51
|
Lai KY, Galan SRG, Zeng Y, Zhou TH, He C, Raj R, Riedl J, Liu S, Chooi KP, Garg N, Zeng M, Jones LH, Hutchings GJ, Mohammed S, Nair SK, Chen J, Davis BG, van der Donk WA. LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. Cell 2021; 184:2680-2695.e26. [PMID: 33932340 DOI: 10.1016/j.cell.2021.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Enzyme-mediated damage repair or mitigation, while common for nucleic acids, is rare for proteins. Examples of protein damage are elimination of phosphorylated Ser/Thr to dehydroalanine/dehydrobutyrine (Dha/Dhb) in pathogenesis and aging. Bacterial LanC enzymes use Dha/Dhb to form carbon-sulfur linkages in antimicrobial peptides, but the functions of eukaryotic LanC-like (LanCL) counterparts are unknown. We show that LanCLs catalyze the addition of glutathione to Dha/Dhb in proteins, driving irreversible C-glutathionylation. Chemo-enzymatic methods were developed to site-selectively incorporate Dha/Dhb at phospho-regulated sites in kinases. In human MAPK-MEK1, such "elimination damage" generated aberrantly activated kinases, which were deactivated by LanCL-mediated C-glutathionylation. Surveys of endogenous proteins bearing damage from elimination (the eliminylome) also suggest it is a source of electrophilic reactivity. LanCLs thus remove these reactive electrophiles and their potentially dysregulatory effects from the proteome. As knockout of LanCL in mice can result in premature death, repair of this kind of protein damage appears important physiologically.
Collapse
|
52
|
Danelius E, Halaby S, van der Donk WA, Gonen T. MicroED in natural product and small molecule research. Nat Prod Rep 2021; 38:423-431. [PMID: 32939523 PMCID: PMC7965795 DOI: 10.1039/d0np00035c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Covering: 2013 to 2020The electron cryo-microscopy (cryo-EM) method Microcrystal Electron Diffraction (MicroED) allows the collection of high-resolution structural data from vanishingly small crystals that appear like amorphous powders or very fine needles. Since its debut in 2013, data collection and analysis schemes have been fine-tuned, and there are currently close to 100 structures determined by MicroED. Although originally developed to study proteins, MicroED is also very powerful for smaller systems, with some recent and very promising examples from the field of natural products. Herein, we review what has been achieved so far and provide examples of natural product structures, as well as demonstrate the expected future impact of MicroED to the field of natural product and small molecule research.
Collapse
|
53
|
Wu C, van der Donk WA. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Curr Opin Biotechnol 2021; 69:221-231. [PMID: 33556835 DOI: 10.1016/j.copbio.2020.12.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Natural products have historically been important lead sources for drug development, particularly to combat infectious diseases. Increasingly, their structurally complex scaffolds are also envisioned as leads for applications for which they did not evolve, an approach aided by engineering of new-to-nature analogs. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are promising candidates for bioengineering because they are genetically encoded and their biosynthetic enzymes display significant substrate tolerance. This review highlights recent advances in the discovery of highly unusual new reactions by genome mining and the application of engineering approaches to generate and screen novel RiPP variants. Furthermore, through the use of synthetic biology approaches, hybrid molecules with enhanced or completely new activities have been identified, which opens the door for future advancement of RiPPs as potential next-generation therapeutics.
