51
|
Lisdahl KM, Sher KJ, Conway KP, Gonzalez R, Feldstein Ewing SW, Nixon SJ, Tapert S, Bartsch H, Goldstein RZ, Heitzeg M. Adolescent brain cognitive development (ABCD) study: Overview of substance use assessment methods. Dev Cogn Neurosci 2018; 32:80-96. [PMID: 29559216 PMCID: PMC6375310 DOI: 10.1016/j.dcn.2018.02.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022] Open
Abstract
One of the objectives of the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org/) is to establish a national longitudinal cohort of 9 and 10 year olds that will be followed for 10 years in order to prospectively study the risk and protective factors influencing substance use and its consequences, examine the impact of substance use on neurocognitive, health and psychosocial outcomes, and to understand the relationship between substance use and psychopathology. This article provides an overview of the ABCD Study Substance Use Workgroup, provides the goals for the workgroup, rationale for the substance use battery, and includes details on the substance use module methods and measurement tools used during baseline, 6-month and 1-year follow-up assessment time-points. Prospective, longitudinal assessment of these substance use domains over a period of ten years in a nationwide sample of youth presents an unprecedented opportunity to further understand the timing and interactive relationships between substance use and neurocognitive, health, and psychopathology outcomes in youth living in the United States.
Collapse
|
52
|
Bachi K, Parvaz MA, Moeller SJ, Gan G, Zilverstand A, Goldstein RZ, Alia-Klein N. Reduced Orbitofrontal Gray Matter Concentration as a Marker of Premorbid Childhood Trauma in Cocaine Use Disorder. Front Hum Neurosci 2018; 12:51. [PMID: 29497369 PMCID: PMC5818418 DOI: 10.3389/fnhum.2018.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/31/2018] [Indexed: 11/30/2022] Open
Abstract
Background: Childhood trauma affects neurodevelopment and promotes vulnerability to impaired constraint, depression, and addiction. Reduced gray matter concentration (GMC) in the mesocorticolimbic regions implicated in reward processing and cognitive control may be an underlying substrate, as documented separately in addiction and for childhood trauma. The purpose of this study was to understand the contribution of childhood maltreatment to GMC effects in individuals with cocaine use disorder. Methods: Individuals with cocaine use disorder were partitioned into groups of low vs. high childhood trauma based on median split of the total score of the Childhood Trauma Questionnaire (CTQ; CUD-L, N = 23; CUD-H, N = 24) and compared with age, race, and gender matched healthy controls with low trauma (N = 29). GMC was obtained using voxel-based morphometry applied to T1-weighted MRI scans. Drug use, depression and constraint were assessed with standardized instruments. Results: Whole-brain group comparisons showed reduced GMC in the right lateral orbitofrontal cortex (OFC) in CUD-H as compared with controls (cluster-level pFWE-corr < 0.001) and CUD-L (cluster-level pFWE-corr = 0.035); there were no significant differences between CUD-L and controls. A hierarchical regression analysis across both CUD groups revealed that childhood trauma, but not demographics and drug use, and beyond constraint and depression, accounted for 37.7% of the variance in the GMC in the right lateral OFC (p < 0.001). Conclusions: Beyond other contributing factors, childhood trauma predicted GMC reductions in the OFC in individuals with cocaine use disorder. These findings underscore a link between premorbid environmental stress and morphological integrity of a brain region central for behaviors underlying drug addiction. These results further highlight the importance of accounting for childhood trauma, potentially as a factor predisposing to addiction, when examining and interpreting neural alterations in cocaine addicted individuals.
Collapse
|
53
|
Parvaz MA, Moeller SJ, Uquillas FD, Pflumm A, Maloney T, Alia-Klein N, Goldstein RZ. Prefrontal gray matter volume recovery in treatment-seeking cocaine-addicted individuals: a longitudinal study. Addict Biol 2017; 22:1391-1401. [PMID: 27126701 PMCID: PMC5085900 DOI: 10.1111/adb.12403] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022]
Abstract
Deficits in prefrontal cortical (PFC) function have been consistently reported in individuals with cocaine use disorders (iCUD), and have separately been shown to improve with longer-term abstinence. However, it is less clear whether the PFC structural integrity possibly underlying these deficits is also modulated by sustained reduction in drug use in iCUD. Here, T1-weighted magnetic resonance imaging scans were acquired, and performance on a neuropsychological test battery was assessed, in 19 initially abstinent treatment-seeking iCUD, first at baseline and then after six months of significantly reduced or no drug use (follow-up). A comparison cohort of 12 healthy controls was also scanned twice with a similar inter-scan interval. The iCUD showed increased gray matter volume in the left inferior frontal gyrus and bilaterally in the ventromedial prefrontal cortex at follow-up compared to baseline; healthy controls, as expected, showed no changes over this same time period. The iCUD also showed improved decision making and cognitive flexibility, with the latter correlated significantly with the gray matter volume increases in the inferior frontal gyrus. Given its association with improved cognitive function, the longitudinal recovery in cortical gray matter volume, particularly in regions where structure and function are adversely affected by chronic drug use, reflects a quantifiable positive impact of significantly reduced drug use on cortical structural integrity.
