51
|
McKay SE, Garner A, Caldero J, Tucker RP, Large T, Oppenheim RW. The expression of trkB and p75 and the role of BDNF in the developing neuromuscular system of the chick embryo. Development 1996; 122:715-24. [PMID: 8625822 DOI: 10.1242/dev.122.2.715] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurotrophin, brain-derived neurotrophic factor, prevents motoneuron cell death during the normal development of the chick embryo. Brain-derived neurotrophic factor is a ligand for the low-affinity NGF receptor, p75, and for the high-affinity neurotrophin receptor, trkB. If motoneurons respond directly to brain-derived neurotrophic factor then they must possess at least one, and possibly both, of these receptors during the period of naturally occurring cell death. Histological sections from the lumbar region of chick embryos were probed for the presence of trkB and p75 mRNA using digoxigenin-labeled anti-sense RNA probes. p75 mRNA was present in spinal cord motoneurons at stages of development that correlate with motoneuron cell death. Immunohistochemical localization also revealed that p75 protein was present in motoneurons, primarily along the ventral roots and developing intramuscular nerves. In contrast trkB mRNA was not present in chick motoneurons until after the process of cell death was underway. The timing of trkB expression suggested that some motoneurons, i.e., those that die prior to the onset of trkB expression, may be insensitive to brain-derived neurotrophic factor. This was confirmed by comparing the number of surviving motoneurons following different in vivo treatment paradigms. The evidence indicates that motoneurons undergo a temporal shift in sensitivity to brain-derived neurotrophic factor.
Collapse
|
52
|
Li L, Wu W, Lin LF, Lei M, Oppenheim RW, Houenou LJ. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc Natl Acad Sci U S A 1995; 92:9771-5. [PMID: 7568215 PMCID: PMC40884 DOI: 10.1073/pnas.92.21.9771] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been shown to rescue developing motoneurons in vivo and in vitro from both naturally occurring and axotomy-induced cell death. To test whether GDNF has trophic effects on adult motoneurons, we used a mouse model of injury-induced adult motoneuron degeneration. Injuring adult motoneuron axons at the exit point of the nerve from the spinal cord (avulsion) resulted in a 70% loss of motoneurons by 3 weeks following surgery and a complete loss by 6 weeks. Half of the loss was prevented by GDNF treatment. GDNF also induced an increase (hypertrophy) in the size of surviving motoneurons. These data provide strong evidence that the survival of injured adult mammalian motoneurons can be promoted by a known neurotrophic factor, suggesting the potential use of GDNF in therapeutic approaches to adult-onset motoneuron diseases such as amyotrophic lateral sclerosis.
Collapse
|
53
|
Shiga T, Gaur VP, Yamaguchi K, Oppenheim RW. The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid. J Comp Neurol 1995; 360:463-74. [PMID: 8543652 DOI: 10.1002/cne.903600308] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To investigate the role of retinoic acid (RA) in the development of interneurons in the spinal cord, we examined the expression of cellular retinoic acid binding protein type I (CRABP I). The earliest developing interneurons in the chick spinal cord can be divided into two major groups: circumferential (C) neurons and primitive longitudinal (PL) neurons. In brachial segments, both types of interneurons began to express CRABP I at stage (st.) 13+ of the V. Hamburger and H.L. Hamilton (1951, J. Morphol. 88:49-92) stage series, which is before the onset of axonogenesis. Subsequently, with the onset of axonal outgrowth, C neurons and PL neurons expressed CRABP I in their cell bodies, axons, and growth cones. The expression of CRABP I was developmentally regulated. CRABP I immunoreactivity gradually decreased after st. 36 (embryonic day [E] 10) such that no interneurons expressed this protein by E21. The transient expression of CRABP I during a period of intensive axonal growth suggested that RA may be involved in the development of interneurons. To test this idea, we implanted an all-trans RA-containing ion exchange bead into either rostral segments of the spinal cord at st. 12-13 or into caudal segments at st. 15-16, all stages that are well before the appearance of CRABP-I-positive neurons in these segments. In the RA-treated spinal cord, increased numbers of pyknotic cells were found predominantly in dorsal regions, presumably reflecting the death of neuroepithelial cells, C neurons and premigratory neural crest cells. Surviving C neurons in the RA-treated spinal cord extended their axons ventrally toward the floor plate as in control embryos. PL neurons also projected their axons rostrally or caudally in the RA-treated spinal cord, similarly to control embryos. However, the proportion of caudally projecting PL neurons was significantly increased in segments rostral to the RA-containing bead. These results suggest that RA may regulate the survival and axonal orientation (directionality) of subpopulations of spinal interneurons.