Collapse
|
54
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 438] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
55
|
Bobeica SC, Zhu L, Acedo JZ, Tang W, van der Donk WA. Structural determinants of macrocyclization in substrate-controlled lanthipeptide biosynthetic pathways. Chem Sci 2020; 11:12854-12870. [PMID: 34094481 PMCID: PMC8163290 DOI: 10.1039/d0sc01651a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lanthipeptides are characterized by thioether crosslinks formed by post-translational modifications. The cyclization process that favors a single ring pattern over many other possible ring patterns has been the topic of much speculation. Recent studies suggest that for some systems the cyclization pattern and stereochemistry is determined not by the enzyme, but by the sequence of the precursor peptide. However, the factors that govern the outcome of the cyclization process are not understood. This study presents the three-dimensional structures of seven lanthipeptides determined by nuclear magnetic resonance spectroscopy, including five prochlorosins and the two peptides that make up cytolysin, a virulence factor produced by Enterococcus faecalis that is directly linked to human disease. These peptides were chosen because their substrate sequence determines either the ring pattern (prochlorosins) or the stereochemistry of cyclization (cytolysins). We present the structures of prochlorosins 1.1, 2.1, 2.8, 2.10 and 2.11, the first three-dimensional structures of prochlorosins. Our findings provide insights into the molecular determinants of cyclization as well as why some prochlorosins may be better starting points for library generation than others. The structures of the large and small subunits of the enterococcal cytolysin show that these peptides have long helical stretches, a rare observation for lanthipeptides characterized to date. These helices may explain their pore forming activity and suggest that the small subunit may recognize a molecular target followed by recruitment of the large subunit to span the membrane.
Collapse
|
56
|
Rahman IR, Acedo JZ, Liu XR, Zhu L, Arrington J, Gross ML, van der Donk WA. Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2. ACS Chem Biol 2020; 15:1473-1486. [PMID: 32293871 DOI: 10.1021/acschembio.0c00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class II lanthipeptides belong to a diverse group of natural products known as ribosomally synthesized and post-translationally modified peptides (RiPPs). Most RiPP precursor peptides contain an N-terminal recognition sequence known as the leader peptide, which is typically recognized by biosynthetic enzymes that catalyze modifications on the C-terminal core peptide. For class II lanthipeptides, these are carried out by a bifunctional lanthipeptide synthetase (LanM) that catalyzes dehydration and cyclization reactions on peptidic substrates to generate thioether-containing, macrocyclic molecules. Some lanthipeptide synthetases are extraordinarily substrate tolerant, making them promising candidates for biotechnological applications such as combinatorial biosynthesis and cyclic peptide library construction. In this study, we characterized the mode of leader peptide recognition by HalM2, the lanthipeptide synthetase responsible for the production of the antimicrobial peptide haloduracin β. Using NMR spectroscopic techniques, in vitro binding assays, and enzyme activity assays, we identified substrate residues that are important for binding to HalM2 and for post-translational modification of the peptide substrates. Additionally, we provide evidence of the binding site on the enzyme using binding assays with truncated enzyme variants, hydrogen-deuterium exchange mass spectrometry, and photoaffinity labeling. Understanding the mechanism by which lanthipeptide synthetases recognize their substrate will facilitate their use in biotechnology, as well as further our general understanding of how RiPP enzymes recognize their substrates.
Collapse
|
57
|
Ren H, Shi C, Bothwell IR, van der Donk WA, Zhao H. Discovery and Characterization of a Class IV Lanthipeptide with a Nonoverlapping Ring Pattern. ACS Chem Biol 2020; 15:1642-1649. [PMID: 32356655 DOI: 10.1021/acschembio.0c00267] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lanthipeptides constitute a major family of ribosomally synthesized and post-translationally modified peptides (RiPPs). They are classified into four subfamilies, based on the characteristics of their lanthipeptide synthetases. While over a hundred lanthipeptides have been discovered to date, very few of them are class IV lanthipeptides and the latter are all structurally similar. Here, we identified an uncharacterized group of class IV lanthipeptides using bioinformatics analysis. One representative pathway from Streptomyces sp. NRRL S-1022 was expressed in Escherichia coli, which generated a lanthipeptide with two nonoverlapping rings that have not been reported for known class IV lanthipeptides. Further investigation into the biosynthetic mechanism revealed that multiple modification pathways are in operation in which dehydration and cyclization occur in parallel. While peptidases for maturation of class IV lanthipeptides have been elusive, two aminopeptidases encoded in the genome of Streptomyces sp. NRRL S-1022 were shown to process the modified peptide by the dual endopeptidase/aminopeptidase activity. This work opens doors to discover more class IV lanthipeptides with interesting structural features and biological activities.
