl-propanimidamide, dihydrochloride (AAPH) and to an increased ability of HDL to protect human LDL against oxidation. Oxidized phospholipids, but not native phospholipids, quenched the intrinsic fluorescence of recombinant human apoM and the quenching could be competed with myristic acid suggesting selective binding of oxidized phospholipid in the lipocalin-binding pocket of apoM. CONCLUSIONS The results suggest that apoM can bind oxidized phospholipids and that it increases the antioxidant effect of HDL. This new mechanism may explain at least part of the antiatherogenic potential of apoM.
Collapse
|
63
|
Ringholm S, Biensø RS, Kiilerich K, Guadalupe-Grau A, Aachmann-Andersen NJ, Saltin B, Plomgaard P, Lundby C, Wojtaszewski JFP, Calbet JA, Pilegaard H. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. Am J Physiol Endocrinol Metab 2011; 301:E649-58. [PMID: 21750272 DOI: 10.1152/ajpendo.00230.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim was to test the hypothesis that 7 days of bed rest reduces mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after bed rest. Twelve young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from six of the subjects prior to, immediately after, and 3 h after 45 min of one-legged knee extensor exercise performed before and after bed rest. Maximal oxygen uptake decreased by 4%, and exercise endurance decreased nonsignificantly, by 11%, by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content ∼45%, 3-hydroxyacyl-CoA dehydrogenase and citrate synthase activity ∼8%, and miR-1 and miR-133a content ∼10%. However, cytochrome c and vascular endothelial growth factor (VEGF) protein content as well as capillarization did not change significantly with bed rest. Acute exercise increased AMP-activated protein kinase phosphorylation, peroxisome proliferator activated receptor-γ coactivator-1α, and VEGF mRNA content in skeletal muscle before bed rest, but the responses were abolished after bed rest. The present findings indicate that only 7 days of physical inactivity reduces skeletal muscle metabolic capacity as well as abolishes exercise-induced adaptive gene responses, likely reflecting an interference with the ability of skeletal muscle to adapt to exercise.
Collapse
|
64
|
Nielsen S, Ahnström J, Christoffersen C, Hoofnagle A, Plomgaard P, Heinecke J, Björkbacka H, Dahlbäck B, Nielsen L. 238 APOLIPOPROTEIN M BINDS OXIDIZED PHOSPHOLIPIDS AND INCREASES THE ANTIOXIDANT EFFECT OF HDL. ATHEROSCLEROSIS SUPP 2011. [DOI: 10.1016/s1567-5688(11)70239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
65
|
Nielsen AR, Plomgaard P, Krabbe KS, Johansen JS, Pedersen BK. IL-6, but not TNF-α, increases plasma YKL-40 in human subjects. Cytokine 2011; 55:152-5. [PMID: 21478032 DOI: 10.1016/j.cyto.2011.03.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/15/2011] [Indexed: 12/19/2022]
Abstract
Plasma levels of YKL-40 are elevated in patients with systemic infection, inflammatory disorders and cancer. Both monocytes/macrophages, neutrophils, and cancer cells have the capacity to produce YKL-40, but the regulation during the inflammatory response is unknown. To study the possible role of interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α in the regulation of YKL-40 plasma levels, we included healthy men, who received either recombinant human (rh)IL-6 (n=6), rhTNF-α (n=8) or vehicle (n=7) for 3h. The plasma levels of IL-6 and TNF-α reached ∼ 150 and ∼ 18 pg/ml, respectively, during the infusions. Following the IL-6 infusion, the plasma level of YKL-40 increased from ∼ 30 to ∼ 57 ng/ml (p<0.05) at 24h, and returned to normal values after 48 h. The plasma level of YKL-40 did not change during TNF-α infusion or infusion of vehicle. These data demonstrate that IL-6, but not TNF-α, has a key-role in the regulation of plasma YKL-40 levels during inflammation.