Collapse
|
54
|
Milligan CE, Prevette D, Yaginuma H, Homma S, Cardwell C, Fritz LC, Tomaselli KJ, Oppenheim RW, Schwartz LM. Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro. Neuron 1995; 15:385-93. [PMID: 7646891 DOI: 10.1016/0896-6273(95)90042-x] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Members of the CED-3/interleukin-1 beta-converting enzyme (ICE) protease family have been implicated in cell death in both invertebrates and vertebrates. In this report, we show that peptide inhibitors of ICE arrest the programmed cell death of motoneurons in vitro as a result of trophic factor deprivation and in vivo during the period of naturally occurring cell death. In addition, interdigital cells that die during development are also rescued in animals treated with ICE inhibitors. Taken together, these results provide the first evidence that ICE or an ICE-like protease plays a regulatory role not only in vertebrate motoneuron death but also in the developmentally regulated deaths of other cells in vivo.
Collapse
|
55
|
Johnson JE, Wei YQ, Prevette D, Oppenheim RW. Brain-derived proteins that rescue spinal motoneurons from cell death in the chick embryo: comparisons with target-derived and recombinant factors. JOURNAL OF NEUROBIOLOGY 1995; 27:573-89. [PMID: 7561835 DOI: 10.1002/neu.480270411] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spinal motoneurons that normally die during early development can be rescued by a variety of purified growth or neurotrophic factors and target tissue extracts. There is also indirect evidence that brain or supraspinal afferent input may influence lumbar motoneuron survival during development and that this effect may be mediated by central nervous system-derived trophic agents. This report examines the biological and biochemical properties of motoneuron survival activity obtained from extracts of the embryonic chick brain. Treatment with an ammonium sulfate (25% to 75%) fraction of embryonic day 16 (E16) or E10 brain extracts rescued many spinal motoneurons that otherwise die during the normal period of cell death in vivo (E6 to E10). The same fractions also enhanced lumbar motoneuron survival following deafferentation. There were both similarities and differences between the active fractions derived from brain extracts (BEX) when compared with extracts derived from target muscles (MEX) or with purified neurotrophic factors. Survival activity from E10 BEX was as effective in promoting motoneuron survival as E10 MEX and more effective than astrocyte-conditioned media. Unlike MEX, the active fractions from BEX also rescued placode-derived nodose ganglion cells. In addition, unlike nerve growth factor and brain-derived neurotrophic factor, active BEX fractions did not rescue neural crest-derived dorsal root ganglion cells or sympathetic ganglion neurons. Interestingly, among many cranial motor and other brainstem nuclei examined, only the survival of motoneurons from the abducens nucleus was enhanced by BEX. Active proteins obtained from BEX were further separated by gel filtration chromatography and by preparative isoelectric focusing techniques. Activity was recovered in a basic (pI 8) and an acidic (pI 5) small molecular weight protein fraction (20 kD or less). The specific activity of the basic fraction was increased x66 when compared with the specific activity of crude BEX, and the basic fraction had a slightly higher specific activity than the acidic fraction. The biological and biochemical properties of these fractions are discussed in the context of known neurotrophic factors and their effects on normal and lesion-induced motoneuron death during development.
Collapse
|
56
|
Lo AC, Li L, Oppenheim RW, Prevette D, Houenou LJ. Ciliary neurotrophic factor promotes the survival of spinal sensory neurons following axotomy but not during the period of programmed cell death. Exp Neurol 1995; 134:49-55. [PMID: 7672037 DOI: 10.1006/exnr.1995.1035] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have examined the in vivo survival effect of ciliary neurotrophic factor (CNTF) on sensory, i.e., dorsal root ganglion (DRG) neurons during the period of naturally occurring (programmed) cell death and following axotomy in the developing chick and mouse. Administration of CNTF during the period of naturally occurring cell death, from Embryonic Day (E) 6 to E10 in the chick and E14 to E18 in the mouse, had no significant effect in preventing the death of DRG neurons in either species. Axotomy on E12 in the chick or on Postnatal Day (PN) 5 in the mouse resulted in a 60% and a 33% decrease, respectively, in ipsilateral DRG neuron numbers by E16 (chick) or by PN12 (mouse), when compared to contralateral controls. CNTF treatment prevented axotomy-induced cell death of DRG neurons in both the chick and mouse. Daily administration of CNTF following axotomy in E12 chicks significantly increased (72%) DRG neurons by E16. Similarly, CNTF completely rescued mouse DRG neurons from axotomy-induced death. These results show that although CNTF has no effect on naturally occurring death of chick or mouse sensory neurons, this agent has significant ability to rescue sensory neurons following axotomy. These findings suggest that CNTF may be an effective therapeutic agent for the prevention of injury-induced death of vertebrate sensory neurons.