Collapse
|
54
|
Bachi K, Mani V, Trivieri MG, Jeyachandran D, Fayad ZA, Goldstein RZ, Alia-Klein N. Reply to: "β-blocker treatment of vascular disease in cocaine addiction". Atherosclerosis 2017; 264:123-124. [PMID: 28735812 DOI: 10.1016/j.atherosclerosis.2017.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/26/2022]
|
55
|
Bachi K, Mani V, Jeyachandran D, Fayad ZA, Goldstein RZ, Alia-Klein N. Vascular disease in cocaine addiction. Atherosclerosis 2017; 262:154-162. [PMID: 28363516 PMCID: PMC5757372 DOI: 10.1016/j.atherosclerosis.2017.03.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/11/2022]
Abstract
Cocaine, a powerful vasoconstrictor, induces immune responses including cytokine elevations. Chronic cocaine use is associated with functional brain impairments potentially mediated by vascular pathology. Although the Crack-Cocaine epidemic has declined, its vascular consequences are increasingly becoming evident among individuals with cocaine use disorder of that period, now aging. Paradoxically, during the period when prevention efforts could make a difference, this population receives psychosocial treatment at best. We review major postmortem and in vitro studies documenting cocaine-induced vascular toxicity. PubMed and Academic Search Complete were used with relevant terms. Findings consist of the major mechanisms of cocaine-induced vasoconstriction, endothelial dysfunction, and accelerated atherosclerosis, emphasizing acute, chronic, and secondary effects of cocaine. The etiology underlying cocaine's acute and chronic vascular effects is multifactorial, spanning hypertension, impaired homeostasis and platelet function, thrombosis, thromboembolism, and alterations in blood flow. Early detection of vascular disease in cocaine addiction by multimodality imaging is discussed. Treatment may be similar to indications in patients with traditional risk-factors, with few exceptions such as enhanced supportive care and use of benzodiazepines and phentolamine for sedation, and avoiding β-blockers. Given the vascular toxicity cocaine induces, further compounded by smoking and alcohol comorbidity, and interacting with aging of the crack generation, there is a public health imperative to identify pre-symptomatic markers of vascular impairments in cocaine addiction and employ preventive treatment to reduce silent disease progression.
Collapse
|
56
|
McFarland DJ, Parvaz MA, Sarnacki WA, Goldstein RZ, Wolpaw JR. Prediction of subjective ratings of emotional pictures by EEG features. J Neural Eng 2017; 14:016009. [PMID: 27934776 PMCID: PMC5476954 DOI: 10.1088/1741-2552/14/1/016009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli. APPROACH To assess the feasibility of this approach, we studied the relationships between emotional valence/arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta activity over frontal midline cortex; and the late positive potential over central and posterior mid-line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both an individual and a group basis. Twenty healthy participants (9 men, 11 women; ages 22-68) rated each of 192 pictures from the IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 d over 2 weeks). EEG was collected simultaneously and used to develop models based on canonical correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In each case, these features were used to simultaneously predict both the normed ratings and the subject-specific ratings. MAIN RESULTS Models using each of the three EEG features with data from individual subjects were generally successful at predicting subjective ratings on training data, but generalization to test data was less successful. Sparse models performed better than models without regularization. SIGNIFICANCE The results suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late positive potential for use in a BCI-based paradigm designed to modify emotional reactions.
Collapse
|
57
|
Bachi K, Sierra S, Volkow ND, Goldstein RZ, Alia-Klein N. Is biological aging accelerated in drug addiction? Curr Opin Behav Sci 2017; 13:34-39. [PMID: 27774503 PMCID: PMC5068223 DOI: 10.1016/j.cobeha.2016.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug-addiction may trigger early onset of age-related disease, due to drug-induced multi-system toxicity and perilous lifestyle, which remains mostly undetected and untreated. We present the literature on pathophysiological processes that may hasten aging and its relevance to addiction, including: oxidative stress and cellular aging, inflammation in periphery and brain, decline in brain volume and function, and early onset of cardiac, cerebrovascular, kidney, and liver disease. Timely detection of accelerated aging in addiction is crucial for the prevention of premature morbidity and mortality.