Collapse
|
66
|
Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 2011; 60:1111-21. [PMID: 21378173 PMCID: PMC3064085 DOI: 10.2337/db10-1178] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells. RESEARCH DESIGN AND METHODS Human skeletal muscle cells were cultured for up to 24 h with tumor necrosis factor (TNF)-α to induce insulin resistance, and mRNA expression for cytokines was analyzed and compared with controls (without TNF-α). Conditioned media were collected and candidate cytokines were measured by antibody array. Human and rat primary β-cells were used to explore the impact of exposure to conditioned media for 24 h on apoptosis, proliferation, short-term insulin secretion, and key signaling protein phosphorylation and expression. RESULTS Human myotubes express and release a different panel of myokines depending on their insulin sensitivity, with each panel exerting differential effects on β-cells. Conditioned medium from control myotubes increased proliferation and glucose-stimulated insulin secretion (GSIS) from primary β-cells, whereas conditioned medium from TNF-α-treated insulin-resistant myotubes (TMs) exerted detrimental effects that were either independent (increased apoptosis and decreased proliferation) or dependent on the presence of TNF-α in TM (blunted GSIS). Knockdown of β-cell mitogen-activated protein 4 kinase 4 prevented these effects. Glucagon-like peptide 1 protected β-cells against decreased proliferation and apoptosis evoked by TMs, while interleukin-1 receptor antagonist only prevented the latter. CONCLUSIONS Taken together, these data suggest a possible new route of communication between skeletal muscle and β-cells that is modulated by insulin resistance and could contribute to normal β-cell functional mass in healthy subjects, as well as the decrease seen in type 2 diabetes.
Collapse
|
67
|
Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology 2011; 152:164-71. [PMID: 21068158 DOI: 10.1210/en.2010-0868] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follistatin is a member of the TGF-β super family and inhibits the action of myostatin to regulate skeletal muscle growth. The regulation of follistatin during physical exercise is unclear but may be important because physical activity is a major intervention to prevent age-related sarcopenia. First, healthy subjects performed either bicycle or one-legged knee extensor exercise. Arterial-venous differences were assessed during the one-legged knee extensor experiment. Next, mice performed 1 h of swimming, and the expression of follistatin was examined in various tissues using quantitative PCR. Western blotting assessed follistatin protein content in the liver. IL-6 and epinephrine were investigated as drivers of follistatin secretion. After 3 h of bicycle exercise, plasma follistatin increased 3 h into recovery with a peak of 7-fold. No net release of follistatin could be detected from the exercising limb. In mice performing a bout of swimming exercise, increases in plasma follistatin as well as follistatin mRNA and protein expression in the liver were observed. IL-6 infusion to healthy young men did not affect the follistatin concentration in the circulation. When mice were stimulated with epinephrine, no increase in the hepatic mRNA of follistatin was observed. This is the first study to demonstrate that plasma follistatin is increased during exercise and most likely originates from the liver. These data introduce new perspectives regarding muscle-liver cross talk during exercise and during recovery from exercise.
Collapse
|
68
|
Kelly M, Nielsen SA, Scheele C, Brandt C, Hansen J, Hojman P, Plomgaard P, Pedersen BK. Cardiotrophin-1 activates AMP-activated Protein Kinase (AMPK) in Human Skeletal Muscle Cells from Healthy Control, but not Type II Diabetic, Subjects. Med Sci Sports Exerc 2010. [DOI: 10.1249/01.mss.0000389444.00374.2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
Leick L, Plomgaard P, Grønlykke L, Al-Abaiji F, Wojtaszewski JFP, Pilegaard H. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery. Scand J Med Sci Sports 2010; 20:593-9. [DOI: 10.1111/j.1600-0838.2009.00988.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
70
|
Mounier R, Pedersen BK, Plomgaard P. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle. Exp Physiol 2010; 95:899-907. [PMID: 20494919 DOI: 10.1113/expphysiol.2010.052928] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Skeletal muscle is well known to exhibit a high degree of plasticity depending on environmental changes, such as various oxygen concentrations. Studies of the oxygen-sensitive subunit alpha of hypoxia-inducible factor-1 (HIF-1) are difficult owing to the large variety of functionally diverse muscle fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1alpha mRNA and protein owing to their higher oxidative capacity. We have shown, in normoxic conditions, a higher HIF-1alpha protein expression in predominantly oxidative muscles than in predominantly glycolytic muscles. However, the HIF-1alpha mRNA expression pattern was not in agreement with the HIF-1alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented a significantly higher VEGF protein content than vastus lateralis and triceps muscle. In conclusion, we have shown that there are muscle-specific differences in HIF-1alpha and VEGF expression within human skeletal muscle at rest in normoxic conditions. Recent results, when combined with the findings described here, support a key role for HIF-1alpha for maintaining muscle homeostasis in non-hypoxic conditions.