Collapse
|
57
|
Lo AC, Houenou LJ, Oppenheim RW. Apoptosis in the nervous system: morphological features, methods, pathology, and prevention. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1995; 58:139-49. [PMID: 7576866 DOI: 10.1679/aohc.58.139] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For nearly 70 years apoptosis has been known to be a form of cell death distinct from necrosis as well as an important regressive event during the normal development of the nervous system. For example, in the chick, mouse, rat and human approximately 50% of postmitotic neurons die naturally during embryonic or fetal development. It is generally accepted that neurons die during this period by apoptosis. After the period of naturally occurring cell death, the surviving neurons may undergo degeneration and death due to injury or disease later either during development or in adulthood. Recently, apoptosis has been suggested to be involved in the abnormal neuronal death that occurs following axonal injury or in neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's. Although little is known about the etiology of these diseases, progress is steadily being made toward understanding their underlying mechanisms. For diseases of spinal motoneurons, during the past two years gene mutations have been identified in patients with familial amyotrophic lateral sclerosis or spinal muscular atrophy. Furthermore, a number of in vitro, in vivo, and mutant animal models have been developed in order to study the factors which control motoneuron survival and/or death. Here, we review the morphological differences between necrotic and apoptotic cell death and some of the methods used to differentiate the two pathways. We also discuss motoneuron cell death during development, following injury and in disease, and its prevention by different agents, including neurotrophic factors.
Collapse
|
58
|
Takashita N, Homma S, Rottello RJ, Fernandez PA, Yuan J, Oppenheim RW, Yaginuma H. Expression of apogens and engulfens during programmed cell death in the nervous system of the chick embryo. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1995; 58:243-8. [PMID: 7576875 DOI: 10.1679/aohc.58.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two categories of cell death related to antigens, apogens and engulfens, have been reported to be expressed by apoptotic cells and the cells involved in their engulfment in the immune system, and in mesenchymal tissue in the limb of the chick embryo (ROTTELLO et al., 1994). To determine whether these antigens are also expressed during the process of neuronal death, the distribution of immunoreactivity to both anti-apogen and anti-engulfen antibodies was examined in the spinal cord and the dorsal root ganglia of the chick embryo. Anti-apogen antibodies labeled a sub-population of the profiles of dying cells in regions where cell death was occurring. The extent of labeling by anti-apogens varied from 3% to 70% of the total number of dying profiles depending on the specific antibody used and the neuronal region examined. Immunoreactive labeling by the anti-engulfen antibodies mainly involved large cells that contained debris of dead cells. These results indicate that at least some dying neuronal cells express common antigens that are shared by dying mesenchymal cells during programmed cell death, and that phagocytotic cells of the immune system are involved in the engulfment of neuronal cells that have undergone programmed cell death.
Collapse
|
59
|
Zackenfels K, Oppenheim RW, Rohrer H. Evidence for an important role of IGF-I and IGF-II for the early development of chick sympathetic neurons. Neuron 1995; 14:731-41. [PMID: 7718236 DOI: 10.1016/0896-6273(95)90217-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability of immature neurons from chick lumbosacral sympathetic ganglia to proliferate in vitro was used to identify factors that affect neurogenesis. Under serum-free culture conditions, insulin-like growth factor I (IGF-I), IGF-II, or insulin caused an increase in the proportion of cells that incorporated [3H]thymidine. In addition, IGFs also stimulated neurite outgrowth from these immature sympathetic neurons. IGF-I and IGF-II mRNA was found to be expressed in E7 sympathetic ganglia during the period of neurogenesis. IGF-I was detectable in fibroblasts, whereas IGF-II mRNA was expressed by neurons, glia, and fibroblasts. Elimination of endogenous IGFs by neutralizing antibodies resulted in a reduction of neuron proliferation and neuron number, whereas elevation of IGF levels by treatment with IGF-I increased sympathetic neuron proliferation in vivo. These findings suggest an important role of IGFs for the development of sympathetic neurons and imply a general role of IGFs in the control of neurogenesis and neurite outgrowth.
Collapse
|
60
|
Houenou LJ, Turner PL, Li L, Oppenheim RW, Festoff BW. A serine protease inhibitor, protease nexin I, rescues motoneurons from naturally occurring and axotomy-induced cell death. Proc Natl Acad Sci U S A 1995; 92:895-9. [PMID: 7846074 PMCID: PMC42727 DOI: 10.1073/pnas.92.3.895] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Protease nexin I (PNI) is a member of the family of serine protease inhibitors (serpins) that have been shown to promote neurite outgrowth in vitro from different neuronal cell types. These include neuroblastoma cells, hippocampal neurons, and sympathetic neurons. Free PNI protein is markedly decreased in various anatomical brain regions, including hippocampus, of patients with Alzheimer disease. Here, we report that PNI rescued spinal motoneurons during the period of naturally occurring (programmed) cell death in the chicken in a dose-dependent fashion. Furthermore, PNI prevented axotomy-induced spinal motoneuron death in the neonatal mouse. The survival effect of PNI on motoneurons during the period of programmed cell death was not associated with increased intramuscular nerve branching. PNI also significantly increased the nuclear size of motoneurons during the period of programmed cell death and prevented axotomy-induced atrophy of surviving motoneurons. These results are consistent with the possible role of PNI as a neurotrophic agent. They also support the idea that serine proteases or, more precisely, the balance of proteases and serpins may be involved in regulating the fate of neuronal cells during development.