Collapse
|
58
|
Walker MC, Eslami SM, Hetrick KJ, Ackenhusen SE, Mitchell DA, van der Donk WA. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 2020; 21:387. [PMID: 32493223 PMCID: PMC7268733 DOI: 10.1186/s12864-020-06785-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background Lanthipeptides belong to the ribosomally synthesized and post-translationally modified peptide group of natural products and have a variety of biological activities ranging from antibiotics to antinociceptives. These peptides are cyclized through thioether crosslinks and can bear other secondary post-translational modifications. While lanthipeptide biosynthetic gene clusters can be identified by the presence of genes encoding characteristic enzymes involved in the post-translational modification process, locating the precursor peptides encoded within these clusters is challenging due to their short length and high sequence variability, which limits the high-throughput exploration of lanthipeptide biosynthesis. To address this challenge, we enhanced the predictive capabilities of Rapid ORF Description & Evaluation Online (RODEO) to identify members of all four known classes of lanthipeptides. Results Using RODEO, we mined over 100,000 bacterial and archaeal genomes in the RefSeq database. We identified nearly 8500 lanthipeptide precursor peptides. These precursor peptides were identified in a broad range of bacterial phyla as well as the Euryarchaeota phylum of archaea. Bacteroidetes were found to encode a large number of these biosynthetic gene clusters, despite making up a relatively small portion of the genomes in this dataset. A number of these precursor peptides are similar to those of previously characterized lanthipeptides, but even more were not, including potential antibiotics. One such new antimicrobial lanthipeptide was purified and characterized. Additionally, examination of the biosynthetic gene clusters revealed that enzymes installing secondary post-translational modifications are more widespread than initially thought. Conclusion Lanthipeptide biosynthetic gene clusters are more widely distributed and the precursor peptides encoded within these clusters are more diverse than previously appreciated, demonstrating that the lanthipeptide sequence-function space remains largely underexplored.
Collapse
|
59
|
Huo L, Zhao X, Acedo JZ, Estrada P, Nair SK, van der Donk WA. Characterization of a Dehydratase and Methyltransferase in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides in Lachnospiraceae. Chembiochem 2020; 21:190-199. [PMID: 31532570 PMCID: PMC6980331 DOI: 10.1002/cbic.201900483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/15/2022]
Abstract
As a result of the exponential increase in genomic data, discovery of novel ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) has progressed rapidly in the past decade. The lanthipeptides are a major subset of RiPPs. Through genome mining we identified a novel lanthipeptide biosynthetic gene cluster (lah) from Lachnospiraceae bacterium C6A11, an anaerobic bacterium that is a member of the human microbiota and which is implicated in the development of host disease states such as type 2 diabetes and resistance to Clostridium difficile colonization. The lah cluster encodes at least seven putative precursor peptides and multiple post-translational modification (PTM) enzymes. Two unusual class II lanthipeptide synthetases LahM1/M2 and a substrate-tolerant S-adenosyl-l-methionine (SAM)-dependent methyltransferase LahSB are biochemically characterized in this study. We also present the crystal structure of LahSB in complex with product S-adenosylhomocysteine. This study sets the stage for further exploration of the final products of the lah pathway as well as their potential physiological functions in human/animal gut microbiota.
Collapse
|
60
|
McLaughlin MI, van der Donk WA. The Fellowship of the Rings: Macrocyclic Antibiotic Peptides Reveal an Anti-Gram-Negative Target. Biochemistry 2020; 59:343-345. [PMID: 31909599 PMCID: PMC8223768 DOI: 10.1021/acs.biochem.9b01086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
61
|
Bobeica SC, Zhu L, Acedo JZ, Tang W, van der Donk WA. Correction: Structural determinants of macrocyclization in substrate-controlled lanthipeptide biosynthetic pathways. Chem Sci 2020; 11:12871-12876. [PMID: 34101773 PMCID: PMC8163232 DOI: 10.1039/d0sc90208j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Correction for ‘Structural determinants of macrocyclization in substrate-controlled lanthipeptide biosynthetic pathways’ by Silvia C. Bobeica et al., Chem. Sci., 2020, DOI: 10.1039/d0sc01651a.