Collapse
|
58
|
Koyama MS, Parvaz MA, Goldstein RZ. The adolescent brain at risk for substance use disorders: a review of functional MRI research on motor response inhibition. Curr Opin Behav Sci 2017; 13:186-195. [PMID: 28868337 DOI: 10.1016/j.cobeha.2016.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Youth with family history (FH+) of substance use disorders (SUDs) are at increased risk for developing SUDs. Similarly, childhood attention deficit hyperactivity disorder (ADHD) is considered to be a risk factor for developing SUDs. Recent research has suggested a close association between SUDs and impaired inhibitory control. As such, it is crucial to examine common and distinct neural alterations associated with inhibitory control in these at-risk groups, particularly prior to the initiation of heavy substance use. This paper reviews the functional magnetic resonance imaging (fMRI) literature of inhibitory control in these two at-risk youth populations (FH+ and ADHD), specifically considering studies that used motor response inhibition tasks (Go/No-Go or Stop Signal). Across the selected fMRI studies, we discovered no common alteration in the at-risk groups, but found neural alterations specific to each at-risk group. In FH+ youth and youth who transitioned into heavy substance use, blunted activation in the lateral part of the frontal pole (FP-lat) was most reliably observed. Importantly, longitudinal studies indicate that the blunted FP-lat activation may predict later SUDs, irrespective of the presence of FH+. In regards to ADHD, blunted activation was observed in the right dorsal anterior cingulate cortex (dACC) and left caudate. Of note, similar blunted dACC activation was also reported by one FH+ study, and thus, we cannot preclude a possibility that the right dACC activity may be a potential common alteration in both at-risk groups, particularly given a limited number of FH+ studies in the current review. Research challenges remain, and large-scale, longitudinal efforts will help determine the neurobiological markers predictive of SUDs among at-risk adolescents, including those with FH+, as well as those with ADHD and other psychiatric disorders.
Collapse
|
59
|
Parvaz MA, Moeller SJ, Goldstein RZ. Incubation of Cue-Induced Craving in Adults Addicted to Cocaine Measured by Electroencephalography. JAMA Psychiatry 2016; 73:1127-1134. [PMID: 27603142 PMCID: PMC5206796 DOI: 10.1001/jamapsychiatry.2016.2181] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE A common trigger for relapse in drug addiction is the experience of craving via exposure to cues previously associated with drug use. Preclinical studies have consistently demonstrated incubation of cue-induced drug-seeking during the initial phase of abstinence, followed by a decline over time. In humans, the incubation effect has been shown for alcohol, nicotine, and methamphetamine addictions, but not for heroin or cocaine addiction. Understanding the trajectory of cue-induced craving during abstinence in humans is of importance for addiction medicine. OBJECTIVE To assess cue-induced craving for cocaine in humans using both subjective and objective indices of cue-elicited responses. DESIGN, SETTING, AND PARTICIPANTS Seventy-six individuals addicted to cocaine with varying durations of abstinence (ie, 2 days, 1 week, 1 month, 6 months, and 1 year) participated in this laboratory-based cross-sectional study from June 19, 2007, to November 26, 2012. The late positive potential component of electroencephalography, a recognized marker of incentive salience, was used to track motivated attention to drug cues across these self-selected groups. Participants also completed subjective ratings of craving for cocaine before presentation of a cue, and ratings of cocaine "liking" (hedonic feelings toward cocaine) and "wanting" (craving for cocaine) after presentation of cocaine-related pictures. Data analysis was conducted from June 5, 2015, to March 30, 2016. MAIN OUTCOMES AND MEASURES The late positive potential amplitudes and ratings of liking and wanting cocaine in response to cocaine-related pictures were quantified and compared across groups. RESULTS Among the 76 individuals addicted to cocaine, 19 (25%) were abstinent for 2 days, 20 (26%) were abstinent for 1 week, 15 (20%) were abstinent for 1 month, 12 (16%) were abstinent for 6 months, and 10 (13%) were abstinent for 1 year. In response to drug cues, the mean (SD) late positive potential amplitudes showed a parabolic trajectory that was higher at 1 (1.26 [1.36] µV) and 6 (1.17 [1.19] µV) months of abstinence and lower at 2 days (0.17 [1.09] µV), 1 week (0.36 [1.26] µV), and 1 year (-0.27 [1.74] µV) of abstinence (P = .02, partial η2 = 0.16). In contrast, the subjective assessment of baseline craving (mean [SD] rating: 2 days, 26.05 [9.85]; 1 week, 18.70 [11.01]; 1 month, 10.87 [10.70]; 6 months, 6.92 [8.47]; and 1 year, 3.00 [3.77]) and cue-induced liking (mean [SD] rating: 2 days, 3.06 [2.34]; 1 week, 2.33 [2.87]; 1 month, 1.15 [2.03]; 6 months, 1.00 [2.24]; and 1 year, 1.00 [1.26]) and wanting (mean [SD] rating: 2 days, 3.44 [2.62]; 1 week, 2.72 [2.87]; 1 month, 1.46 [2.33]; 6 months, 1.00 [2.16]; and 1 year, 1.00 [1.55]) of cocaine showed a linear decline from 2 days to 1 year of abstinence (P ≤ .001, partial η2 > 0.26). CONCLUSIONS AND RELEVANCE The late positive potential responses to drug cues, indicative of motivated attention, showed a trajectory similar to that reported in animal models. In contrast, we did not detect incubation of subjective cue-induced craving. Thus, the objective electroencephalographic measure may possibly be a better indicator of vulnerability to cue-induced relapse than subjective reports of craving, although this hypothesis must be empirically tested. These results suggest the importance of deploying intervention between 1 month and 6 months of abstinence, when addicted individuals may be most vulnerable to, and perhaps least cognizant of, risk of relapse.