Collapse
|
61
|
Oppenheim RW, Houenou LJ, Johnson JE, Lin LF, Li L, Lo AC, Newsome AL, Prevette DM, Wang S. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 1995; 373:344-6. [PMID: 7830769 DOI: 10.1038/373344a0] [Citation(s) in RCA: 561] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During normal development of the vertebrate nervous system, large numbers of neurons in the central and peripheral nervous system undergo naturally occurring cell death. For example, about half of all spinal motor neurons die over a period of a few days in developing avian, rat and mouse embryos. Previous studies have shown that extracts from muscle and brain, secreted factors from glia, as well as several growth factors and neurotrophic agents, including muscle-derived factors, can promote the survival of developing motor neurons in vitro and in vivo. But because neurotrophins and other known trophic agents administered alone or in combination are insufficient to rescue all developing motor neurons from cell death, other neurotrophic molecules are probably essential for the survival and differentiation of motor neurons. Here we report that glial-cell-line-derived neurotrophic factor (GDNF), a potent neurotrophic factor that enhances survival of mammalian midbrain dopaminergic neurons, rescues developing avian motor neurons from natural programmed cell death in vivo and promotes the survival of enriched populations of cultured motor neurons. Furthermore, treatment with this agent in vivo also prevents the induced death and atrophy of both avian and mouse spinal motor neurons following peripheral axotomy.
Collapse
|
62
|
Yin QW, Johnson J, Prevette D, Oppenheim RW. Cell death of spinal motoneurons in the chick embryo following deafferentation: rescue effects of tissue extracts, soluble proteins, and neurotrophic agents. J Neurosci 1994; 14:7629-40. [PMID: 7996201 PMCID: PMC6576903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the absence of descending spinal and supraspinal afferent inputs, neurons in the developing lumbar spinal cord of the chick embryo undergo regressive changes including cellular atrophy and degeneration between embryonic days 10 and 16. There are significant decreases in the number of motoneurons, interneurons, and sensory (dorsal root ganglion) neurons. Although there are several possible explanations for how afferents might regulate the maintenance of neuronal viability, we have focused attention on the putative role of neurotrophic agents in these events. Previous studies have shown that specific tissue extracts (e.g., muscle, brain), soluble proteins, growth factors, and trophic agents can promote the in vitro and in vivo survival of avian motoneurons during the period of natural cell death (embryonic days 6-10). Several of these agents were also effective following deafferentation. These included brain extract (BEX), muscle extract (MEX), conditioned medium from astrocyte cultures (ACM), as well as the following neurotrophic agents: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), S-100, insulin-like growth factor-I (IGF-I), ciliary neurotrophic factor (CNTF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and leukemia inhibitory factor (CDF/LIF). Both transforming growth factor-beta (TGF-beta) and acidic fibroblast growth factor (aFGF) were ineffective. Although considerable more work is needed to determine which (and how) specific CNS-derived trophic agents regulate motoneuron survival, the present results are consistent with the notion that neurotrophic agents released from or modulated by synaptic inputs to target neurons promote neuronal differentiation and survival in the CNS.
Collapse
|
63
|
Yaginuma H, Shiga T, Oppenheim RW. Early developmental patterns and mechanisms of axonal guidance of spinal interneurons in the chick embryo spinal cord. Prog Neurobiol 1994; 44:249-78. [PMID: 7886227 DOI: 10.1016/0301-0082(94)90041-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
64
|
Milligan CE, Oppenheim RW, Schwartz LM. Motoneurons deprived of trophic support in vitro require new gene expression to undergo programmed cell death. JOURNAL OF NEUROBIOLOGY 1994; 25:1005-16. [PMID: 7964701 DOI: 10.1002/neu.480250809] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During normal development, large numbers of neurons die by programmed cell death. This phenomena has been extensively studied in the lateral motor column of chick embryos, where approximately 50% of the motoneurons that are initially produced, subsequently die due in part to competition for a limited supply of target-derived trophic support. Inhibitors of RNA and protein synthesis block this cell loss in vivo, indicating a requirement for new gene expression (Oppenheim et al., 1990). Prior to their commitment to death, motoneurons can be isolated as a relatively pure population from chick spinal cord for in vitro study. Cells plated with muscle extract, a potent source of target-derived trophic support, survive, and have large, phase-bright cell bodies and extensive neurite outgrowth. In contrast, motoneurons cultured in the absence of muscle extract die within 48 h. This death can be blocked by the RNA synthesis inhibitor actinomycin D, at the time when the cells become committed to die, suggesting that new gene expression is required for cell death. DNA fragmentation and nuclear condensation indicate that some of these cells die by apoptosis. Therefore, it appears that many aspects of motoneuron development observed in vivo can be reconstituted in vitro. These cultures can be used as a model system for studying neuronal death and may contribute to an understanding of the molecular mechanisms that mediate programmed cell death during neuronal development.