Collapse
|
62
|
Zhang Z, van der Donk WA. Nonribosomal Peptide Extension by a Peptide Amino-Acyl tRNA Ligase. J Am Chem Soc 2019; 141:19625-19633. [PMID: 31751505 DOI: 10.1021/jacs.9b07111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The catalytic use of a small peptide scaffold for the biosynthesis of amino acid-derived natural products is a recently discovered new biosynthetic strategy. During this process, a peptide-amino acyl tRNA ligase (PEARL) adds amino acids to the C-terminus of a small peptide scaffold in an ATP- and tRNA-dependent process. The mechanism of this unusual transformation is currently not known. In this study, we present a detailed biochemical and mechanistic study of TglB (UniProtKB-F3HQJ1), a PEARL that catalyzes the addition of Cys to the C-terminus of the peptide TglA in the biosynthesis of 3-thiaglutamate in the plant pathogen Pseudomonas syringae. TglB recognizes several important residues close to the C-terminus of TglA to perform its activity and is tolerant with respect to the last amino acid of its substrate peptide. The enzyme recognizes the acceptor stem of tRNACys, as micro- and minihelices, truncated versions of full-length tRNACys that contain the acceptor stem, were also accepted. Mutagenesis of conserved residues in TglB identified several key residues for catalysis and did not support the possibility of TglB adopting various ping-pong mechanisms to catalyze the amino acid addition reaction. Using isotopic labeling studies, we demonstrate that ATP is used to directly phosphorylate the C-terminal carboxylate of TglA. Collectively, the data support a general mechanism for the amino acid addition reaction catalyzed by this class of enzyme.
Collapse
|
63
|
Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, White RC, Clarke TH, Nguyen K, Torralba M, Shao Y, Liu J, Hernandez-Morales A, Lessor L, Rahman IR, Miyamoto Y, Ly M, Gao B, Sun W, Kiesel R, Hutmacher F, Lee S, Ventura-Cots M, Bosques-Padilla F, Verna EC, Abraldes JG, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross DL, Ho SB, Louvet A, Lucey MR, Mathurin P, Garcia-Tsao G, Bataller R, Tu XM, Eckmann L, van der Donk WA, Young R, Lawley TD, Stärkel P, Pride D, Fouts DE, Schnabl B. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 2019; 575:505-511. [PMID: 31723265 PMCID: PMC6872939 DOI: 10.1038/s41586-019-1742-x] [Citation(s) in RCA: 511] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
Chronic liver disease due to alcohol-use disorder contributes markedly to the global burden of disease and mortality1-3. Alcoholic hepatitis is a severe and life-threatening form of alcohol-associated liver disease. The gut microbiota promotes ethanol-induced liver disease in mice4, but little is known about the microbial factors that are responsible for this process. Here we identify cytolysin-a two-subunit exotoxin that is secreted by Enterococcus faecalis5,6-as a cause of hepatocyte death and liver injury. Compared with non-alcoholic individuals or patients with alcohol-use disorder, patients with alcoholic hepatitis have increased faecal numbers of E. faecalis. The presence of cytolysin-positive (cytolytic) E. faecalis correlated with the severity of liver disease and with mortality in patients with alcoholic hepatitis. Using humanized mice that were colonized with bacteria from the faeces of patients with alcoholic hepatitis, we investigated the therapeutic effects of bacteriophages that target cytolytic E. faecalis. We found that these bacteriophages decrease cytolysin in the liver and abolish ethanol-induced liver disease in humanized mice. Our findings link cytolytic E. faecalis with more severe clinical outcomes and increased mortality in patients with alcoholic hepatitis. We show that bacteriophages can specifically target cytolytic E. faecalis, which provides a method for precisely editing the intestinal microbiota. A clinical trial with a larger cohort is required to validate the relevance of our findings in humans, and to test whether this therapeutic approach is effective for patients with alcoholic hepatitis.