Collapse
|
60
|
Gan G, Preston-Campbell RN, Moeller SJ, Steinberg JL, Lane SD, Maloney T, Parvaz MA, Goldstein RZ, Alia-Klein N. Reward vs. Retaliation-the Role of the Mesocorticolimbic Salience Network in Human Reactive Aggression. Front Behav Neurosci 2016; 10:179. [PMID: 27729852 PMCID: PMC5037197 DOI: 10.3389/fnbeh.2016.00179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022] Open
Abstract
The propensity for reactive aggression (RA) which occurs in response to provocation has been linked to hyperresponsivity of the mesocorticolimbic reward network in healthy adults. Here, we aim to elucidate the role of the mesocorticolimbic network in clinically significant RA for two competing motivated behaviors, reward-seeking vs. retaliation. 18 male participants performed a variant of the Point-Subtraction Aggression Paradigm (PSAP) during functional magnetic resonance imaging (fMRI). We examined whether RA participants compared with non-aggressive controls would choose to obtain a monetary reward over the opportunity to retaliate against a fictitious opponent, who provoked the participant by randomly stealing money from his earnings. Across all fMRI-PSAP runs, RA individuals vs. controls chose to work harder to earn money but not to retaliate. When engaging in such reward-seeking behavior vs. retaliation in a single fMRI-PSAP run, RA individuals exhibited increased activation in the insular-striatal part of the mesocorticolimbic salience network, and decreased precuneus and ventromedial prefrontal cortex activation compared to controls. Enhanced overall reward-seeking behavior along with an up-regulation of the mesocorticolimbic salience network and a down-regulation of the default-mode network in RA individuals indicate that RA individuals are willing to work more for monetary reward than for retaliation when presented with a choice. Our findings may suggest that the use of positive reinforcement might represent an efficacious intervention approach for the potential reduction of retaliatory behavior in clinically significant RA.
Collapse
|
61
|
Parvaz MA, Moeller SJ, Malaker P, Sinha R, Alia-Klein N, Goldstein RZ. Abstinence reverses EEG-indexed attention bias between drug-related and pleasant stimuli in cocaine-addicted individuals. J Psychiatry Neurosci 2016; 41:150358. [PMID: 27434467 PMCID: PMC5373704 DOI: 10.1503/jpn.150358] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Increased attention bias toward drug-related cues over non-drug-related intrinsically pleasant reinforcers is a hallmark of drug addiction. In this study we used the late positive potential (LPP) to investigate whether such increased attention bias toward drug-related relative to non-drug-related cues changes over a protracted period of reduced drug use in treatment-seeking individuals with a cocaine use disorder (CUD). METHODS Treatment-seeking individuals with CUD and matched healthy controls passively viewed a series of pleasant, neutral and drug-related pictures while their event-related potentials were recorded at baseline (≤ 3 weeks after treatment initiation) and at 6-month follow-up (only CUD). RESULTS We included 19 treatment-seeking individuals with CUD and 18 matched controls in our analyses. The results showed a reversal in attention bias (i.e., LPP amplitude) from baseline (i.e., drug > pleasant) to follow-up (i.e., pleasant > drug) driven by an increased attentional engagement with pleasant pictures; this LPP reversal was paralleled by a concomitant reduction in self-reported wanting and craving for cocaine in the CUD group. Furthermore, reduced attention bias toward drug-related cues (relative to pleasant cues) was correlated with longer duration of abstinence at baseline, and the extent of its longitudinal reversal was correlated with decreased craving at follow-up, providing support for abstinence as a putative mechanism of this bottom-up attentional change. LIMITATIONS A limited sample size and the use of the same set of pictures at baseline and follow-up were the major limitations of this study. CONCLUSION Results collectively indicate that, by tracking with drug abstinence, LPP in response to drug-related relative to pleasant cues may serve as an indicator of clinical progress in treatment-seeking individuals with CUD.
Collapse
|
62
|
Moeller SJ, Konova AB, Tomasi D, Parvaz MA, Goldstein RZ. Abnormal response to methylphenidate across multiple fMRI procedures in cocaine use disorder: feasibility study. Psychopharmacology (Berl) 2016; 233:2559-69. [PMID: 27150080 PMCID: PMC4916842 DOI: 10.1007/s00213-016-4307-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE The indirect dopamine agonist methylphenidate remediates cognitive deficits in psychopathology, but the individual characteristics that determine its effects on the brain are not known. OBJECTIVES We aimed to determine whether targeted dopaminergically modulated traits and individual differences could predict neural response to methylphenidate across multiple functional magnetic resonance imaging (fMRI) procedures. METHODS We combined neural measures from three separate procedures (two inhibitory control tasks differing in their degree of emotional salience and resting-state functional connectivity) during methylphenidate (20 mg oral, versus randomized and counterbalanced placebo) and correlated these aggregated responses with cocaine use disorder diagnosis (22 cocaine abusers, 21 controls), symptoms of attention deficit hyperactivity disorder, and working memory capacity. RESULTS Cocaine abusers, relative to controls, had a lower response in the dorsolateral prefrontal cortex to methylphenidate across all three procedures, driven by responses to the two inhibitory control tasks; reduced methylphenidate fMRI response in this region further correlated with more frequent cocaine use. CONCLUSIONS Cocaine abuse (and its frequency), associated with lower tonic dopamine levels, correlated with a reduction in activation to methylphenidate (versus placebo). These initial results provide feasibility to the idea that multimodal fMRI tasks can be meaningfully aggregated, and that these aggregated procedures show a common disruption in addiction in a highly anticipated region relevant to cognitive control. Results also suggest that drug use frequency may represent an important modulatory variable in interpreting the efficacy of pharmacologically enhanced cognitive interventions in addiction.