Collapse
|
71
|
Kiilerich K, Gudmundsson M, Birk JB, Lundby C, Taudorf S, Plomgaard P, Saltin B, Pedersen PA, Wojtaszewski JFP, Pilegaard H. Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle. Diabetes 2010; 59:26-32. [PMID: 19833896 PMCID: PMC2797931 DOI: 10.2337/db09-1032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To test the hypothesis that free fatty acid (FFA) and muscle glycogen modify exercise-induced regulation of PDH (pyruvate dehydrogenase) in human skeletal muscle through regulation of PDK4 expression. RESEARCH DESIGN AND METHODS On two occasions, healthy male subjects lowered (by exercise) muscle glycogen in one leg (LOW) relative to the contra-lateral leg (CON) the day before the experimental day. On the experimental days, plasma FFA was ensured normal or remained elevated by consuming breakfast rich (low FFA) or poor (high FFA) in carbohydrate, 2 h before performing 20 min of two-legged knee extensor exercise. Vastus lateralis biopsies were obtained before and after exercise. RESULTS PDK4 protein content was approximately 2.2- and approximately 1.5-fold higher in LOW than CON leg in high FFA and low FFA, respectively, and the PDK4 protein content in the CON leg was approximately twofold higher in high FFA than in low FFA. In all conditions, exercise increased PDHa (PDH in the active form) activity, resulting in similar levels in LOW leg in both trials and CON leg in high FFA, but higher level in CON leg in low FFA. PDHa activity was closely associated with the PDH-E1alpha phosphorylation level. CONCLUSIONS Muscle glycogen and plasma FFA attenuate exercise-induced PDH regulation in human skeletal muscle in a nonadditive manner. This might be through regulation of PDK4 expression. The activation of PDH by exercise independent of changes in muscle glycogen or plasma FFA suggests that exercise overrules FFA-mediated inhibition of PDH (i.e., carbohydrate oxidation), and this may thus be one mechanism behind the health-promoting effects of exercise.
Collapse
|
72
|
Krogh-Madsen R, Thyfault JP, Broholm C, Mortensen OH, Olsen RH, Mounier R, Plomgaard P, van Hall G, Booth FW, Pedersen BK. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J Appl Physiol (1985) 2009; 108:1034-40. [PMID: 20044474 DOI: 10.1152/japplphysiol.00977.2009] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
US adults take between approximately 2,000 and approximately 12,000 steps per day, a wide range of ambulatory activity that at the low range could increase risk for developing chronic metabolic diseases. Dramatic reductions in physical activity induce insulin resistance; however, it is uncertain if and how low ambulatory activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, nonexercising subjects who went from a normal to a low level of ambulatory activity for 2 wk would display metabolic alterations including reduced peripheral insulin sensitivity. To do this, ten healthy young men decreased their daily activity level from a mean of 10,501+/-808 to 1,344+/-33 steps/day for 2 wk. Hyperinsulinemic-euglycemic clamps with stable isotopes and muscle biopsies, maximal oxygen consumption (VO2 max) tests, and blood samples were performed pre- and postintervention. A reduced number of daily steps induced a significant reduction of 17% in the glucose infusion rate (GIR) during the clamp. This reduction was due to a decline in peripheral insulin sensitivity with no effect on hepatic endogenous glucose production. The insulin-stimulated ratio of pAktthr308/total Akt decreased after step reduction, with a post hoc analysis revealing the most pronounced effect after 4 h of insulin infusion. In addition, the 2-wk period induced a 7% decline in VO2 max (ml/min; cardiovascular fitness). Lean mass of legs, but not arms and trunk, decreased concurrently. Taken together, one possible biological cause for the public health problem of Type 2 diabetes has been identified. Reduced ambulatory activity for 2 wk in healthy, nonexercising young men significantly reduced peripheral insulin sensitivity, cardiovascular fitness, and lean leg mass.