Collapse
|
64
|
Acedo JZ, Bothwell IR, An L, Trouth A, Frazier C, van der Donk WA. O-Methyltransferase-Mediated Incorporation of a β-Amino Acid in Lanthipeptides. J Am Chem Soc 2019; 141:16790-16801. [PMID: 31568727 DOI: 10.1021/jacs.9b07396] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lanthipeptides represent a large class of cyclic natural products defined by the presence of lanthionine (Lan) and methyllanthionine (MeLan) cross-links. With the advances in DNA sequencing technologies and genome mining tools, new biosynthetic enzymes capable of installing unusual structural features are continuously being discovered. In this study, we investigated an O-methyltransferase that is a member of the most prominent auxiliary enzyme family associated with class I lanthipeptide biosynthetic gene clusters. Despite the prevalence of these enzymes, their function has not been established. Herein, we demonstrate that the O-methyltransferase OlvSA encoded in the olv gene cluster from Streptomyces olivaceus NRRL B-3009 catalyzes the rearrangement of a highly conserved aspartate residue to a β-amino acid, isoaspartate, in the lanthipeptide OlvA(BCSA). We elucidated the NMR solution structure of the GluC-digested peptide, OlvA(BCSA)GluC, which revealed a unique ring topology comprising four interlocking rings and positions the isoaspartate residue in a solvent exposed loop that is stabilized by a MeLan ring. Gas chromatography-mass spectrometry analysis further indicated that OlvA(BCSA) contains two dl-MeLan rings and two Lan rings with an unusual ll-stereochemistry. Lastly, in vitro reconstitution of OlvSA activity showed that it is a leader peptide-independent and S-adenosyl methionine-dependent O-methyltransferase that mediates the conversion of a highly conserved aspartate residue in a cyclic substrate into a succinimide, which is hydrolyzed to generate an Asp or isoAsp containing peptide. This overall transformation converts an α-amino acid into a β-amino acid in a ribosomally synthesized peptide, via an electrophilic intermediate that may be the intended product.
Collapse
|
65
|
Howe GW, van der Donk WA. Temperature-Independent Kinetic Isotope Effects as Evidence for a Marcus-like Model of Hydride Tunneling in Phosphite Dehydrogenase. Biochemistry 2019; 58:4260-4268. [PMID: 31535852 PMCID: PMC6852621 DOI: 10.1021/acs.biochem.9b00732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphite dehydrogenase catalyzes the transfer of a hydride from phosphite to NAD+, producing phosphate and NADH. We have evaluated the role of hydride tunneling in a thermostable variant of this enzyme (17X-PTDH) by measuring the temperature dependence of the primary 2H kinetic isotope effects (KIEs) between 5 and 45 °C. Pre-steady-state kinetic measurements were used to demonstrate that the hydride transfer is rate-determining across this temperature range and that the observed KIEs are equal to the intrinsic isotope effect on the chemical step. The KIEs on the pre-exponential factor (AH/AD) and the activation energy (ΔEa) were 1.6 ± 0.1 and 0.21 ± 0.05 kcal/mol, respectively, suggesting that 17X-PTDH facilitates extensive tunneling of both isotopes via a Marcus-like model. Site-directed mutagenesis was used to evaluate the role of an active site threonine (Thr104) found on the back face of the nicotinamide in promoting the close packing of the substrates. In mutants with reduced steric bulk at this position, values of AH/AD and ΔEa fall within the range describing semiclassical "over the barrier" reactivity, suggesting that Thr104 acts as a steric backstop to promote tunneling in 17X-PTDH. Whereas hydrogen tunneling is now a widely appreciated feature of C-H activating enzymes, these observations with a P-H activating system are consistent with the proposal that tunneling is likely to be a common feature on all enzymes that catalyze hydrogen transfers.