Collapse
|
63
|
Parvaz MA, Gabbay V, Malaker P, Goldstein RZ. Objective and specific tracking of anhedonia via event-related potentials in individuals with cocaine use disorders. Drug Alcohol Depend 2016; 164:158-165. [PMID: 27226335 PMCID: PMC4893885 DOI: 10.1016/j.drugalcdep.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hyposensitivity to non-drug reward, behaviorally manifested as anhedonia, is a hallmark of chronic substance use. Anhedonia is a transdiagnostic symptom underpinned by neurobiochemical disturbances in the reward circuit, yet an objective measure to assess anhedonia severity still eludes the field. We hypothesized that the Reward Positivity (RewP) component of the event-related potentials (ERPs) will specifically track anhedonia as the RewP is attributed to the same brain regions that are also implicated in anhedonia. METHODS Forty-six individuals with cocaine use disorders (iCUD) performed a gambling task predicting whether they would win or lose money on each trial, while ERP data was acquired. RewP in response to predicted win trials was extracted from the ERPs using the principal component analysis. State anhedonia and depression severity were assessed using the Cocaine Selective Severity Assessment (CSSA). RESULTS Although RewP amplitude correlated with both anhedonia and depression, only the RewP-anhedonia correlation survived a correction for depression severity. Further, a hierarchical multiple regression analysis revealed that anhedonia explained a significant amount of variance in the RewP amplitude, and this variance was significantly greater than that explained by demographics, severity and recency of drug use and even depression. CONCLUSIONS These results show that RewP amplitude in response to rewarded trials tracks state anhedonia severity in iCUD. We argue that this association is perhaps driven by the activity in the dopaminergic mesocorticolimbic reward pathway that may underlie anhedonia symptomology as well as modulate RewP amplitude.
Collapse
|
64
|
Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. Neuroimage 2016; 151:105-116. [PMID: 27288319 DOI: 10.1016/j.neuroimage.2016.06.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/26/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023] Open
Abstract
Reduced capacity to cognitively regulate emotional responses is a common impairment across major neuropsychiatric disorders. Brain systems supporting one such strategy, cognitive reappraisal of emotion, have been investigated extensively in the healthy population, a research focus that has led to influential meta-analyses and literature reviews. However, the emerging literature on neural substrates underlying cognitive reappraisal in clinical populations is yet to be systematically reviewed. Therefore, the goal of the current review was to summarize the literature on cognitive reappraisal and highlight common and distinct neural correlates of impaired emotion regulation in clinical populations. We performed a two-stage systematic literature search, selecting 32 studies on cognitive reappraisal in individuals with mood disorders (n=12), anxiety disorders (n=14), addiction (n=2), schizophrenia (n=2), and personality disorders (n=5). Comparing findings across these disorders allowed us to determine underlying mechanisms that were either disorder-specific or common across disorders. Results showed that across clinical populations, individuals consistently demonstrated reduced recruitment of the ventrolateral prefrontal cortex (vlPFC) and dorsolateral prefrontal cortex (dlPFC) during downregulation of negative emotion, indicating that there may be a core deficit in selection, manipulation and inhibition during reappraisal. Further, in individuals with mood disorders, amygdala responses were enhanced during downregulation of emotion, suggesting hyperactive bottom-up responses or reduced modulatory capacity. In individuals with anxiety disorders, however, emotion regulation revealed reduced activity in the dorsal anterior cingulate cortex (dACC) and inferior/superior parietal cortex, possibly indicating a deficit in allocation of attention. The reviewed studies thus provide evidence for both disorder-specific and common deficits across clinical populations. These findings highlight the role of distinct neural substrates as targets for developing/assessing novel therapeutic approaches that are geared towards cognitive regulation of emotion, as well as the importance of transdiagnostic research to identify both disorder specific and core mechanisms.