Collapse
|
65
|
Homma S, Yaginuma H, Oppenheim RW. Programmed cell death during the earliest stages of spinal cord development in the chick embryo: a possible means of early phenotypic selection. J Comp Neurol 1994; 345:377-95. [PMID: 7929907 DOI: 10.1002/cne.903450305] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The spatiotemporal distribution of cell death in the chick embryo neural tube and spinal cord (brachial region) was examined between stage (St.) 12 and 22, in plastic semithin sections. Between St. 12 and 16, the total number of pycnotic cells per segment was low, whereas after St. 16 the number of pycnotic cells was substantially increased. Between St. 17 and 19 three cell death foci or regions could be recognized. One region, the dorsal pycnotic zone, was located in the most dorsal part of the spinal cord, including the neural crest, with the highest number of pycnotic cells observed at St. 18. The second region, or ventral pycnotic zone, was located between motoneurons and the floor plate and had the highest number of dying cells at St. 17. The third region, the floor plate pycnotic zone, was located in the midportion of the floor plate and had the greatest amount of cell death at St. 19. Although low numbers of pycnotic cells were also observed in other regions between St. 17 and 19, no pycnotic cells were found in the ventrolateral region that gives rise to motoneurons. Ultrastructural observations as well as data from in situ nick end labeling indicate that the pycnotic cells observed in the neural tube die by apoptosis and that the debris from the dead cells is phagocytized primarily by adjacent healthy neuroepithelial cells. Although the spatiotemporal distribution of pycnotic cells suggests that cell death at these early stages could play a role in establishing the pioneer axonal pathway for spinal commissural neurons, preliminary observations following perturbations of cell death do not support this notion. Alternatively, early cell death may be involved in the regulation of cellular patterning along the dorsoventral axis of the neural tube by a kind of negative selection of specific progenitor cells.
Collapse
|
66
|
Li L, Oppenheim RW, Lei M, Houenou LJ. Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. JOURNAL OF NEUROBIOLOGY 1994; 25:759-66. [PMID: 8089654 DOI: 10.1002/neu.480250702] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have examined the ability of different neurotrophic and growth factors to prevent axotomy-induced motoneuron cell death in the developing mouse spinal cord. After postnatal unilateral section of the mouse sciatic nerve, most motoneuron (MN) loss occurs in the lateral motor column of the fourth lumbar segment (L4). Significant axotomy-induced cell death occurred after surgery performed on or before postnatal day (PN) 5. In contrast, no significant cell loss was found when axotomy was performed after PN10. Axotomy on PN2 or PN5 resulted in a 44% loss of L4 motoneurons by 7 days, and a 66% loss of motoneurons by 10 days postsurgery. Implantation of gelfoam presoaked in various neurotrophic factors at the lesion site rescued axotomized motoneurons. Nerve growth factor (NGF), neurotrophin-4/5 (NT-4/5) and ciliary neurotrophic factor (CNTF) rescued 20%-30% of motoneurons, whereas brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and insulin-like growth factor 1 (IGF-1) rescued virtually all motoneurons from axotomy-induced death. By contrast, platelet-derived growth factor (PDGF)-AA, PDGF-AB, basic fibroblast growth factor (bFGF), and interleukin (IL-6) were ineffective on motoneuron survival following axotomy. NGF, BDNF, NT-3, IGF-1, and CNTF also prevented axotomy-induced atrophy of surviving motoneurons. These data show that mouse lumbar motoneurons continue to be vulnerable to axotomy up to about 1 week after birth and that a number of trophic agents, including the neurotrophins, CNTF, and IGF-1, can prevent the death of these neurons following axotomy.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
67
|
von Bartheld CS, Kinoshita Y, Prevette D, Yin QW, Oppenheim RW, Bothwell M. Positive and negative effects of neurotrophins on the isthmo-optic nucleus in chick embryos. Neuron 1994; 12:639-54. [PMID: 8155324 DOI: 10.1016/0896-6273(94)90219-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The survival of neurons in the developing isthmo-optic nucleus (ION) is believed to depend on the retrograde transport of trophic molecules from the target, the contralateral retina. We now show that ION neurons transport nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) retrogradely and that BDNF and NT-3 support the survival of ION neurons in vivo and promote neurite outgrowth in vitro. Surprisingly, NGF enhanced normal developmental cell death in vivo in a dose-dependent way. These findings show that increased levels of NGF can have adverse effects on differentiated neurons. The negative effect of NGF could be mimicked by intraocular injection of antibodies that block binding of neurotrophins to the 75 kd neurotrophin receptor (p75). These data implicate a role for the p75 receptor in NGF's neurotoxicity and indicate that this receptor is involved in the mechanism by which ION neurons respond to BDNF and NT-3 in the target.