Collapse
|
66
|
|
67
|
Hegemann JD, Shi L, Gross ML, van der Donk WA. Mechanistic Studies of the Kinase Domains of Class IV Lanthipeptide Synthetases. ACS Chem Biol 2019; 14:1583-1592. [PMID: 31243957 DOI: 10.1021/acschembio.9b00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lanthipeptides, which belong to the superfamily of ribosomally synthesized and posttranslationally modified peptides (RiPPs), are associated with various interesting biological activities. Lanthipeptides can be subdivided into four classes that are defined by the characteristics of the corresponding posttranslational modification enzymes. Class IV lanthipeptide synthetases consist of an N-terminal lyase, a central kinase, and a C-terminal cyclase domain. Here, we present the first in-depth characterization of such a kinase domain from the globisporin maturation enzyme SgbL that originates from Streptomyces globisporus sp. NRRL B-2293. Catalytic residues were identified by alignments with homologues and structural modeling. Their roles were confirmed by employing proteins with Ala substitutions in in vitro modification and fluorescence polarization binding assays. Furthermore, the protein region that is binding the leader peptide was identified by hydrogen-deuterium exchange-mass spectrometry experiments. By fusion of this protein region to the maltose binding protein, a protein was generated that can specifically bind the SgbA leader peptide, albeit with reduced binding affinity compared to that of full length SgbL. Combined, the results of this study provide a firmer grasp of how lanthipeptide biosynthesis is accomplished by class IV synthetases and suggest by homology analysis that biosynthetic mechanisms are similar in class III lanthipeptide processing enzymes.
Collapse
|
68
|
Ting CP, Funk MA, Halaby SL, Zhang Z, Gonen T, van der Donk WA. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Science 2019; 365:280-284. [PMID: 31320540 PMCID: PMC6686864 DOI: 10.1126/science.aau6232] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/08/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Genome sequencing of environmental bacteria allows identification of biosynthetic gene clusters encoding unusual combinations of enzymes that produce unknown natural products. We identified a pathway in which a ribosomally synthesized small peptide serves as a scaffold for nonribosomal peptide extension and chemical modification. Amino acids are transferred to the carboxyl terminus of the peptide through adenosine triphosphate and amino acyl-tRNA-dependent chemistry that is independent of the ribosome. Oxidative rearrangement, carboxymethylation, and proteolysis of a terminal cysteine yields an amino acid-derived small molecule. Microcrystal electron diffraction demonstrates that the resulting product is isosteric to glutamate. We show that a similar peptide extension is used during the biosynthesis of the ammosamides, which are cytotoxic pyrroloquinoline alkaloids. These results suggest an alternative paradigm for biosynthesis of amino acid-derived natural products.
Collapse
|
69
|
Hegemann JD, Bobeica SC, Walker MC, Bothwell IR, van der Donk WA. Assessing the Flexibility of the Prochlorosin 2.8 Scaffold for Bioengineering Applications. ACS Synth Biol 2019; 8:1204-1214. [PMID: 31042373 PMCID: PMC6525029 DOI: 10.1021/acssynbio.9b00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclization is a common strategy to confer proteolytic resistance to peptide scaffolds. Thus, cyclic peptides have been the focus of extensive bioengineering efforts. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a superfamily of peptidic natural products that often contain macrocycles. In the RiPP family of lanthipeptides, macrocyclization is accomplished through formation of thioether cross-links between cysteines and dehydrated serines/threonines. The recent production of lanthipeptide libraries and development of methods to display lanthipeptides on yeast or phage highlights their potential for bioengineering and synthetic biology. In this regard, the prochlorosins are especially promising as the corresponding class II lanthipeptide synthetase ProcM matures numerous precursor peptides with diverse core peptide sequences. To facilitate future bioengineering projects, one of its native substrates, ProcA2.8, was subjected in this study to in-depth mutational analysis to test the limitations of ProcM-mediated cyclization. Alanine scan mutagenesis was performed on all residues within the two rings, and multiple prolines were introduced at various positions. Moreover, mutation, deletion, and insertion of residues in the region linking the two lanthionine rings was tested. Additional residues were also introduced or deleted from either ring, and inversion of ring forming residues was attempted to generate diastereomers. The findings were used for epitope grafting of the RGD integrin binding epitope within prochlorosin 2.8, resulting in a low nanomolar affinity binder of the αvβ3 integrin that was more stable toward proteolysis and displayed higher affinity than the linear counterpart.