Collapse
|
65
|
Konova AB, Moeller SJ, Parvaz MA, Froböse MI, Alia-Klein N, Goldstein RZ. Converging effects of cocaine addiction and sex on neural responses to monetary rewards. Psychiatry Res 2016; 248:110-118. [PMID: 26809268 PMCID: PMC4752897 DOI: 10.1016/j.pscychresns.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/09/2015] [Accepted: 01/03/2016] [Indexed: 12/11/2022]
Abstract
There is some evidence that cocaine addiction manifests as more severe in women than men. Here, we examined whether these sex-specific differences in the clinical setting parallel differential neurobehavioral sensitivity to rewards in the laboratory setting. Twenty-eight (14 females/14 males) cocaine-dependent and 25 (11 females/14 males) healthy individuals completed a monetary reward task during fMRI. Results showed that the effects of cocaine dependence and sex overlapped in regions traditionally considered part of the mesocorticolimbic brain circuits including the hippocampus and posterior cingulate cortex (PCC), as well as those outside of this circuit (e.g., the middle temporal gyrus). The nature of this 'overlap' was such that both illness and female sex were associated with lower activations in these regions in response to money. Diagnosis-by-sex interactions instead emerged in the frontal cortex, such that cocaine-dependent females exhibited lower precentral gyrus and greater inferior frontal gyrus (IFG) activations relative to cocaine-dependent males and healthy females. Within these regions modulated both by diagnosis and sex, lower activation in the hippocampus and PCC, and higher IFG activations, correlated with increased subjective craving during the task. Results suggest sex-specific differences in addiction extend to monetary rewards and may contribute to core symptoms linked to relapse.
Collapse
|
66
|
Moeller SJ, Couto L, Cohen V, Lalazar Y, Makotkine I, Williams N, Yehuda R, Goldstein RZ, Geer EB. Glucocorticoid Regulation of Food-Choice Behavior in Humans: Evidence from Cushing's Syndrome. Front Neurosci 2016; 10:21. [PMID: 26903790 PMCID: PMC4742561 DOI: 10.3389/fnins.2016.00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which glucocorticoids regulate food intake and resulting body mass in humans are not well-understood. One potential mechanism could involve modulation of reward processing, but human stress models examining effects of glucocorticoids on behavior contain important confounds. Here, we studied individuals with Cushing's syndrome, a rare endocrine disorder characterized by chronic excess endogenous glucocorticoids. Twenty-three patients with Cushing's syndrome (13 with active disease; 10 with disease in remission) and 15 controls with a comparably high body mass index (BMI) completed two simulated food-choice tasks (one with “explicit” task contingencies and one with “probabilistic” task contingencies), during which they indicated their objective preference for viewing high calorie food images vs. standardized pleasant, unpleasant, and neutral images. All participants also completed measures of food craving, and approximately half of the participants provided 24-h urine samples for assessment of cortisol and cortisone concentrations. Results showed that on the explicit task (but not the probabilistic task), participants with active Cushing's syndrome made fewer food-related choices than participants with Cushing's syndrome in remission, who in turn made fewer food-related choices than overweight controls. Corroborating this group effect, higher urine cortisone was negatively correlated with food-related choice in the subsample of all participants for whom these data were available. On the probabilistic task, despite a lack of group differences, higher food-related choice correlated with higher state and trait food craving in active Cushing's patients. Taken together, relative to overweight controls, Cushing's patients, particularly those with active disease, displayed a reduced vigor of responding for food rewards that was presumably attributable to glucocorticoid abnormalities. Beyond Cushing's, these results may have relevance for elucidating glucocorticoid contributions to food-seeking behavior, enhancing mechanistic understanding of weight fluctuations associated with oral glucocorticoid therapy and/or chronic stress, and informing the neurobiology of neuropsychiatric conditions marked by abnormal cortisol dynamics (e.g., major depression, Alzheimer's disease).
Collapse
|
67
|
Belilovsky E, Gkirtzou K, Misyrlis M, Konova AB, Honorio J, Alia-Klein N, Goldstein RZ, Samaras D, Blaschko MB. Predictive sparse modeling of fMRI data for improved classification, regression, and visualization using the k -support norm. Comput Med Imaging Graph 2015; 46 Pt 1:40-46. [DOI: 10.1016/j.compmedimag.2015.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 11/29/2022]
|
68
|
Mackey S, Kan KJ, Chaarani B, Alia-Klein N, Batalla A, Brooks S, Cousijn J, Dagher A, de Ruiter M, Desrivieres S, Feldstein Ewing SW, Goldstein RZ, Goudriaan AE, Heitzeg MM, Hutchison K, Li CSR, London ED, Lorenzetti V, Luijten M, Martin-Santos R, Morales AM, Paulus MP, Paus T, Pearlson G, Schluter R, Momenan R, Schmaal L, Schumann G, Sinha R, Sjoerds Z, Stein DJ, Stein EA, Solowij N, Tapert S, Uhlmann A, Veltman D, van Holst R, Walter H, Wright MJ, Yucel M, Yurgelun-Todd D, Hibar DP, Jahanshad N, Thompson PM, Glahn DC, Garavan H, Conrod P. Genetic imaging consortium for addiction medicine: From neuroimaging to genes. PROGRESS IN BRAIN RESEARCH 2015; 224:203-23. [PMID: 26822360 PMCID: PMC4820288 DOI: 10.1016/bs.pbr.2015.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the sample size of a typical neuroimaging study lacks sufficient statistical power to explore unknown genomic associations with brain phenotypes, several international genetic imaging consortia have been organized in recent years to pool data across sites. The challenges and achievements of these consortia are considered here with the goal of leveraging these resources to study addiction. The authors of this review have joined together to form an Addiction working group within the framework of the ENIGMA project, a meta-analytic approach to multisite genetic imaging data. Collectively, the Addiction working group possesses neuroimaging and genomic data obtained from over 10,000 subjects. The deadline for contributing data to the first round of analyses occurred at the beginning of May 2015. The studies performed on this data should significantly impact our understanding of the genetic and neurobiological basis of addiction.