Collapse
|
68
|
Houenou LJ, Li L, Lo AC, Yan Q, Oppenheim RW. Naturally occurring and axotomy-induced motoneuron death and its prevention by neurotrophic agents: a comparison between chick and mouse. PROGRESS IN BRAIN RESEARCH 1994; 102:217-26. [PMID: 7800814 DOI: 10.1016/s0079-6123(08)60542-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuronal cell death is an important regressive event during the normal development of the peripheral and central nervous systems of many vertebrate and invertebrate species. Furthermore, when neurons are deprived of their target following axonal injury (axotomy) during embryonic, fetal, or early postnatal development, they undergo massive cell death. Both naturally occurring and axotomy-induced neuronal cell death can be prevented by treatment with growth factors or neurotrophic agents. Naturally occurring cell death of spinal MNs has been extensively studied in both avians and mammals. However, compared with mammals, there is little information on the effects of axotomy in avian species and it is not known whether trophic agents can modify axotomy-induced death in avian MNs. It is also not known whether trophic/growth factors can promote the in vivo survival of mammalian MNs during the period of naturally occurring cell death. We have examined (1) the time course of axotomy-induced death of lumbar spinal MNs in chick and mouse, and (2) the survival-promoting activity of a number of previously characterized growth and trophic factors on both programmed and axotomy-induced MN death in these two species. We show that axotomy performed on, or prior to, E12 in the chick results in a rapid decrease (i.e. 50%) in MN numbers within 3-4 days postsurgery, whereas these cells were able to survive for up to 1 week following axotomy on E14. By contrast, mouse MNs remained vulnerable to axotomy for at least 5 days after birth.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
69
|
Neff NT, Prevette D, Houenou LJ, Lewis ME, Glicksman MA, Yin QW, Oppenheim RW. Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. JOURNAL OF NEUROBIOLOGY 1993; 24:1578-88. [PMID: 8301266 DOI: 10.1002/neu.480241203] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Treatment of chick embryos in ovo with IGF-I during the period of normal, developmentally regulated neuronal death (embryonic days 5-10) resulted in a dose-dependent rescue of a significant number of lumbar motoneurons from degeneration and death. IGF-II and two variants of IGF-I with reduced affinity for IGF binding proteins, des(1-3) IGF-I and long R3 IGF-I, also elicited enhanced survival of motoneurons equal to that seen in IGF-I-treated embryos. IGF-I did not enhance mitogenic activity in motoneuronal populations when applied to embryos during the period of normal neuronal proliferation (E2-5). Treatment of embryos with IGF-I also reduced two types of injury-induced neuronal death. Following either deafferentation or axotomy, treatment of embryos with IGF-I rescued approximately 75% and 50%, respectively, of the motoneurons that die in control embryos as a result of these procedures. Consistent with the survival-promoting activity on motoneurons in ovo, IGF-I, -II, and des(1-3) IGF-I elevated choline acetyltransferase activity in embryonic rat spinal cord cultures, with des(1-3) IGF-I demonstrating 2.5 times greater potency than did IGF-I. A single addition of IGF-I at culture initiation resulted in the maintenance of 80% of the initial ChAT activity for up to 5 days, during which time ChAT activity in untreated control cultures fell to 9%. In summary, these results demonstrate clear motoneuronal trophic activity for the IGFs. These findings, together with previous reports that IGFs are synthesized in muscle and may participate in motoneuron axonal regeneration and sprouting, indicate that these growth factors may have an important role in motoneuron development, maintenance, and recovery from injury.