Collapse
|
70
|
Wu C, Biswas S, Garcia De Gonzalo CV, van der Donk WA. Investigations into the Mechanism of Action of Sublancin. ACS Infect Dis 2019; 5:454-459. [PMID: 30582697 PMCID: PMC6408254 DOI: 10.1021/acsinfecdis.8b00320] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antimicrobial resistance is a global threat that poses a rising concern. One underlying challenge is the limited number of targets in bacteria affected by the current pool of antibiotics. To potentially help find new targets, we studied a member of the class of antimicrobial natural products named glycocins. We examined the mode of action of sublancin, which contains an unusual and essential glucosylated Cys residue, by monitoring macromolecular synthesis. Sublancin negatively affected DNA replication, transcription, and translation without affecting cell wall biosynthesis. In addition, we confirmed that the presence of the PTS sugar glucose in the medium negatively impacted antimicrobial activity of sublancin. Additionally, sublancin analogues carrying different sugars retained their antimicrobial activity regardless of which sugar was attached to the peptide or the carbon source used. These data suggest a novel mechanism upstream of transcription and translation and are consistent with previous studies suggesting that the glucose uptake system is involved.
Collapse
|
71
|
Bougioukou DJ, Ting CP, Peck SC, Mukherjee S, van der Donk WA. Use of the dehydrophos biosynthetic enzymes to prepare antimicrobial analogs of alaphosphin. Org Biomol Chem 2019; 17:822-829. [PMID: 30608108 DOI: 10.1039/c8ob02860e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-terminal domain of the dehydrophos biosynthetic enzyme DhpH (DhpH-C) catalyzes the condensation of Leu-tRNALeu with (R)-1-aminoethylphosphonate, the aminophosphonate analog of alanine called Ala(P). The product of this reaction, Leu-Ala(P), is a phosphonodipeptide, a class of compounds that have previously been investigated for use as clinical antibiotics. In this study, we show that DhpH-C is highly substrate tolerant and can condense various aminophosphonates (Gly(P), Ser(P), Val(P), 1-amino-propylphosphonate, and phenylglycine(P)) to Leu. Moreover, the enzyme is also tolerant with respect to the amino acid attached to tRNALeu. Using a mutant of leucyl tRNA synthetase that is deficient in its proofreading ability allowed the preparation of a series of aminoacyl-tRNALeu derivatives (Ile, Ala, Val, Met, norvaline, and norleucine). DhpH-C accepted these aminoacyl-tRNA derivatives and condensed the amino acid with l-Ala(P) to form the corresponding phosphonodipeptides. A subset of these peptides displayed antimicrobial activities demonstrating that the enzyme is a versatile biocatalyst for the preparation of antimicrobial peptides. We also investigated another enzyme from the dehydrophos biosynthetic pathway, the 2-oxoglutarate dependent enzyme DhpA. This enzyme oxidizes 2-hydroxyethylphosphonate to 1,2-dihydroxyethylphosphonate en route to l-Ala(P), but longer incubation results in overoxidation to 1-oxo-2-hydroxyethylphosphonate. This α-ketophosphonate was converted by the pyridoxal phosphate dependent enzyme DhpD into l-Ser(P). Thus, the dehydrophos biosynthetic enzymes can generate not only l-Ala(P) but also l-Ser(P).
Collapse
|
72
|
Bobeica SC, Dong SH, Huo L, Mazo N, McLaughlin MI, Jiménez-Osés G, Nair SK, van der Donk WA. Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease. eLife 2019; 8:42305. [PMID: 30638446 PMCID: PMC6363468 DOI: 10.7554/elife.42305] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/12/2019] [Indexed: 11/13/2022] Open
Abstract
The secretion of peptides and proteins is essential for survival and ecological adaptation of bacteria. Dual-functional ATP-binding cassette transporters export antimicrobial or quorum signaling peptides in Gram-positive bacteria. Their substrates contain a leader sequence that is excised by an N-terminal peptidase C39 domain at a double Gly motif. We characterized the protease domain (LahT150) of a transporter from a lanthipeptide biosynthetic operon in Lachnospiraceae and demonstrate that this protease can remove the leader peptide from a diverse set of peptides. The 2.0 Å resolution crystal structure of the protease domain in complex with a covalently bound leader peptide demonstrates the basis for substrate recognition across the entire class of such transporters. The structural data also provide a model for understanding the role of leader peptide recognition in the translocation cycle, and the function of degenerate, non-functional C39-like domains (CLD) in substrate recruitment in toxin exporters in Gram-negative bacteria.