Collapse
|
73
|
Mortensen OH, Nielsen AR, Erikstrup C, Plomgaard P, Fischer CP, Krogh-Madsen R, Lindegaard B, Petersen AM, Taudorf S, Pedersen BK. Calprotectin--a novel marker of obesity. PLoS One 2009; 4:e7419. [PMID: 19823685 PMCID: PMC2758581 DOI: 10.1371/journal.pone.0007419] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/21/2009] [Indexed: 01/05/2023] Open
Abstract
Background The two inflammatory molecules, S100A8 and S100A9, form a heterodimer, calprotectin. Plasma calprotectin levels are elevated in various inflammatory disorders. We hypothesized that plasma calprotectin levels would be increased in subjects with low-grade systemic inflammation i.e. either obese subjects or subjects with type 2 diabetes. Methodology/Principal Findings Plasma calprotectin and skeletal muscle S100A8 mRNA levels were measured in a cohort consisting of 199 subjects divided into four groups depending on presence or absence of type 2 diabetes (T2D), and presence or absence of obesity. There was a significant interaction between obesity and T2D (p = 0.012). Plasma calprotectin was increased in obese relative to non-obese controls (p<0.0001), whereas it did not differ between obese and non-obese patients with T2D (p = 0.62). S100A8 mRNA levels in skeletal muscle were not influenced by obesity or T2D. Multivariate regression analysis (adjusting for age, sex, smoking and HOMA2-IR) showed plasma calprotectin to be strongly associated with BMI, even when further adjusted for fitness, CRP, TNF-α or neutrophil number. Conclusions/Significance Plasma calprotectin is a marker of obesity in individuals without type 2 diabetes.
Collapse
|
74
|
Plomgaard P, Dullaart RPF, de Vries R, Groen AK, Dahlbäck B, Nielsen LB. Apolipoprotein M predicts pre-beta-HDL formation: studies in type 2 diabetic and nondiabetic subjects. J Intern Med 2009; 266:258-67. [PMID: 19457058 DOI: 10.1111/j.1365-2796.2009.02095.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Studies in mice suggest that plasma apoM is lowered in hyperinsulinaemic diabetes and that apoM stimulates formation of pre-beta-HDL. Pre-beta-HDL is an acceptor of cellular cholesterol and may be critical for reverse cholesterol transport. Herein, we examined whether patients with type 2 diabetes have reduced plasma apoM and whether apoM is associated with pre-beta-HDL formation and cellular cholesterol efflux. DESIGN In 78 patients with type 2 diabetes and 89 control subjects, we measured plasma apoM with ELISA, pre-beta-HDL and pre-beta-HDL formation, phospholipid transfer protein (PLTP) activity and the ability of plasma to promote cholesterol efflux from cultured fibroblasts. RESULTS ApoM was approximately 9% lower in patients with type 2 diabetes compared to controls (0.025 +/- 0.006 vs. 0.027 +/- 0.007 g L(-1), P = 0.01). The difference in apoM was largely attributable to diabetes-associated obesity. ApoM was positively related to both HDL (r = 0.16; P = 0.04) and LDL cholesterol (r = 0.28; P = 0.0003). Pre-beta-HDL and pre-beta-HDL formation were not different between diabetic and control subjects. ApoM predicted pre-beta-HDL (r = 0.16; P = 0.04) and pre-beta-HDL formation (r = 0.19; P = 0.02), even independently of positive relationships with apoA-I, HDL-cholesterol and PLTP activity. Cellular cholesterol efflux to plasma was positively related to pre-beta-HDL and PLTP activity but not significantly to apoM. CONCLUSIONS Plasma apoM is modestly reduced in type 2 diabetes. Pre-beta-HDL and pre-beta-HDL formation are positively associated with apoM, supporting the hypothesis that apoM plays a role in HDL remodelling in humans. Lower apoM may provide a mechanism to explain why pre-beta-HDL formation is not increased in type 2 diabetes despite elevated PLTP activity.
Collapse
|
75
|
Dullaart RP, Plomgaard P, de Vries R, Dahlbäck B, Nielsen LB. Plasma apolipoprotein M is reduced in metabolic syndrome but does not predict intima media thickness. Clin Chim Acta 2009; 406:129-33. [DOI: 10.1016/j.cca.2009.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/18/2009] [Accepted: 06/05/2009] [Indexed: 11/29/2022]
|