Collapse
|
70
|
Lewis ME, Neff NT, Contreras PC, Stong DB, Oppenheim RW, Grebow PE, Vaught JL. Insulin-like growth factor-I: potential for treatment of motor neuronal disorders. Exp Neurol 1993; 124:73-88. [PMID: 8282084 DOI: 10.1006/exnr.1993.1177] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Motor neuronal disorders, such as the loss of spinal cord motor neurons in amyotrophic lateral sclerosis or the degeneration of spinal cord motor neuron axons in certain peripheral neuropathies, present a unique opportunity for therapeutic intervention with neurotrophic proteins. Normally, such proteins do not cross the blood-brain barrier, but spinal cord motor neuron axons and nerve terminals lie outside the barrier and thus may be targeted by systemic administration of protein growth factors. Insulin-like growth factor-I (IGF-I) receptors are present in the spinal cord, and, like members of the neurotrophin receptor family, IGF-I receptors mediate signal transduction via a tyrosine kinase domain. IGF-I was found to prevent the loss of choline acetyltransferase activity in embryonic spinal cord cultures, as well as to reduce the programmed cell death of motor neurons in vivo during normal development or following axotomy or spinal transection. Consistent with earlier reports that IGF-I enhances motor neuronal sprouting in vivo, subcutaneous administration of IGF-I increases muscle endplate size in rats. Subcutaneous injections of IGF-I also accelerate functional recovery following sciatic nerve crush in mice, as well as attenuate the peripheral motor neuropathy induced by chronic administration of the cancer chemotherapeutic agent vincristine in mice. Doses of IGF-I that accelerate recovery from sciatic nerve crush in mice result in elevated serum levels of IGF-I which are similar to those obtained following subcutaneous injections of formulated recombinant human IGF-I (Myotrophin) in normal human subjects. Based on these findings, together with evidence of safety in animals and man, clinical trials of recombinant human IGF-I have been initiated in patients with amyotrophic lateral sclerosis and are planned to begin soon in patients with chemotherapy-induced peripheral neuropathies.
Collapse
|
71
|
Fournier Le Ray C, Prevette D, Oppenheim RW, Fontaine-Perus J. Interactions between spinal cord stimulation and activity blockade in the regulation of synaptogenesis and motoneuron survival in the chick embryo. JOURNAL OF NEUROBIOLOGY 1993; 24:1142-56. [PMID: 8409975 DOI: 10.1002/neu.480240903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present study investigated the effects of spinal cord stimulation, neuromuscular blockade, or a combination of the two on neuromuscular development both during and after the period of naturally occurring motoneuron death in the chick embryo. Electrical stimulation of the spinal cord was without effect on motoneuron survival, synaptogenesis, or muscle properties. By contrast, activity blockade rescued motoneurons from cell death and altered synaptogenesis. A combination of spinal cord stimulation and activity blockade resulted in a marked increase in motoneuron death, and also altered synaptogenesis similar to that seen with activity blockade alone. Perturbation of normal nerve-muscle interactions by activity blockade may increase the vulnerability of developing motoneurons to excessive excitatory afferent input (spinal cord stimulation) resulting in excitotoxic-induced cell death.
Collapse
|
72
|
Oppenheim RW, Prevette D, Haverkamp LJ, Houenou L, Yin QW, McManaman J. Biological studies of a putative avian muscle-derived neurotrophic factor that prevents naturally occurring motoneuron death in vivo. JOURNAL OF NEUROBIOLOGY 1993; 24:1065-79. [PMID: 8409968 DOI: 10.1002/neu.480240806] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A series of in vivo studies have been carried out using the chick embryo to address several critical questions concerning the biological, and to a lesser extent, the biochemical characteristics of a putative avian muscle-derived trophic agent that promotes motoneuron survival in vivo. A partially purified fraction of muscle extract was shown to be heat and trypsin sensitive and rescued motoneurons from naturally occurring cell death in a dose-dependent fashion. Muscle extract had no effect on mitotic activity in the spinal cord and did not alter cell number when administered either before or after the normal cell death period. The survival promoting activity in the muscle extract appears to be developmentally regulated. Treatment with muscle extract during the cell death period did not permanently rescue motoneurons. The motoneuron survival-promoting activity found in skeletal muscle was not present in extracts from a variety of other tissues, including liver, kidney, lung, heart, and smooth muscle. Survival activity was also found in extracts from fetal mouse, rat, and human skeletal muscle. Conditioned medium derived from avian myotube cultures also prevented motoneuron death when administered in vivo to chick embryos. Treatment of embryos in ovo with muscle extract had no effect on several properties of developing muscles. With the exception of cranial motoneurons, treatment with muscle extract did not promote the survival of several other populations of neurons in the central and peripheral nervous system that also exhibit naturally occurring cell death. Initial biochemical characterization suggests that the activity in skeletal muscle is an acidic protein between 10 and 30 kD. Examination of a number of previously characterized growth and trophic agents in our in vivo assay have identified several molecules that promote motoneuron survival to one degree or another. These include S100 beta, brain-derived neurotrophic factor (BDNF), neurotrophin 4/5 (NT-4/5), ciliary neurotrophic factor (CNTF), transforming growth factor beta (TGF beta), platelet-derived growth factor-AB (PDGF-AB), leukemia inhibitory factor (CDF/LIF), and insulin-like growth factors I and II (IGF). By contrast, the following agents were ineffective: nerve growth factor (NGF), neurotrophin-3 (NT3), epidermal growth factor (EGF), acidic and basic fibroblast growth factors (aFGF, bFGF), and the heparin-binding growth-associated molecule (HB-GAM).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