Collapse
|
69
|
Moeller SJ, Bederson L, Alia-Klein N, Goldstein RZ. Neuroscience of inhibition for addiction medicine: from prediction of initiation to prediction of relapse. PROGRESS IN BRAIN RESEARCH 2015; 223:165-88. [PMID: 26806776 DOI: 10.1016/bs.pbr.2015.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A core deficit in drug addiction is the inability to inhibit maladaptive drug-seeking behavior. Consistent with this deficit, drug-addicted individuals show reliable cross-sectional differences from healthy nonaddicted controls during tasks of response inhibition accompanied by brain activation abnormalities as revealed by functional neuroimaging. However, it is less clear whether inhibition-related deficits predate the transition to problematic use, and, in turn, whether these deficits predict the transition out of problematic substance use. Here, we review longitudinal studies of response inhibition in children/adolescents with little substance experience and longitudinal studies of already addicted individuals attempting to sustain abstinence. Results show that response inhibition and its underlying neural correlates predict both substance use outcomes (onset and abstinence). Neurally, key roles were observed for multiple regions of the frontal cortex (e.g., inferior frontal gyrus, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex). In general, less activation of these regions during response inhibition predicted not only the onset of substance use, but interestingly also better abstinence-related outcomes among individuals already addicted. The role of subcortical areas, although potentially important, is less clear because of inconsistent results and because these regions are less classically reported in studies of healthy response inhibition. Overall, this review indicates that response inhibition is not simply a manifestation of current drug addiction, but rather a core neurocognitive dimension that predicts key substance use outcomes. Early intervention in inhibitory deficits could have high clinical and public health relevance.
Collapse
|
70
|
Moeller SJ, Beebe-Wang N, Schneider KE, Konova AB, Parvaz MA, Alia-Klein N, Hurd YL, Goldstein RZ. Effects of an opioid (proenkephalin) polymorphism on neural response to errors in health and cocaine use disorder. Behav Brain Res 2015; 293:18-26. [PMID: 26164485 DOI: 10.1016/j.bbr.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
Chronic exposure to drugs of abuse perturbs the endogenous opioid system, which plays a critical role in the development and maintenance of addictive disorders. Opioid genetics may therefore play an important modulatory role in the expression of substance use disorders, but these genes have not been extensively characterized, especially in humans. In the current imaging genetics study, we investigated a single nucleotide polymorphism (SNP) of the protein-coding proenkephalin gene (PENK: rs2609997, recently shown to be associated with cannabis dependence) in 55 individuals with cocaine use disorder and 37 healthy controls. Analyses tested for PENK associations with fMRI response to error (during a classical color-word Stroop task) and gray matter volume (voxel-based morphometry) as a function of Diagnosis (cocaine, control). Results revealed whole-brain Diagnosis×PENK interactions on the neural response to errors (fMRI error>correct contrast) in the right putamen, left rostral anterior cingulate cortex/medial orbitofrontal cortex, and right inferior frontal gyrus; there was also a significant Diagnosis×PENK interaction on right inferior frontal gyrus gray matter volume. These interactions were driven by differences between individuals with cocaine use disorders and controls that were accentuated in individuals carrying the higher-risk PENK C-allele. Taken together, the PENK polymorphism-and potentially opioid neurotransmission more generally-modulates functioning and structural integrity of brain regions previously implicated in error-related processing. PENK could potentially render a subgroup of individuals with cocaine use disorder (i.e., C-allele carriers) more sensitive to mistakes or other related challenges; in future studies, these results could contribute to the development of individualized genetics-informed treatments.
Collapse
|
71
|
Konova AB, Moeller SJ, Tomasi D, Goldstein RZ. Effects of chronic and acute stimulants on brain functional connectivity hubs. Brain Res 2015; 1628:147-56. [PMID: 25721787 DOI: 10.1016/j.brainres.2015.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
Abstract
The spatial distribution and strength of information processing 'hubs' are essential features of the brain׳s network topology, and may thus be particularly susceptible to neuropsychiatric disease. Despite growing evidence that drug addiction alters functioning and connectivity of discrete brain regions, little is known about whether chronic drug use is associated with abnormalities in this network-level organization, and if such abnormalities could be targeted for intervention. We used functional connectivity density (FCD) mapping to evaluate how chronic and acute stimulants affect brain hubs (i.e., regions with many short-range or long-range functional connections). Nineteen individuals with cocaine use disorders (CUD) and 15 healthy controls completed resting-state fMRI scans following a randomly assigned dose of methylphenidate (MPH; 20mg) or placebo. Short-range and long-range FCD maps were computed for each participant and medication condition. CUD participants had increased short-range and long-range FCD in the ventromedial prefrontal cortex, posterior cingulate/precuneus, and putamen/amygdala, which in areas of the default mode network correlated with years of use. Across participants, MPH decreased short-range FCD in the thalamus/putamen, and decreased long-range FCD in the supplementary motor area and postcentral gyrus. Increased density of short-range and long-range functional connections to default mode hubs in CUD suggests an overrepresentation of these resource-expensive hubs. While the effects of MPH on FCD were only partly overlapping with those of CUD, MPH-induced reduction in the density of short-range connections to the putamen/thalamus, a network of core relevance to habit formation and addiction, suggests that some FCD abnormalities could be targeted for intervention.