Collapse
|
73
|
Howe GW, van der Donk WA. 18O Kinetic Isotope Effects Reveal an Associative Transition State for Phosphite Dehydrogenase Catalyzed Phosphoryl Transfer. J Am Chem Soc 2018; 140:17820-17824. [PMID: 30525552 DOI: 10.1021/jacs.8b06301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphite dehydrogenase (PTDH) catalyzes an unusual phosphoryl transfer reaction in which water displaces a hydride leaving group. Despite extensive effort, it remains unclear whether PTDH catalysis proceeds via an associative or dissociative mechanism. Here, primary 2H and secondary 18O kinetic isotope effects (KIEs) were determined and used together with computation to characterize the transition state (TS) catalyzed by a thermostable PTDH (17X-PTDH). The large, normal 18O KIEs suggest an associative mechanism. Various transition state structures were computed within a model of the enzyme active site and 2H and 18O KIEs were predicted to evaluate the accuracy of each TS. This analysis suggests that 17X-PTDH catalyzes an associative process with little leaving group displacement and extensive nucleophilic participation. This tight TS is likely a consequence of the extremely poor leaving group requiring significant P-O bond formation to expel the hydride. This finding contrasts with the dissociative TSs in most phosphoryl transfer reactions from phosphate mono- and diesters.
Collapse
|
74
|
Tang W, Bobeica SC, Wang L, van der Donk WA. CylA is a sequence-specific protease involved in toxin biosynthesis. J Ind Microbiol Biotechnol 2018; 46:537-549. [PMID: 30484123 DOI: 10.1007/s10295-018-2110-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/13/2018] [Indexed: 12/27/2022]
Abstract
CylA is a subtilisin-like protein belonging to a recently expanded serine protease family related to class II lanthipeptide biosynthesis. As a leader peptidase, CylA is responsible for maturation of the enterococcal cytolysin, a lantibiotic important for Enterococcus faecalis virulence. In vitro reconstitution of CylA reveals that it accepts both linear and modified cytolysin peptides with a preference for cyclized peptides. Further characterization indicates that CylA activates itself by removing its N-terminal 95 amino acids. CylA achieves sequence-specific traceless cleavage of non-cognate peptides even if they are post-translationally modified, which makes the peptidase a powerful tool for mining novel lanthipeptides by providing a general strategy for leader peptide removal. Knowledge about the substrate specificity of CylA may also facilitate the development of protease inhibitors targeting cytolysin biosynthesis as a potential therapeutic approach for enterococcal infections.
Collapse
|
75
|
Ren H, Biswas S, Ho S, van der Donk WA, Zhao H. Rapid Discovery of Glycocins through Pathway Refactoring in Escherichia coli. ACS Chem Biol 2018; 13:2966-2972. [PMID: 30183259 DOI: 10.1021/acschembio.8b00599] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycocins (glycosylated bacteriocins) are a family of ribosomally synthesized and post-translationally modified peptides with antimicrobial activities against pathogens of interest, including methicillin-resistant Staphylococcus aureus, representing a promising source of new antibiotics. Glycocins are still largely underexplored, and thus far, only six glycocins are known. Here, we used genome mining to identify 50 putative glycocin biosynthetic gene clusters and then chose six of them with distinct features for further investigation. Through two rounds of plug-and-play pathway refactoring and expression in Escherichia coli BL21(DE3), four systems produced novel glycocins. Further structural characterization revealed that one of them, which belongs to the enterocin 96-type glycocins, was diglucosylated on a single serine. The other three compounds belong to the SunA/ThuA-type glycocins and exhibit a antimicrobial spectrum narrower than that of sublancin, the best characterized member in this group, even though they share a similar disulfide topology and glycosylation. Further evaluation of their bioactivities with free glucose at high concentrations suggested that their antimicrobial mechanisms might be both glycocin- and species-specific. These glycocins with distinct features significantly broaden our knowledge and may lead to the discovery of new classes of antibiotics.
Collapse
|