73
|
Shiga T, Shirai T, Grumet M, Edelman GM, Oppenheim RW. Differential expression of neuron-glia cell adhesion molecule (Ng-CAM) on developing axons and growth cones of interneurons in the chick embryo spinal cord: an immunoelectron microscopic study. J Comp Neurol 1993; 329:512-8. [PMID: 8454738 DOI: 10.1002/cne.903290407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To elucidate the role of neuron-glia cell adhesion molecule (Ng-CAM) in axonal pathway formation of avian spinal interneurons, we have examined the ultrastructural expression of Ng-CAM in the developing spinal cord, by using a preembedding immunocytochemical method. Ng-CAM immunoreactivity was punctate and was restricted to cell surfaces. In accordance with our previous light microscopic observations (Shiga et al., '90), the earliest developing spinal interneurons were Ng-CAM-positive on their cell bodies, axons, and growth cones. Axons and growth cones that were either fasciculated or in contact with each other strongly expressed Ng-CAM, thus indicating the possible involvement of Ng-CAM in fasciculation of axons and in the contact guidance of growth cones along preexisting axons. By using higher resolution immunoelectron microscopy, the present study has also revealed new information on the subcellular localization of Ng-CAM on developing spinal interneurons, neuroepithelial cells, and floor plate cells. Although Ng-CAM immunoreactivity was prominent on both axons and growth cones, these structures were Ng-CAM-negative when they contacted the basal lamina around the spinal cord. By contrast, Ng-CAM was detectable on the surface of both neuroepithelial cells and floor plate cells only when they made contact with the Ng-CAM-positive axons and growth cones of interneurons. These results suggest that the subcellular distribution of Ng-CAM is regulated differentially, depending on the apposing cell surfaces, and that such differential and developmentally regulated expression may contribute to the elongation, fasciculation, and guidance of spinal axons.
Collapse
|
74
|
Oppenheim RW, Yin QW, Prevette D, Yan Q. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 1992; 360:755-7. [PMID: 1465146 DOI: 10.1038/360755a0] [Citation(s) in RCA: 356] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During normal vertebrate development, about half of spinal motoneurons are lost by a process of naturally occurring or programmed cell death. Additional developing motoneurons degenerate after the removal of targets or afferents. Naturally occurring motoneuron death as well as motoneuron death after loss of targets or after axotomy can be prevented by in vivo treatment with putative target (muscle) derived or other neurotrophic agents. Motoneurons can also be prevented from dying in vitro and in vivo (Y.Q.-W., R.W., D.P., J. Johnson and L. Van Eldik, unpublished data and refs 7, 13, 14) by treatment with central nervous system extracts (brain or spinal cord) and purified central nervous system and glia-derived proteins. Here we report that in vivo treatment of chick embryos with brain-derived neurotrophic factor rescues motoneurons from naturally occurring cell death. Furthermore, in vivo treatment with brain-derived neurotrophic factor (and nerve growth factor) also prevents the induced death of motoneurons that occurs following the removal of descending afferent input (deafferentation). These data indicate that members of the neurotrophin family can promote the survival of developing avian motoneurons.
Collapse
|
75
|
Oppenheim RW. Pathways in the emergence of developmental neuroethology: antecedents to current views of neurobehavioral ontogeny. JOURNAL OF NEUROBIOLOGY 1992; 23:1370-403. [PMID: 1487741 DOI: 10.1002/neu.480231004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The historical forces that have contributed to our current views of neurobehavioral development (and thus to the fields of developmental psychobiology and neuroethology) are many and varied. Although similar statements might be made about almost any field of science, it is in particular true of this field, which represents a kind of mongrel discipline derived from at least three major sources (psychology, embryology, and neuroscience) and several more minor ones (including developmental psychology and psychiatry, psychoanalysis, education, zoology, ethology, and sociology). Although I attempt to demonstrate here how each of these sources may have influenced the emergence of a unified field of developmental psychobiology or developmental neuroethology, because the present article represents the first attempt of which I am aware to trace the history of these fields I am certain that there is considerable room for improvement, correction, and revision of the views expressed here. Accordingly, I consider this inaugural effort a kind of reconnaissance intended to trace a necessarily imperfect historic path for others to follow and improve upon. In the final analysis, I will be satisfied if this article only serves to underscore two related points: first is the value derived from historical studies of contemporary issues in development, and the second concerns the extent to which our current ideas and concepts about neurobehavioral development, ideas often considered new and contemporary, were already well known to those who came before us. The first point underscores the arguments expressed in the Introduction that the present must always be reconciled with the past, for the past is never entirely past. The second point returns full circle to an important thought expressed in the opening quotation to this article, namely, that even though our historic predecessors lacked much of the empirical facts available to us they were nonetheless able to attain a surprisingly deep understanding of neurobehavioral ontogeny.
Collapse
|