Collapse
|
72
|
|
73
|
Parvaz MA, Moeller SJ, Goldstein RZ, Proudfit GH. Electrocortical evidence of increased post-reappraisal neural reactivity and its link to depressive symptoms. Soc Cogn Affect Neurosci 2015; 10:78-84. [PMID: 24526188 PMCID: PMC4994842 DOI: 10.1093/scan/nsu027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 01/08/2014] [Accepted: 02/10/2014] [Indexed: 11/12/2022] Open
Abstract
Few studies have examined whether effortful emotion regulation has a protracted impact on subsequent affective appraisal, and even fewer have investigated this effect on a trial-by-trial basis. In this study, we hypothesized that engaging cognitive resources via reappraisal during a trial would result in a subsequent period of increased reactivity on the next trial, as quantified using event-related potentials and oscillations. Forty-eight healthy individuals passively viewed unpleasant and neutral pictures followed by an auditory instruction to either continue viewing normally or reappraise emotional response to pictures. Viewing unpleasant pictures yielded increased late positive potential (LPP) and decreased posterior alpha (8-13 Hz) compared with neutral pictures. A similar pattern was observed on trials that immediately 'followed' emotion regulation instructions. Moreover, individuals with increased self-reported depressive symptoms showed greater LPP and alpha modulation following emotion regulation, suggesting that these responses may relate to compromised emotion regulation ability. This study demonstrates that cognitive reappraisal induces subsequent heightened reactivity that may reflect transient resource depletion, and these effects are more pronounced among those with increased depressive symptoms. Interventions that focus on emotion regulation might use these electrocortical markers to track changes in regulatory efficacy.
Collapse
|
74
|
Moeller SJ, Goldstein RZ. Impaired self-awareness in human addiction: deficient attribution of personal relevance. Trends Cogn Sci 2014; 18:635-41. [PMID: 25278368 PMCID: PMC4254155 DOI: 10.1016/j.tics.2014.09.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/25/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
Abstract
Compromised self-awareness of illness-related deficits and behaviors in psychopathology (e.g., schizophrenia) has been associated with deficient functioning of cortical midline regions including the ventromedial prefrontal cortex (vmPFC), implicated in personal relevance. Here, we review and critically analyze recent evidence to suggest that vmPFC abnormalities could similarly underlie deficient tagging of personal relevance in drug addiction, evidenced by a constellation of behaviors encompassing drug-biased attention, negative outcome insensitivity, self-report/behavior dissociation, and social inappropriateness. This novel framework might clarify, for example, why drug-addicted individuals often ruin long-standing relationships or forego important job opportunities while continuing to engage in uncontrolled drug-taking. Therapeutic interventions targeting personal relevance and associated vmPFC functioning could enhance self-awareness and facilitate more adaptive behavior in this chronically relapsing psychopathology.
Collapse
|
75
|
Moeller SJ, Froböse MI, Konova AB, Misyrlis M, Parvaz MA, Goldstein RZ, Alia-Klein N. Common and distinct neural correlates of inhibitory dysregulation: stroop fMRI study of cocaine addiction and intermittent explosive disorder. J Psychiatr Res 2014; 58:55-62. [PMID: 25106072 PMCID: PMC4163519 DOI: 10.1016/j.jpsychires.2014.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/20/2014] [Accepted: 07/17/2014] [Indexed: 10/25/2022]
Abstract
Despite the high prevalence and consequences associated with externalizing psychopathologies, little is known about their underlying neurobiological mechanisms. Studying multiple externalizing disorders, each characterized by compromised inhibition, could reveal both common and distinct mechanisms of impairment. The present study therefore compared individuals with intermittent explosive disorder (IED) (N = 11), individuals with cocaine use disorder (CUD) (N = 21), and healthy controls (N = 17) on task performance and functional magnetic resonance imaging (fMRI) activity during an event-related color-word Stroop task; self-reported trait anger expression was also collected in all participants. Results revealed higher error-related activity in the two externalizing psychopathologies as compared with controls in two subregions of the dorsolateral prefrontal cortex (DLPFC) (a region known to be involved in exerting cognitive control during this task), suggesting a neural signature of inhibitory-related error processing common to these psychopathologies. Interestingly, in one DLPFC subregion, error-related activity was especially high in IED, possibly indicating a specific neural correlate of clinically high anger expression. Supporting this interpretation, error-related DLPFC activity in this same subregion positively correlated with trait anger expression across all participants. These collective results help to illuminate common and distinct neural signatures of impaired self-control, and could suggest novel therapeutic targets for increasing self-control in clinical aggression specifically and/or in various externalizing psychopathologies more generally.
Collapse
|